Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 328
Filter
1.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731431

ABSTRACT

An excessive inflammatory response of the gastrointestinal tract is recognized as one of the major contributors to ulcerative colitis (UC). Despite this, effective preventive approaches for UC remain limited. Rosmarinic acid (RA), an enriched fraction from Perilla frutescens, has been shown to exert beneficial effects on disease-related inflammatory disorders. However, RA-enriched perilla seed meal (RAPSM) and perilla seed (RAPS) extracts have not been investigated in dextran sulfate sodium (DSS)-induced UC in mice. RAPSM and RAPS were extracted using the solvent-partitioning method and analyzed with high-pressure liquid chromatography (HPLC). Mice with UC induced using 2.5% DSS for 7 days were pretreated with RAPSM and RAPS (50, 250, 500 mg/kg). Then, the clinical manifestation, colonic histopathology, and serum proinflammatory cytokines were determined. Indeed, DSS-induced UC mice exhibited colonic pathological defects including an impaired colon structure, colon length shortening, and increased serum proinflammatory cytokines. However, RAPSM and RAPS had a protective effect at all doses by attenuating colonic pathology in DSS-induced UC mice, potentially through the suppression of proinflammatory cytokines. Concentrations of 50 mg/kg of RAPSM and RAPS were sufficient to achieve a beneficial effect in UC mice. This suggests that RAPSM and RAPS have a preventive effect against DSS-induced UC, potentially through alleviating inflammatory responses and relieving severe inflammation in the colon.


Subject(s)
Colitis, Ulcerative , Cytokines , Dextran Sulfate , Perilla , Plant Extracts , Seeds , Animals , Dextran Sulfate/adverse effects , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/prevention & control , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cytokines/metabolism , Cytokines/blood , Seeds/chemistry , Perilla/chemistry , Disease Models, Animal , Male , Depsides/pharmacology , Depsides/chemistry , Colon/drug effects , Colon/pathology , Colon/metabolism , Cinnamates/pharmacology , Cinnamates/chemistry , Rosmarinic Acid , Perilla frutescens/chemistry
2.
Food Chem ; 452: 139508, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38733681

ABSTRACT

In this study, an ultrasonic-assisted natural deep eutectic solvent (NaDES) was used to extract flavonoids from Perilla frutescens (L.) Britt. leaves. Of 10 tested NaDESs, that comprising D-(+)-glucose and glycerol exhibited the best total flavonoid extraction rate. Response surface methodology (RSM) was used for extraction modeling and optimization, and the total flavonoid content reached 87.48 ± 1.61 mg RE/g DW, which was a significant increase of 5.36% compared with that of 80% ethanol extraction. Morphological changes in P. frutescens leaves before and after extraction were analyzed by scanning electron microscopy (SEM), and the mechanism of NaDES formation was studied by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, 10 flavonoids were identified by UPLC-Q-TOF-MS. In addition, the NaDES extract had better biological activity according to five kinds of antioxidant capacity measurements, cyclooxygenase-2 (COX-2) and hyaluronidase (Hyal) inhibition experiments. Moreover, the stability test revealed that the total flavonoid loss rate of the NaDES extract after four weeks was 37.75% lower than that of the ethanol extract. These results indicate that the NaDES can effectively extract flavonoids from P. frutescens leaves and provide a reference for further applications in the food, medicine, health product and cosmetic industries.


Subject(s)
Deep Eutectic Solvents , Flavonoids , Perilla frutescens , Plant Extracts , Plant Leaves , Flavonoids/chemistry , Flavonoids/isolation & purification , Plant Leaves/chemistry , Perilla frutescens/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Deep Eutectic Solvents/chemistry , Green Chemistry Technology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology
3.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673960

ABSTRACT

The basic leucine zipper (bZIP) transcription factor (TF) family is one of the biggest TF families identified so far in the plant kingdom, functioning in diverse biological processes including plant growth and development, signal transduction, and stress responses. For Perilla frutescens, a novel oilseed crop abundant in polyunsaturated fatty acids (PUFAs) (especially α-linolenic acid, ALA), the identification and biological functions of bZIP members remain limited. In this study, 101 PfbZIPs were identified in the perilla genome and classified into eleven distinct groups (Groups A, B, C, D, E, F, G, H, I, S, and UC) based on their phylogenetic relationships and gene structures. These PfbZIP genes were distributed unevenly across 18 chromosomes, with 83 pairs of them being segmental duplication genes. Moreover, 78 and 148 pairs of orthologous bZIP genes were detected between perilla and Arabidopsis or sesame, respectively. PfbZIP members belonging to the same subgroup exhibited highly conserved gene structures and functional domains, although significant differences were detected between groups. RNA-seq and RT-qPCR analysis revealed differential expressions of 101 PfbZIP genes during perilla seed development, with several PfbZIPs exhibiting significant correlations with the key oil-related genes. Y1H and GUS activity assays evidenced that PfbZIP85 downregulated the expression of the PfLPAT1B gene by physical interaction with the promoter. PfLPAT1B encodes a lysophosphatidate acyltransferase (LPAT), one of the key enzymes for triacylglycerol (TAG) assembly. Heterogeneous expression of PfbZIP85 significantly reduced the levels of TAG and UFAs (mainly C18:1 and C18:2) but enhanced C18:3 accumulation in both seeds and non-seed tissues in the transgenic tobacco lines. Furthermore, these transgenic tobacco plants showed no significantly adverse phenotype for other agronomic traits such as plant growth, thousand seed weight, and seed germination rate. Collectively, these findings offer valuable perspectives for understanding the functions of PfbZIPs in perilla, particularly in lipid metabolism, showing PfbZIP85 as a suitable target in plant genetic improvement for high-value vegetable oil production.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Gene Expression Regulation, Plant , Perilla frutescens , Plant Proteins , Arabidopsis/genetics , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Down-Regulation/genetics , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/biosynthesis , Perilla frutescens/genetics , Perilla frutescens/metabolism , Phylogeny , Plant Oils/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
4.
Molecules ; 29(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542889

ABSTRACT

This study describes a simple, cost-effective, and eco-friendly method for synthesizing silver nanoparticles using a rosmarinic acid extract from Perilla frutescens (PFRAE) as the bioreduction agent. The resulting nanoparticles, called PFRAE-AgNPs, were characterized using various analytical techniques. The UV-Vis spectrum confirmed the formation of PFRAE-AgNPs, and the FTIR spectrum indicated the participation of rosmarinic acid in their synthesis and stabilization. The XRD pattern revealed the crystal structure of PFRAE-AgNPs, and the TEM analysis showed their spherical morphology with sizes ranging between 20 and 80 nm. The DLS analysis indicated that PFRAE-AgNPs were monodispersed with an average diameter of 44.0 ± 3.2 nm, and the high negative zeta potential (-19.65 mV) indicated their high stability. In the antibacterial assays, the PFRAE-AgNPs showed potent activity against both Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial pathogens, suggesting that they could be used as a potential antibacterial agent in the clinical setting. Moreover, the antioxidant activity of PFRAE-AgNPs against DPPH and ABTS radical scavengers highlights their potential in the treatment of various oxidative stress-related diseases. PFRAE-AgNPs also demonstrated significant anticancer activity against a range of cell lines including human colon cancer (COLO205), human prostate carcinoma (PC-3), human lung adenocarcinoma (A549), and human ovarian cancer (SKOV3) cell lines suggesting their potential in cancer therapy. The nanoparticles may also have potential in drug delivery, as their small size and high stability could enable them to cross biological barriers and deliver drugs to specific target sites. In addition to the aforementioned properties, PFRAE-AgNPs were found to be biocompatible towards normal (CHO) cells, which is a crucial characteristic for their application in cancer therapy and drug delivery systems. Their antibacterial, antioxidant, and anticancer properties make them promising candidates for the development of new therapeutic agents. Furthermore, their small size, high stability, and biocompatibility could enable them to be used in drug delivery systems to enhance drug efficacy and reduce side effects.


Subject(s)
Metal Nanoparticles , Neoplasms , Perilla frutescens , Humans , Antioxidants/pharmacology , Silver/pharmacology , Silver/chemistry , Rosmarinic Acid , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
5.
Plant Physiol ; 195(2): 1728-1744, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38441888

ABSTRACT

Rosmarinic acid (RA) is an important medicinal metabolite and a potent food antioxidant. We discovered that exposure to high light intensifies the accumulation of RA in the leaves of perilla (Perilla frutescens (L.) Britt). However, the molecular mechanism underlying RA synthesis in response to high light stress remains poorly understood. To address this knowledge gap, we conducted a comprehensive analysis employing transcriptomic sequencing, transcriptional activation, and genetic transformation techniques. High light treatment for 1 and 48 h resulted in the upregulation of 592 and 1,060 genes, respectively. Among these genes, three structural genes and 93 transcription factors exhibited co-expression. Notably, NAC family member PfNAC2, GBF family member PfGBF3, and cinnamate-4-hydroxylase gene PfC4H demonstrated significant co-expression and upregulation under high light stress. Transcriptional activation analysis revealed that PfGBF3 binds to and activates the PfNAC2 promoter. Additionally, both PfNAC2 and PfGBF3 bind to the PfC4H promoter, thereby positively regulating PfC4H expression. Transient overexpression of PfNAC2, PfGBF3, and PfC4H, as well as stable transgenic expression of PfNAC2, led to a substantial increase in RA accumulation in perilla. Consequently, PfGBF3 acts as a photosensitive factor that positively regulates PfNAC2 and PfC4H, while PfNAC2 also regulates PfC4H to promote RA accumulation under high light stress. The elucidation of the regulatory mechanism governing RA accumulation in perilla under high light conditions provides a foundation for developing a high-yield RA system and a model to understand light-induced metabolic accumulation.


Subject(s)
Cinnamates , Depsides , Gene Expression Regulation, Plant , Light , Plant Proteins , Rosmarinic Acid , Depsides/metabolism , Cinnamates/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Perilla frutescens/genetics , Perilla frutescens/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/radiation effects , Promoter Regions, Genetic/genetics
6.
Allergol. immunopatol ; 52(2): 16-22, mar. 2024. graf, ilus
Article in English | IBECS | ID: ibc-231084

ABSTRACT

Background: Sepsis is a life-threatening condition characterized by acute organ dysfunction, which frequently leads to acute lung injury (ALI) in approximately 40% of cases. Isoegomaketone (IK) is a constituent of essential oil found in P. frutescens, known for its diverse biological properties, including anti-inflammatory and antitumor effects. However, the regulatory impact of IK on ALI in the context of sepsis remains poorly understood. Methods: Pathological alterations in lung tissues were assessed using hematoxylin and eosin staining. Enumeration of total leukocytes and neutrophils in bronchoalveolar lavage fluid (BALF) was performed using a hematocytometer, while the levels of interleukin (IL)-6, IL-1β, IL-10, and IL-17 in BALF were quantified using enzyme-linked immunosorbent serological assay. In addition, the levels of malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione (GSH) in lung tissues were assessed using respective commercial kits; cell apoptosis was evaluated using the terminal deoxynucleotide transferase--mediated dUTP nick end-labeling assay, and protein expressions were determined through Western blot analysis. Results: Our findings revealed that cecal ligation and puncture (CLP) treatment in mice induced severe lung injury, characterized by increased lung injury scores, significant bleeding, neutrophil infiltration, and alveolar edema. However, treatment with IK at a dose of 10 mg/kg ameliorated CLP-induced lung injury, while IK dose of 5 mg/kg showed no significant effect. Additionally, IK treatment at 10 mg/kg reduced CLP-induced inflammation by decreasing levels of IL-6, IL-1β, IL-10, and IL-17. Furthermore, IK at 10 mg/kg attenuated CLP-induced oxidative stress by modulating levels of MDA, MPO, SOD, and GSH... (AU)


Subject(s)
Rats , Sepsis , Acute Lung Injury , Oils, Volatile , Perilla frutescens , Anti-Inflammatory Agents , Drug Screening Assays, Antitumor , Staining and Labeling , Hematoxylin
7.
J Asian Nat Prod Res ; 26(1): 69-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38305031

ABSTRACT

Two new depside derivatives 1 and 2 as well as a new pair of rosmarinic acid enantiomers 3a/b were isolated from the leaves of Perilla frutescens (L.) britt. The chemical structures of these compounds were identified based on detailed spectroscopic and physicochemical analyses (HR-ESI-MS, NMR) and comparison of literature data. Compounds 3a/b were obtained by chiral separation, and their absolute configurations were determined by comparison of experimental and calculated ECD spectra. Compounds 3a/b exhibited potential inhibitory activity on nitric oxide (NO) production induced by lipopolysaccharide in RAW264.7 cells with IC50 values of 15.92 ± 3.32 µM and 48.72 ± 4.12 µM.


Subject(s)
Perilla frutescens , Perilla frutescens/chemistry , Rosmarinic Acid , Plant Extracts/chemistry , Plant Leaves/chemistry , Anti-Inflammatory Agents/pharmacology
8.
Ecotoxicol Environ Saf ; 271: 115956, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215665

ABSTRACT

The new-type tobacco varieties "Zisu" and "Luole" were obtained by distant hybridization between N. tabacum L. var. HHY and Perilla frutescens and Ocimum basilicum, with obviously different chemical composition. Smoking is the major risk factor for COPD, characterized by neutrophil-dominant inflammation. In the present study, rat COPD model was established by cigarette exposure, and the health hazard of three varieties was compared by general condition observation, pathological and morphological evaluation, total and differential cell numeration, and characterization of major inflammatory mediators and MAPK/NF-κB pathway, etc. Rats in "HHY" group developed obvious symptoms such as cough, dyspnea, mental fatigue, etc., but these symptoms were obviously mitigated in "Zisu" and "Luole" groups. H&E staining analysis, including score, MLI, MAN, wt% and WA%, showed that "Zisu" and "Luole" significantly alleviated lung injury and the degree of airway remodeling and emphysema compared to "HHY". In BALF, the number of total leukocyte and the percent neutrophils in "Zisu" and "Luole" groups were evidently lower than "HHY" group. The levels of inflammatory mediators, such as IL-8, MPO, MIP-2, LTB4, TNF-α and neutrophil elastase, in "HHY" group were obviously higher than "Zisu" and "Luole" groups. The ROS-mediated NF-κB p65 and p38MAPK pathways may play an important role. Results indicated that tobacco introduced perilla and basil genes could remarkably attenuate recruitment, infiltration and activation of neutrophils and intervene in airway inflammation, retarding disease progression, especially "Zisu". Changes in chemical composition via breeding techniques may be a novel way for tobacco harm reduction.


Subject(s)
Ocimum basilicum , Perilla frutescens , Pulmonary Disease, Chronic Obstructive , Humans , Rats , Animals , Ocimum basilicum/genetics , Ocimum basilicum/metabolism , Perilla frutescens/genetics , Perilla frutescens/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , NF-kappa B/metabolism , Bronchoalveolar Lavage Fluid , Plant Breeding , Lung/metabolism , Inflammation/genetics , Inflammation/metabolism , Nicotiana , Smoke/adverse effects , Inflammation Mediators/metabolism
9.
Meat Sci ; 209: 109419, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38154372

ABSTRACT

Addressing health-related concerns linked to the metabolite profile of lamb meat has become paramount, in line with the growing demand for enhanced flavor and taste. We examined the impact of Perilla frutescens seeds on Tan lamb growth, carcass traits, and metabolite profiles. Three diets were employed: a low-concentrate group (LC), a high-concentrate group (HC), and a PFS group (the LC diet supplemented with 3% Perilla frutescens seeds) on a dry matter basis. Forty-five male Tan-lambs (approximately six months) with similar body weights (25.1 kg ± 1.12 SD) were randomly assigned to one of these three groups for 84-day feeding, including an initial 14-day adjustment phase. The supplementation of PFS resulted in increased average daily gain (P < 0.01) and improved carcass quality and meat color (P < 0.05). Additionally, it led to an enhancement in omega-3 polyunsaturated fatty acids (P < 0.05) and a reduction in the omega-6/omega-3 ratio (P < 0.05). Using gas chromatography-mass spectrometry, 369 volatile compounds were identified with enhanced levels of acetaldehyde and 1,2,4-trimethyl-benzene associated with PFS (P < 0.05). Among the 807 compounds identified by ultra-high performance liquid chromatography-mass spectrometry, there were 66 significantly differential compounds (P < 0.05), including 43 hydrophilic metabolites and 23 lipids. PFS supplementation led to significant alterations in 66 metabolites, with three metabolites including 2,5-diisopropyl-3-methylphenol, 3-hydroxydecanoic acid, and lysophosphatidylcholine (15:0) emerging as potential PFS-related biomarkers. The study indicates that PFS supplementation can enhance Tan-lamb growth, feed efficiency, and meat quality, potentially providing lamb meat with improved flavor and nutritional characteristics.


Subject(s)
Perilla frutescens , Red Meat , Animals , Male , Animal Feed/analysis , Diet/veterinary , Dietary Supplements , Meat/analysis , Red Meat/analysis , Sheep , Sheep, Domestic
10.
Chemosphere ; 350: 141066, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159731

ABSTRACT

Radionuclide uranium is a great threat to human health, due to its high chemical toxicity and radioactivity. Finding suitable uranium decorporation to reduce damage caused by uranium internal contamination is an important aspect of nuclear emergency response. However, the poor selectivity and/or high toxicity of the only excretory promoter approved by Food and Drug Administration (FDA) is an obvious disadvantage. Herein, we choose an edible natural product, the traditional Chinese medicine called Perilla frutescens (PF), which has wide sources and can be used as an excellent and effective uranyl decorporation. In vivo uranium decorporation assays illustrate the removal efficiency of uranium in kidney were 68.87% and 43.26%, in femur were 56.66% and 54.53%, by the test of prophylactic and immediate administration, respectively. Cell level experiments confirmed that it had better biocompatibility than CaNa3-DTPA (CaNa3-diethylenetriamine pentaacetate, a commercial actinide excretion agent). In vitro static adsorption experiments exhibited that its excellent selectivity sorption for uranyl. All those results findings would provide new research insights about natural product for uranyl decorporation.


Subject(s)
Biological Products , Perilla frutescens , Uranium , Humans , Uranium/toxicity , Chelating Agents/pharmacology , Kidney , Biological Products/pharmacology
11.
Plant Physiol Biochem ; 204: 108151, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37931559

ABSTRACT

Perilla frutescens (L.) Britt is a renowned medicinal plant with pharmaceutically valuable phenolic acids and flavonoids. The present study was aimed to study the eliciting effect of silver and copper nanoparticles (AgNPs and CuNPs, 50 and 100 mg/L), and methyl jasmonate (MeJa, 50 and 100 µM) on the biochemical traits, the accumulation of phenolic compounds and antioxidative capacity of P. frutescens cell suspension culture. Suspension cells were obtained from friable calli derived from nodal explants in Murashige and Skoog (MS) liquid medium containing 1 mg/L 2,4-D and 1 mg/L BAP. The 21 days old cell suspension culture established from nodal explant derived callus supplemented with 100 mg/L MeJa resulted in the highest activity of catalase and guaiacol peroxidase enzymes, and CuNPs 100 mg/L treated cells indicated the maximum content of total phenol, total anthocyanin, superoxide dismutase, malondialdehyde, and H2O2. Also, the highest content of ferulic acid (1.41 ± 0.03, mg/g DW), rosmarinic acid (19.29 ± 0.12, mg/g DW), and phenylalanine ammonia-lyase (16.81 ± 0.18, U/mg protein) were observed with 100 mg/L CuNPs, exhibiting a total increase of 1.58-fold, 2.12-fold, and 1.51-fold, respectively, higher than untreated cells. On the other hand, AgNPs 100 mg/L treated cells indicated the most amounts of caffeic acid (0.57 ± 0.03, mg/g DW) and rutin (1.13 ± 0.07, mg/g DW), as well as the highest scavenging potential of free radicals. Overall, the results of the present study can be applied for the large-scale production of valuable phenolic acids and flavonoids from P. frutescens through CuNPs and AgNPs 100 mg/L elicited cell suspension cultures.


Subject(s)
Perilla frutescens , Hydrogen Peroxide , Phenols/chemistry , Antioxidants/chemistry , Flavonoids , Cell Culture Techniques
12.
Molecules ; 28(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38005276

ABSTRACT

The development of natural antioxidants to replace synthetic compounds is attractive. Perilla frutescens leaves were proven to be rich in antioxidants. The extraction of antioxidants from Perilla leaves via ultrasonic-assisted extraction (UAE) based on choline chloride-based deep eutectic solvents (DESs) was studied. Firstly, several DESs were prepared, and their extraction effects were compared. Secondly, the extraction process was optimized by single-factor experiments and response surface methodology (RSM). Finally, the optimization results were verified and compared with the results of traditional solvent-based UAE. The effects of solvents on the surface cell morphology of Perilla frutescens leaves were characterized by scanning electron microscopy (SEM). Choline chloride-acetic acid-based DES (ChCl-AcA) extract showed a relatively high ferric-reducing antioxidant activity (FRAP) and 2,2-diphenyl-1-picrylhyldrazyl radical scavenging rate (DPPH). Under the optimal operating conditions (temperature 41 °C, liquid-solid ratio 33:1, ultrasonic time 30 min, water content 25%, ultrasonic power 219 W), the experimental results are as follows: DPPH64.40% and FRAP0.40 mM Fe(II)SE/g DW. The experimental and predicted results were highly consistent with a low error (<3.38%). The values of the DPPH and FRAP were significantly higher than that for the water, ethanol, and butanol-based UAE. SEM analysis confirmed that ChCl-AcA enhanced the destruction of the cell wall, so that more antioxidants were released. This study provides an eco-friendly technology for the efficient extraction of antioxidants from Perilla frutescens leaves. The cytotoxicity and biodegradability of the extract will be further verified in a future work.


Subject(s)
Antioxidants , Perilla frutescens , Antioxidants/pharmacology , Antioxidants/chemistry , Deep Eutectic Solvents , Ultrasonics/methods , Solvents/chemistry , Water/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Choline
13.
Molecules ; 28(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894485

ABSTRACT

Lowering blood cholesterol levels is crucial for reducing the risk of cardiovascular disease in patients with familial hypercholesterolemia. To develop Perilla frutescens (L.) Britt. leaves as a functional food with a cholesterol-lowering effect, in this study, we collected P. frutescens (L.) Britt. leaves from different regions of China and Republic of Korea. On the basis of the extraction yield (all components; g/kg), we selected P. frutescens (L.) Britt. leaves from Hebei Province, China with an extract yield of 60.9 g/kg. After evaluating different concentrations of ethanol/water solvent for P. frutescens (L.) Britt. leaves, with luteolin 7-glucuronide as the indicator component, we selected a 30% ethanol/water solvent with a high luteolin 7-glucuronide content of 0.548 mg/g in Perilla. frutescens (L.) Britt. leaves. Subsequently, we evaluated the cholesterol-lowering effects of P. frutescens (L.) Britt. leaf extract and luteolin 7-glucuronide by detecting total cholesterol in HepG2 cells. The 30% ethanol extract lowered cholesterol levels significantly by downregulating 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression. This suggests that P. frutescens (L.) Britt leaves have significant health benefits and can be explored as a potentially promising food additive for the prevention of hypercholesterolemia-related diseases.


Subject(s)
Perilla frutescens , Humans , Glucuronides , Luteolin , Plant Extracts/pharmacology , Solvents , Ethanol , Cholesterol , Water , Plant Leaves
14.
Molecules ; 28(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37894678

ABSTRACT

Perilla frutescens leaves are hypothesized to possess antioxidant and amyloid-ß (Aß) aggregation inhibitory properties primarily due to their polyphenol-type compounds. While these bioactivities fluctuate daily, the traditional methods for quantifying constituent contents and functional properties are both laborious and impractical for immediate field assessments. To address this limitation, the present study introduces an expedient approach for on-site analysis, employing fluorescence spectra obtained through excitation light irradiation of perilla leaves. Standard analytical techniques were employed to evaluate various constituent contents (chlorophyl (Chl), total polyphenol content (TPC), total flavonoid content (TFC), and rosmarinic acid (RA)) and functional attributes (DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and Aß aggregation inhibitory activity). Correlations between the fluorescence spectra and these parameters were examined using normalized difference spectral index (NDSI), ratio spectral index (RSI), and difference spectral index (DSI) analyses. The resulting predictive model exhibited a high coefficient of determination, with R2 values equal to or greater than 0.57 for constituent contents and 0.49 for functional properties. This approach facilitates the convenient, simultaneous, and nondestructive monitoring of both the chemical constituents and the functional capabilities of perilla leaves, thereby simplifying the determination of optimal harvest times. The model derived from this method holds promise for real-time assessments, indicating its potential for the simultaneous evaluation of both constituents and functionalities in perilla leaves.


Subject(s)
Perilla frutescens , Perilla , Perilla frutescens/chemistry , Antioxidants/chemistry , Perilla/chemistry , Polyphenols/analysis , Plant Extracts/chemistry , Amyloid beta-Peptides/analysis , Plant Leaves/chemistry
15.
Int J Mol Sci ; 24(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894786

ABSTRACT

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 PfGPATs were identified from the P. frutescens genome and classified into three distinct groups according to their phylogenetic relationships. These 14 PfGPAT genes were distributed unevenly across 11 chromosomes. PfGPAT members within the same subfamily had highly conserved gene structures and four signature functional domains, despite considerable variations detected in these conserved motifs between groups. RNA-seq and RT-qPCR combined with dynamic analysis of oil and FA profiles during seed development indicated that PfGPAT9 may play a crucial role in the biosynthesis and accumulation of seed oil and PUFAs. Ex vivo enzymatic assay using the yeast expression system evidenced that PfGPAT9 had a strong GPAT enzyme activity crucial for TAG assembly and also a high substrate preference for oleic acid (OA, C18:1) and ALA (C18:3). Heterogeneous expression of PfGPAT9 significantly increased total oil and UFA (mostly C18:1 and C18:3) levels in both the seeds and leaves of the transgenic tobacco plants. Moreover, these transgenic tobacco lines exhibited no significant negative effect on other agronomic traits, including plant growth and seed germination rate, as well as other morphological and developmental properties. Collectively, our findings provide important insights into understanding PfGPAT functions, demonstrating that PfGPAT9 is the desirable target in metabolic engineering for increasing storage oil enriched with valuable FA profiles in oilseed crops.


Subject(s)
Perilla frutescens , Perilla frutescens/genetics , Perilla frutescens/metabolism , Glycerol/metabolism , Phylogeny , Plant Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Fatty Acids, Unsaturated/metabolism , Glycerol-3-Phosphate O-Acyltransferase/genetics , Glycerol-3-Phosphate O-Acyltransferase/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plant Oils/metabolism , Phosphates/metabolism
16.
Molecules ; 28(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37687260

ABSTRACT

The present study reports the biomimetic synthesis of silver nanoparticles (AgNPs) using a simple, cost effective and eco-friendly method. In this method, the flavonoid extract of Perilla frutescens (PFFE) was used as a bioreduction agent for the reduction of metallic silver into nanosilver, called P. frutescens flavonoid extract silver nanoparticles (PFFE-AgNPs). The Ultraviolet-Visible (UV-Vis) spectrum showed a characteristic absorption peak at 440 nm that confirmed the synthesis of PFFE-AgNPs. A Fourier transform infrared spectroscopic (FTIR) analysis of the PFFE-AgNPs revealed that flavonoids are involved in the bioreduction and capping processes. X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns confirmed the face-centered cubic (FCC) crystal structure of PFFE-AgNPs. A transmission electron microscopic (TEM) analysis indicated that the synthesized PFFE-AgNPs are 20 to 70 nm in size with spherical morphology and without any aggregation. Dynamic light scattering (DLS) studies showed that the average hydrodynamic size was 44 nm. A polydispersity index (PDI) of 0.321 denotes the monodispersed nature of PFFE-AgNPs. Further, a highly negative surface charge or zeta potential value (-30 mV) indicates the repulsion, non-aggregation, and stability of PFFE-AgNPs. PFFE-AgNPs showed cytotoxic effects against cancer cell lines, including human colon carcinoma (COLO205) and mouse melanoma (B16F10), with IC50 concentrations of 59.57 and 69.33 µg/mL, respectively. PFFE-AgNPs showed a significant inhibition of both Gram-positive (Listeria monocytogens and Enterococcus faecalis) and Gram-negative (Salmonella typhi and Acinetobacter baumannii) bacteria pathogens. PFFE-AgNPs exhibited in vitro antioxidant activity by quenching 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) free radicals with IC50 values of 72.81 and 92.48 µg/mL, respectively. In this study, we also explained the plausible mechanisms of the biosynthesis, anticancer, and antibacterial effects of PFFE-AgNPs. Overall, these findings suggest that PFFE-AgNPs have potential as a multi-functional nanomaterial for biomedical applications, particularly in cancer therapy and infection control. However, it is important to note that further research is needed to determine the safety and efficacy of these nanoparticles in vivo, as well as to explore their potential in other areas of medicine.


Subject(s)
Colonic Neoplasms , Metal Nanoparticles , Perilla frutescens , Humans , Animals , Mice , Antioxidants/pharmacology , Silver/pharmacology , Hydrogen Peroxide , Anti-Bacterial Agents/pharmacology
17.
Gene ; 889: 147808, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37722611

ABSTRACT

Perilla (Perilla frutescens) is a potential specific oilseed crop with an extremely high α-linolenic acid (ALA) content in its seeds. AP2/ERF transcription factors (TFs) play important roles in multiple biological processes. However, limited information is known about the regulatory mechanism of the AP2/ERF family in perilla's oil accumulation. In this research, we identified 212 AP2/ERF family members in the genome of perilla, and their domain characteristics, collinearity, and sub-genome differentiation were comprehensively analyzed. Transcriptome sequencing revealed that genes encoding key enzymes involved in oil biosynthesis (e.g., ACCs, KASII, GPAT, PDAT and LPAAT) were up-regulated in the high-oil variety. Moreover, the endoplasmic reticulum-localized FAD2 and FAD3 were significantly up-regulated in the high-ALA variety. To investigate the roles of AP2/ERFs in lipid biosynthesis, we conducted a correlation analysis between non-redundant AP2/ERFs and key lipid metabolism genes using WGCNA. A significant correlation was found between 36 AP2/ERFs and 90 lipid metabolism genes. Among them, 12 AP2/ERFs were identified as hub genes and showed significant correlation with lipid synthase genes (e.g., FADs, GPAT and ACSL) and key regulatory TFs (e.g., LEC2, IAA, MYB, UPL3). Furthermore, gene expression analysis identified three AP2/ERFs (WRI, ABI4, and RAVI) potentially playing an important role in the regulation of oil accumulation in perilla. Our study suggests that PfAP2/ERFs are important regulatory TFs in the lipid biosynthesis pathway, providing a foundation for the molecular understanding of oil accumulation in perilla and other oilseed crops.


Subject(s)
Perilla frutescens , Perilla , Perilla frutescens/genetics , Perilla frutescens/metabolism , Perilla/genetics , Perilla/metabolism , Transcriptome , Gene Expression Profiling , Seeds/genetics , Multigene Family , Plant Oils , Lipids , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Phylogeny
18.
Molecules ; 28(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37570851

ABSTRACT

Perilla frutescens is an annual herb of the Labiatae family and is widely grown in several countries in Asia. Perilla frutescens is a plant that is used medicinally in its entirety, as seen in its subdivision into perilla seeds, perilla stalks, and perilla leaves, which vary more markedly in their chemical composition. Several studies have shown that Perilla frutescens has a variety of pharmacological effects, including anti-inflammatory, antibacterial, detoxifying, antioxidant, and hepatoprotective. In the absence of a review of Perilla frutescens for the treatment of cancer. This review provides an overview of the chemical composition and molecular mechanisms of Perilla frutescens for cancer treatment. It was found that the main active components of Perilla frutescens producing cancer therapeutic effects were perilla aldehyde (PAH), rosmarinic acid (Ros A), lignan, and isoestrogen (IK). In addition to these, extracts of the leaves and fruits of Perilla frutescens are also included. Among these, perilla seed oil (PSO) has a preventive effect against colorectal cancer due to the presence of omega-3 polyunsaturated fatty acids. This review also provides new ideas and thoughts for scientific innovation and clinical applications related to Perilla frutescens.


Subject(s)
Fatty Acids, Omega-3 , Neoplasms , Perilla frutescens , Perilla , Perilla frutescens/chemistry , Perilla/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants , Plant Leaves , Neoplasms/drug therapy
19.
Int J Mol Sci ; 24(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37445708

ABSTRACT

The increasingly serious trend of soil salinization inhibits the normal growth and development of soybeans, leading to reduced yields and a serious threat to global crop production. Microsomal ω-3 fatty acid desaturase encoded by the FAD3 gene is a plant enzyme that plays a significant role in α-linolenic acid synthesis via regulating the membrane fluidity to better accommodate various abiotic stresses. In this study, PfFAD3a was isolated from perilla and overexpressed in soybeans driven by CaMV P35S, and the salt tolerance of transgenic plants was then evaluated. The results showed that overexpression of PfFAD3a increased the expression of PfFAD3a in both the leaves and seeds of transgenic soybean plants, and α-linolenic acid content also significantly increased; hence, it was shown to significantly enhance the salt tolerance of transgenic plants. Physiological and biochemical analysis showed that overexpression of PfFAD3a increased the relative chlorophyll content and PSII maximum photochemical efficiency of transgenic soybean plants under salt stress; meanwhile, a decreased accumulation of MDA, H2O2, and O2•-, increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbic acid peroxidase (APX), as well as the production of proline and soluble sugar. In summary, the overexpression of PfFAD3a may enhance the salt tolerance in transgenic soybean plants through enhanced membrane fluidity and through the antioxidant capacity induced by C18:3.


Subject(s)
Perilla frutescens , Perilla , Salt Tolerance/genetics , Perilla frutescens/genetics , Perilla frutescens/metabolism , Glycine max , Perilla/genetics , alpha-Linolenic Acid , Hydrogen Peroxide/metabolism , Peroxidases/metabolism , Stress, Physiological/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
20.
BMC Plant Biol ; 23(1): 345, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37391700

ABSTRACT

BACKGROUND: Perilla frutescens is widely used as both a medicine and a food worldwide. Its volatile oils are its active ingredients, and, based on the different volatile constituents, P. frutescens can be divided into several chemotypes, with perilla ketone (PK) being the most common. However, the key genes involved in PK biosynthesis have not yet been identified. RESULTS: In this study, metabolite constituents and transcriptomic data were compared in leaves of different levels. The variation in PK levels was the opposite of that of isoegoma ketone and egoma ketone in leaves at different levels. Based on transcriptome data, eight candidate genes were identified and successfully expressed in a prokaryotic system. Sequence analysis revealed them to be double bond reductases (PfDBRs), which are members of the NADPH-dependent, medium-chain dehydrogenase/reductase (MDR) superfamily. They catalyze the conversion of isoegoma ketone and egoma ketone into PK in in vitro enzymatic assays. PfDBRs also showed activity on pulegone, 3-nonen-2-one, and 4-hydroxybenzalacetone. In addition, several genes and transcription factors were predicted to be associated with monoterpenoid biosynthesis, and their expression profiles were positively correlated with variations in PK abundance, suggesting their potential functions in PK biosynthesis. CONCLUSIONS: The eight candidate genes encoding a novel double bond reductase related to perilla ketone biosynthesis were identified in P. frutescens, which carries similar sequences and molecular features as the MpPR and NtPR from Nepeta tenuifolia and Mentha piperita, respectively. These findings not only reveal the pivotal roles of PfDBR in exploring and interpreting PK biological pathway but also contribute to facilitating future studies on this DBR protein family.


Subject(s)
Perilla frutescens , Perilla , Perilla frutescens/genetics , Perilla/genetics , Monoterpenes , Ketones , Oxidoreductases
SELECTION OF CITATIONS
SEARCH DETAIL
...