Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.269
Filter
1.
PeerJ ; 12: e17252, 2024.
Article in English | MEDLINE | ID: mdl-38708345

ABSTRACT

Background: Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods: Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1ß) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results: Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions: Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.


Subject(s)
Cystatin C , Macrophages , Nitric Oxide , Porphyromonas gingivalis , Reactive Oxygen Species , Porphyromonas gingivalis/immunology , Humans , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Cystatin C/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Cytokines/metabolism , Periodontitis/microbiology , Periodontitis/immunology , Periodontitis/drug therapy , Periodontitis/pathology , Apoptosis/drug effects
2.
Folia Med (Plovdiv) ; 66(2): 227-234, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38690818

ABSTRACT

INTRODUCTION: Specific bacterial plaque and environmental factors cannot be considered the only cause of periodontitis. Still, several genetic factors affect the host response to the bacteria, like gene polymorphisms in anti-inflammatory cytokines. Several studies have reported that clones of T-helper 2 lymphocytes (TH2) are generated in response to dental plaque in periodontitis patients, while in healthy individuals, they are regulated by T-helper 1 (TH1) lymphocytes. Accordingly, such patients consistently produce more IL-4 (TH2) in response to bacterial stimulation, whereas healthy controls with intact periodontal tissues produce a significantly higher level of TH1.


Subject(s)
Interleukin-4 , Periodontitis , Polymorphism, Genetic , Humans , Interleukin-4/genetics , Male , Periodontitis/genetics , Periodontitis/immunology , Adult , Female , Iraq , Middle Aged , Case-Control Studies , Th2 Cells/immunology
3.
Int Immunopharmacol ; 133: 112151, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38685175

ABSTRACT

Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.


Subject(s)
Arthritis, Rheumatoid , Bone Resorption , Bone and Bones , Osteoclasts , Periodontitis , Humans , Osteoclasts/immunology , Osteoclasts/metabolism , Animals , Bone and Bones/metabolism , Bone and Bones/immunology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Periodontitis/immunology , Periodontitis/metabolism , Bone Resorption/immunology , Osteogenesis/immunology
4.
Oral Health Prev Dent ; 22: 159-170, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687028

ABSTRACT

PURPOSE: To study the therapeutic effect of hemagglutinin-2 and fimbrial (HA2-FimA) vaccine on experimental periodontitis in rats. MATERIALS AND METHODS: The first batch of rats was divided into two groups and immunised with pure water or pVAX1-HA2-FimA at the age of 6, 7, and 9 weeks. After sacrificing the animals, total RNA was extracted from the spleens for RNA high-throughput sequencing (RNA-Seq) analysis. The second batch of rats was divided into four groups (A, B, C, D), and an experimental periodontitis rat model was established by suturing silk thread around the maxillary second molars of rats in groups B, C, and D for 4 weeks. The rats were immunised with pure water, pVAX1-HA2-FimA vaccine, empty pVAX1 vector, and pure water at 10, 11, and 13 weeks of age, respectively. Secretory immunoglobulin A (SIgA) antibodies and cathelicidin antimicrobial peptide (CAMP) levels in saliva were measured by enzyme-linked immunosorbent assay (ELISA). All rats were euthanised at 17 weeks of age, and alveolar bone loss was examined using micro-computed tomography (Micro-CT). RESULTS: Through sequencing analysis, six key genes, including Camp, were identified. Compared with the other three groups, the rats in the periodontitis+pVAX1-HA2-FimA vaccine group showed higher levels of SIgA and CAMP (p < 0.05). Micro-CT results showed significantly less alveolar bone loss in the periodontitis+pVAX1-HA2-FimA vaccine group compared to the periodontitis+pVAX1 group and periodontitis+pure water group (p < 0.05). CONCLUSION: HA2-FimA DNA vaccine can increase the levels of SIgA and CAMP in the saliva of experimental periodontitis model rats and reduce alveolar bone loss.


Subject(s)
Periodontitis , Vaccines, DNA , Animals , Periodontitis/prevention & control , Periodontitis/immunology , Rats , Disease Models, Animal , Immunoglobulin A, Secretory/analysis , Fimbriae Proteins/immunology , Alveolar Bone Loss/prevention & control , Cathelicidins , Rats, Sprague-Dawley , Enzyme-Linked Immunosorbent Assay , Saliva/immunology , Hemagglutinins/immunology , X-Ray Microtomography , Male
5.
Inflamm Res ; 73(5): 771-792, 2024 May.
Article in English | MEDLINE | ID: mdl-38592458

ABSTRACT

INTRODUCTION: Macrophages (Mφs) are functionally dynamic immune cells that bridge innate and adaptive immune responses; however, the underlying epigenetic mechanisms that control Mφ plasticity and innate immune functions are not well elucidated. OBJECTIVE: To identify novel functions of macrophage-enriched lncRNAs in regulating polarization and innate immune responses. METHODS: Total RNA isolated from differentiating monocyte-derived M1 and M2 Mφs was profiled for lncRNAs expression using RNAseq. Impact of LRRC75A-AS1, GAPLINC and AL139099.5 knockdown was examined on macrophage differentiation, polarization markers, phagocytosis, and antigen processing by flow cytometry and florescence microscopy. Cytokine profiles were examined by multiplex bead array and cytoskeletal signaling pathway genes were quantified by PCR-based array. Gingival biopsies were collected from periodontally healthy and diseased subjects to examine lncRNAs, M1/M2 marker expression. RESULTS: Transcriptome profiling of M1 and M2 Mφs identified thousands of differentially expressed known and novel lncRNAs. We characterized three Mφ-enriched lncRNAs LRRC75A-AS1, GAPLINC and AL139099.5 in polarization and innate immunity. Knockdown of LRRC75A-AS1 and GAPLINC downregulated the Mφ differentiation markers and skewed Mφ polarization by decreasing M1 markers without a significant impact on M2 markers. LRRC75A-AS1 and GAPLINC knockdown also attenuated bacterial phagocytosis, antigen processing and inflammatory cytokine secretion in Mφs, supporting their functional role in potentiating innate immune functions. Mechanistically, LRRC75A-AS1 and GAPLINC knockdown impaired Mφ migration by downregulating the expression of multiple cytoskeletal signaling pathways suggesting their critical role in regulating Mφ migration. Finally, we showed that LRRC75A-AS1 and GAPLINC were upregulated in periodontitis and their expression correlates with higher M1 markers suggesting their role in macrophage polarization in vivo. CONCLUSION: Our results show that polarized Mφs acquire a unique lncRNA repertoire and identified many previously unknown lncRNA sequences. LRRC75A-AS1 and GAPLINC, which are induced in periodontitis, regulate Mφ polarization and innate immune functions supporting their critical role in inflammation.


Subject(s)
Immunity, Innate , Macrophages , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Macrophages/immunology , Cell Differentiation , Phagocytosis , Cytokines/metabolism , Gingiva/immunology , Cells, Cultured , Periodontitis/immunology , Periodontitis/genetics
6.
Int Immunopharmacol ; 132: 111984, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38565043

ABSTRACT

Periodontitis is a chronic inflammatory disease with the destruction of supporting periodontal tissue. This study evaluated the role of insulin-like growth factor 2 (IGF2) in periodontitis by inhibiting the polarization of M1 macrophages via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. IGF2 was enriched in the gingival tissue of murine periodontitis model identified by RNA sequencing. IGF2 application alleviated the expression of pro-inflammatory factors and promoted osteogenesis and the expression of related genes and proteins in a dose-dependent manner in periodontitis. The result of micro-CT verified this finding. Both in vivo and in vitro results revealed that IGF2 decreased the polarization of M1 macrophages and pro-inflammatory factors by immunofluorescence staining, flow cytometry, western blotting and RT-PCR. IGF2 application promoted the osteogenic ability of periodontal ligament fibroblasts (PDLFs) indirectly via its inhibition of M1 polarization evaluated by alkaline phosphatase and alizarin red staining. Then, the cGAS/STING pathway was upregulated in periodontitis and macrophages challenged by LPS, the inhibition of which led to downregulation of M1 polarization. Furthermore, IGF2 could downregulate cGAS, STING and the phosphorylation of P65. Collectively, our study indicates IGF2 can regulate the polarization of M1 macrophages via the cGAS/STING pathway and highlights the promising future of IGF2 as a therapeutic treatment for periodontitis.


Subject(s)
Insulin-Like Growth Factor II , Macrophages , Membrane Proteins , Nucleotidyltransferases , Periodontitis , Animals , Humans , Male , Mice , Bone Regeneration/drug effects , Cells, Cultured , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Insulin-Like Growth Factor II/metabolism , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Nucleotidyltransferases/metabolism , Osteogenesis/drug effects , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/pathology , Periodontitis/immunology , Periodontitis/metabolism , Periodontitis/drug therapy , Signal Transduction
7.
Int Immunopharmacol ; 133: 112056, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38626546

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the effect of 4µ8c, an inhibitor targeting the endoplasmic reticulum stress-associated factor IRE1α, on macrophage polarization in an experimental model of diabetic periodontitis through ex vivo experiments. MATERIALS AND METHODS: Local alveolar bone parameters were evaluated using Micro-CT following intraperitoneal administration of 4µ8c in mice with experimental diabetic periodontitis. Surface markers indicating macrophage polarization were identified using immunofluorescence. In vitro experiments were performed employing bone marrow-derived macrophages and gingival fibroblasts. Macrophage polarization was determined using flow cytometry. Principal impacted signaling pathways were identified through Western blot analysis. RESULTS: Results from both in vitro and in vivo experiments demonstrated that 4µ8c mitigated alveolar bone resorption and inflammation in mice with diabetic periodontitis. Furthermore, it modulated macrophage polarization towards the M2 phenotype and augmented M2 macrophage polarization through the MAPK signaling pathway. CONCLUSIONS: These findings suggest that inhibiting IRE1α can modulate macrophage polarization and alleviate ligature-induced diabetic periodontitis via the MAPK signaling pathway. This unveils a novel mechanism, offering a scientific foundation for the treatment of experimental diabetic periodontitis.


Subject(s)
Diabetes Mellitus, Type 2 , Endoplasmic Reticulum Stress , Endoribonucleases , Macrophages , Mice, Inbred C57BL , Periodontitis , Protein Serine-Threonine Kinases , Animals , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/immunology , Protein Serine-Threonine Kinases/metabolism , Periodontitis/immunology , Periodontitis/metabolism , Endoribonucleases/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Mice , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Male , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Cells, Cultured , Alveolar Bone Loss/immunology , MAP Kinase Signaling System/drug effects , Humans
8.
J Clin Periodontol ; 51(6): 774-786, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38462847

ABSTRACT

AIM: To evaluate the effect of subgingival delivery of progranulin (PGRN)/gelatin methacryloyl (GelMA) complex as an adjunct to scaling and root planing (SRP) on an experimental periodontitis dog model with Class II furcation involvement (FI). MATERIALS AND METHODS: A Class II FI model was established, and the defects were divided into four treatment groups: (a) no treatment (control); (b) SRP; (c) SRP + GelMA; (d) SRP + PGRN/GelMA. Eight weeks after treatment, periodontal parameters were recorded, gingival crevicular fluid and gingival tissue were collected for ELISA and RT-qPCR, respectively, and mandibular tissue blocks were collected for micro computed tomography (micro-CT) scanning and hematoxylin and eosin (H&E) staining. RESULTS: The SRP + PGRN/GelMA group showed significant improvement in all periodontal parameters compared with those in the other groups. The expression of markers related to M1 macrophage and Th17 cell significantly decreased, and the expression of markers related to M2 macrophage and Treg cell significantly increased in the SRP + PGRN/GelMA group compared with those in the other groups. The volume, quality and area of new bone and the length of new cementum in the root furcation defects of the PGRN/GelMA group were significantly increased compared to those in the other groups. CONCLUSIONS: Subgingival delivery of the PGRN/GelMA complex could be a promising non-surgical adjunctive therapy for anti-inflammation, immunomodulation and periodontal regeneration.


Subject(s)
Dental Scaling , Furcation Defects , Hydrogels , Progranulins , Animals , Dogs , Furcation Defects/therapy , Hydrogels/therapeutic use , Dental Scaling/methods , Immunomodulation , Root Planing/methods , Disease Models, Animal , Periodontitis/therapy , Periodontitis/immunology , Gelatin , Male , X-Ray Microtomography
9.
Clin Oral Investig ; 28(3): 199, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451305

ABSTRACT

OBJECTIVE: To investigate the proportional variation of macrophage and T-lymphocytes subpopulations in acute coronary syndrome (ACS) patients, its association with periodontitis (P), and to compare with control individuals. SUBJECTS AND METHODS: Three groups of subjects participated: one group consisted of 17 ACS patients with P (ACS + P), another group consisted of 22 no ACS + P patients, and a control group consisted of 23 participants with gingivitis (no ACS + G). Macrophage, CD4 + , and CD8 + T-lymphocytes and CD4 + /CD8 + ratio values in gingival tissue were determined histometrically. RESULTS: Significant differences were found among three groups regarding the mean number of macrophage (no ACS + P > ACS + P > no ACS + G; p < 0.05) and CD8 + T-lymphocytes (no ACS + P > ACS + P > no ACS + G; p < 0.05). Significant variations were observed between the groups both CD4 + T-lymphocytes densities (ACS + P > no ACS + P and ACS + P > no ACS + G; p < 0.05) and CD4 + / CD8 + ratio (no ACS + P < no ACS + G and ACS + P < no ACS + G; p < 0.05). CONCLUSIONS: The increased number of CD8 + T-lymphocytes in both group ACS + P and group no ACS + P resulted in a reduction of the CD4 + /CD8 + ratio in gingival tissue when compared with no ACS + G group. CLINICAL RELEVANCE: The decrease of CD4 + /CD8 + ratio in gingival tissue reflects periodontitis and may be associated with severe adverse outcomes in people with ACS.


Subject(s)
Acute Coronary Syndrome , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Periodontitis , Humans , Acute Coronary Syndrome/immunology , Gingiva , Granulation Tissue , Periodontitis/immunology , CD4-Positive T-Lymphocytes/immunology
10.
Curr Osteoporos Rep ; 22(2): 280-289, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38418800

ABSTRACT

PURPOSE OF REVIEW: In this review, we summarize the current evidence that suggests that neutrophils play a key role in facilitating damage to local bone structures. RECENT FINDINGS: Neutrophil infiltration is a hallmark of inflammatory bone diseases such as rheumatoid arthritis (RA) and periodontitis disease (PD). Both of these human diseases are marked by an imbalance in bone homeostasis, favoring the degradation of local bone which ultimately leads to erosions. Osteoclasts, a multinucleated resident bone cell, are responsible for facilitating the turnover of bone and the bone damage observed in these diseases. The involvement of neutrophils and neutrophil extracellular trap formation have recently been implicated in exacerbating osteoclast function through direct and indirect mechanisms. We highlight a recent finding that NET proteins such as histones and elastase can generate non-canonical, inflammatory osteoclasts, and this process is mediated by post-translational modifications such as citrullination and carbamylation, both of which act as autoantigens in RA. It appears that NETs, autoantibodies, modified proteins, cytokines, and osteoclasts all ultimately contribute to local and permanent bone damage in RA and PD. However, more studies are needed to fully understand the role of neutrophils in inflammatory bone diseases.


Subject(s)
Arthritis, Rheumatoid , Extracellular Traps , Neutrophils , Osteoclasts , Periodontitis , Humans , Neutrophils/immunology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Extracellular Traps/immunology , Extracellular Traps/metabolism , Periodontitis/immunology , Periodontitis/metabolism , Osteoclasts/metabolism , Neutrophil Infiltration , Histones/metabolism , Protein Processing, Post-Translational , Autoantibodies/immunology , Cytokines/metabolism , Cytokines/immunology
11.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047322

ABSTRACT

Dental follicle stem cells (DFSCs) have been verified to promote periodontal regeneration in an inflammatory microenvironment. When coping with inflammatory stimulation, DFSCs highly express periostin, a bioactive molecule closely related to periodontal homeostasis. It is worth exploring whether and how periostin plays a role in the promotion of periodontal regeneration by DFSCs. By tracking the fate of DFSCs, it was found that DFSCs significantly contributed to periodontal regeneration in rat periodontal defects while they had a low survival rate. They highly expressed periostin and improved the immune microenvironment in the defect area, especially via the recruitment and reprogramming of macrophages. Silencing periostin attenuated the effects of DFSCs in promoting periodontal regeneration and regulating macrophages. Recombinant human periostin (rhPeriostin) could not only directly promote macrophage reprogramming through the integrin αM/phosphorylated extracellular signal-regulated kinase (p-Erk)/Erk signaling pathway, but it also exhibited the potential to promote periodontal regeneration in rats when loaded in a collagen matrix. These results indicated that periostin is actively involved in the process by which DFSCs promote periodontal regeneration through the regulation of macrophages and is a promising molecular agent to promote periodontal regeneration. This study provides new insight into the mechanism by which DFSCs promote periodontal regeneration and suggests a new approach for periodontal regeneration therapy.


Subject(s)
Cell Adhesion Molecules , Dental Sac , Periodontium , Regeneration , Stem Cell Transplantation , Stem Cells , Dental Sac/cytology , Dental Sac/physiology , Stem Cells/metabolism , Periodontium/drug effects , Periodontium/immunology , Periodontium/physiology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/pharmacology , Humans , Animals , Rats , Recombinant Proteins/pharmacology , Periodontitis/immunology , Periodontitis/therapy , Male , Rats, Sprague-Dawley
12.
Front Immunol ; 13: 980805, 2022.
Article in English | MEDLINE | ID: mdl-36091038

ABSTRACT

Observations from numerous clinical, epidemiological and serological studies link periodontitis with severity and progression of rheumatoid arthritis. The strong association is observed despite totally different aetiology of these two diseases, periodontitis being driven by dysbiotic microbial flora on the tooth surface below the gum line, while rheumatoid arthritis being the autoimmune disease powered by anti-citrullinated protein antibodies (ACPAs). Here we discuss genetic and environmental risk factors underlying development of both diseases with special emphasis on bacteria implicated in pathogenicity of periodontitis. Individual periodontal pathogens and their virulence factors are argued as potentially contributing to putative causative link between periodontal infection and initiation of a chain of events leading to breakdown of immunotolerance and development of ACPAs. In this respect peptidylarginine deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis, is elaborated as a potential mechanistic link between this major periodontal pathogen and initiation of rheumatoid arthritis development.


Subject(s)
Anti-Citrullinated Protein Antibodies , Arthritis, Rheumatoid , Periodontitis , Protein-Arginine Deiminases , Anti-Citrullinated Protein Antibodies/genetics , Anti-Citrullinated Protein Antibodies/immunology , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Autoantibodies/genetics , Autoantibodies/immunology , Humans , Periodontitis/complications , Periodontitis/genetics , Periodontitis/immunology , Periodontitis/microbiology , Porphyromonas gingivalis/enzymology , Porphyromonas gingivalis/genetics , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/immunology
13.
Biomed Res Int ; 2022: 6476597, 2022.
Article in English | MEDLINE | ID: mdl-35502340

ABSTRACT

Objective: This study investigated the effects of flowable resin composites (FCR) on the restoration of noncarious cervical lesions (NCCL) and their impact on periodontal tissues. Materials and Methods: 30 periodontally healthy patients were assigned into three groups randomly; group VF: self-adhering FCR, group NF: fluoride-releasing FCR, and group SF: microhybrid FCR. Gingival crevicular fluid (GCF) volume levels of osteoprotegerin (OPG), immunoglobulins (IgA, IgM), and interleukins (IL-1, IL-1ß, and IL-10) in GCF were analyzed with ELISA tests. Clinical success rates were evaluated using USPHS criteria during the 12-month follow-up. Results: The GCF volume was increased mostly in group SF (1.34 ± 0.09 µl). While the titer of interleukin was increased in all groups, higher increases were observed in IL-1 and IL-1ß in group NF (170.78 pg/ml and 39.35 pg/ml). Increased IL-10 was observed in group VF (14.33 ± 0.85 pg/ml). IgA levels varied partially among all groups (p > 0.05), and even IgM levels were elevated immediately after the restoration process but returned to normal on the 28th day (p < 0.05). Group NF failed in most of the USPHS criteria, while the material group VF and group SF presented acceptable results except in the marginal adaptation criterion (p < 0.05). Conclusions: Clinical efficacy of self-adhering FCR was found the best for restoration of NCCL while fluoride-releasing FCR stimulated the periodontal response and had negative effects on GCF volume, cytokine, and immunoglobulin levels.


Subject(s)
Composite Resins , Dental Restoration, Permanent , Cytokines , Fluorides , Gingival Crevicular Fluid , Humans , Immunoglobulin A , Immunoglobulin M , Interleukin-10 , Interleukin-1beta , Interleukins , Osteoprotegerin , Periodontitis/immunology , Periodontitis/therapy , Tooth Cervix
14.
J Leukoc Biol ; 111(2): 451-467, 2022 02.
Article in English | MEDLINE | ID: mdl-33884656

ABSTRACT

Periodontitis is a common chronic inflammatory disease that can result in tooth loss and poses a risk to systemic health. Lymphocytes play important roles in periodontitis through multiple mechanisms. Regulatory lymphocytes including regulatory B cells (Bregs) and T cells (Tregs) are the main immunosuppressive cells that maintain immune homeostasis, and are critical to our understanding of the pathogenesis of periodontitis and the development of effective treatments. In this review, we discuss the phenotypes, roles, and modulating strategies of regulatory lymphocytes including Bregs and Tregs in periodontitis and frequently cooccurring inflammatory diseases such as rheumatoid arthritis, Alzheimer disease, diabetes mellitus, and stroke. The current evidence suggests that restoring immune balance through therapeutic targeting of regulatory lymphocytes is a promising strategy for the treatment of periodontitis and other systemic inflammatory diseases.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Metabolic Diseases/pathology , Periodontitis/pathology , T-Lymphocytes, Regulatory/immunology , Animals , Humans , Metabolic Diseases/immunology , Periodontitis/immunology , Phenotype
15.
Science ; 374(6575): eabl5450, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34941394

ABSTRACT

Tissue-specific cues are critical for homeostasis at mucosal barriers. Here, we report that the clotting factor fibrin is a critical regulator of neutrophil function at the oral mucosal barrier. We demonstrate that commensal microbiota trigger extravascular fibrin deposition in the oral mucosa. Fibrin engages neutrophils through the αMß2 integrin receptor and activates effector functions, including the production of reactive oxygen species and neutrophil extracellular trap formation. These immune-protective neutrophil functions become tissue damaging in the context of impaired plasmin-mediated fibrinolysis in mice and humans. Concordantly, genetic polymorphisms in PLG, encoding plasminogen, are associated with common forms of periodontal disease. Thus, fibrin is a critical regulator of neutrophil effector function, and fibrin-neutrophil engagement may be a pathogenic instigator for a prevalent mucosal disease.


Subject(s)
Fibrin/metabolism , Mouth Mucosa/immunology , Mouth Mucosa/metabolism , Neutrophil Activation , Neutrophils/immunology , Periodontitis/genetics , Plasminogen/genetics , Alveolar Bone Loss , Animals , Extracellular Traps/metabolism , Female , Fibrin/chemistry , Fibrinogen/metabolism , Fibrinolysin/metabolism , Fibrinolysis , Gastrointestinal Microbiome/physiology , Gingiva/immunology , Humans , Immunity, Mucosal , Macrophage-1 Antigen/metabolism , Male , Mice , Mouth Mucosa/microbiology , Periodontitis/immunology , Plasminogen/deficiency , Plasminogen/metabolism , Polymorphism, Single Nucleotide , RNA-Seq , Reactive Oxygen Species/metabolism
16.
Front Immunol ; 12: 788766, 2021.
Article in English | MEDLINE | ID: mdl-34899756

ABSTRACT

The subgingival biofilm attached to tooth surfaces triggers and maintains periodontitis. Previously, late-onset periodontitis has been considered a consequence of dysbiosis and a resultant polymicrobial disruption of host homeostasis. However, a multitude of studies did not show "healthy" oral microbiota pattern, but a high diversity depending on culture, diets, regional differences, age, social state etc. These findings relativise the aetiological role of the dysbiosis in periodontitis. Furthermore, many late-onset periodontitis traits cannot be explained by dysbiosis; e.g. age-relatedness, attenuation by anti-ageing therapy, neutrophil hyper-responsiveness, and microbiota shifting by dysregulated immunity, yet point to the crucial role of dysregulated immunity and neutrophils in particular. Furthermore, patients with neutropenia and neutrophil defects inevitably develop early-onset periodontitis. Intra-gingivally injecting lipopolysaccharide (LPS) alone causes an exaggerated neutrophil response sufficient to precipitate experimental periodontitis. Vice versa to the surplus of LPS, the increased neutrophil responsiveness characteristic for late-onset periodontitis can effectuate gingiva damage likewise. The exaggerated neutrophil extracellular trap (NET) response in late-onset periodontitis is blameable for damage of gingival barrier, its penetration by bacteria and pathogen-associated molecular patterns (PAMPs) as well as stimulation of Th17 cells, resulting in further neutrophil activation. This identifies the dysregulated immunity as the main contributor to periodontal disease.


Subject(s)
Bacteria/immunology , Extracellular Traps/immunology , Gingiva/immunology , Neutrophil Activation , Neutrophils/immunology , Periodontal Pocket/immunology , Periodontitis/immunology , Animals , Bacteria/growth & development , Bacteria/pathogenicity , Biofilms/growth & development , Dysbiosis , Extracellular Traps/metabolism , Extracellular Traps/microbiology , Gingiva/metabolism , Gingiva/microbiology , Gingiva/pathology , Humans , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Neutrophils/metabolism , Neutrophils/microbiology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Periodontal Pocket/metabolism , Periodontal Pocket/microbiology , Periodontal Pocket/pathology , Periodontitis/metabolism , Periodontitis/microbiology , Periodontitis/pathology , Signal Transduction
17.
Front Immunol ; 12: 763334, 2021.
Article in English | MEDLINE | ID: mdl-34950140

ABSTRACT

Periodontitis (PD) is a common chronic infectious disease. The local inflammatory response in the host may cause the destruction of supporting periodontal tissue. Macrophages play a variety of roles in PD, including regulatory and phagocytosis. Moreover, under the induction of different factors, macrophages polarize and form different functional phenotypes. Among them, M1-type macrophages with proinflammatory functions and M2-type macrophages with anti-inflammatory functions are the most representative, and both of them can regulate the tendency of the immune system to exert proinflammatory or anti-inflammatory functions. M1 and M2 macrophages are involved in the destructive and reparative stages of PD. Due to the complex microenvironment of PD, the dynamic development of PD, and various local mediators, increasing attention has been given to the study of macrophage polarization in PD. This review summarizes the role of macrophage polarization in the development of PD and its research progress.


Subject(s)
Macrophages/physiology , Periodontitis/immunology , Animals , Cell Polarity , Cytokines/physiology , Humans , Janus Kinases/physiology , NF-kappa B/physiology , Periodontitis/drug therapy , Periodontitis/etiology , Periodontium/immunology , STAT Transcription Factors/physiology , Signal Transduction/physiology
18.
J Nanobiotechnology ; 19(1): 429, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930286

ABSTRACT

BACKGROUND: Periodontitis is a complicated inflammatory disease that damages the tooth-supporting tissues, with limited pharmacotherapy available. Macrophage-targeting therapy is promising for inflammatory diseases. Resveratrol (RSV), a nonflavonoid polyphenol, is known for its anti-inflammatory and immunomodulatory effects. However, its medical application is limited by its poor stability and water-solubility, as well as its low bioavailability. RESULT: A therapeutic resveratrol-loaded liposomal system (Lipo-RSV) was developed to treat periodontitis. The physical properties of Lipo-RSV and its ability to regulate macrophages were investigated. The results showed that Lipo-RSV had good biocompatibility and could re-educate the inflammatory macrophages from M1- to M2-like phenotype through activating p-STAT3 and downregulating p-STAT1. Besides, the Lipo-RSV could scavenge ROS and inhibit the NF-κB signal and inflammasomes, thereby reducing the pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. CONCLUSION: These results revealed that Lipo-RSV could be a potential therapeutic system for the antibiotic-free treatment for periodontal diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Liposomes/chemistry , Macrophages/immunology , Periodontitis/drug therapy , Resveratrol/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Line , Cell Survival/drug effects , Cytokines/metabolism , Down-Regulation/drug effects , Humans , Inflammasomes/drug effects , Inflammasomes/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Periodontitis/immunology , Resveratrol/chemistry , Resveratrol/pharmacology , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
19.
Int J Mol Sci ; 22(24)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34948405

ABSTRACT

Periodontitis is characterized by bacterially induced inflammatory destruction of periodontal tissue. This also affects fibroblasts of the human periodontal ligaments (HPdLF), which play a coordinating role in force-induced tissue and alveolar bone remodeling. Excessive inflammation in the oral tissues has been observed with simultaneous stimulation by pathogens and mechanical forces. Recently, elevated levels of growth differentiation factor 15 (GDF15), an immuno-modulatory member of the transforming growth factor (TGFB) superfamily, were detected under periodontitis-like conditions and in force-stressed PdL cells. In view of the pleiotropic effects of GDF15 in various tissues, this study aims to investigate the role of GDF15 in P. gingivalis-related inflammation of HPdLF and its effect on the excessive inflammatory response to concurrent compressive stress. To this end, the expression and secretion of cytokines (IL6, IL8, COX2/PGE2, TNFα) and the activation of THP1 monocytic cells were analyzed in GDF15 siRNA-treated HPdLF stimulated with P. gingivalis lipopolysaccharides alone and in combination with compressive force. GDF15 knockdown significantly reduced cytokine levels and THP1 activation in LPS-stimulated HPdLF, which was less pronounced with additional compressive stress. Overall, our data suggest a pro-inflammatory role for GDF15 in periodontal disease and demonstrate that GDF15 partially modulates the force-induced excessive inflammatory response of PdLF under these conditions.


Subject(s)
Bacteroidaceae Infections/immunology , Fibroblasts/immunology , Growth Differentiation Factor 15/immunology , Inflammation/immunology , Lipopolysaccharides/immunology , Porphyromonas gingivalis/immunology , Cells, Cultured , Humans , Periodontal Ligament/cytology , Periodontal Ligament/immunology , Periodontitis/immunology
20.
Front Immunol ; 12: 781378, 2021.
Article in English | MEDLINE | ID: mdl-34868054

ABSTRACT

Periodontitis is one of the most common dental diseases. Compared with healthy periodontal tissues, the immune microenvironment plays the key role in periodontitis by allowing the invasion of pathogens. It is possible that modulating the immune microenvironment can supplement traditional treatments and may even promote periodontal regeneration by using stem cells, bacteria, etc. New anti-inflammatory therapies can enhance the generation of a viable local immune microenvironment and promote cell homing and tissue formation, thereby achieving higher levels of immune regulation and tissue repair. We screened recent studies to summarize the advances of the immunomodulatory treatments for periodontitis in the aspects of drug therapy, microbial therapy, stem cell therapy, gene therapy and other therapies. In addition, we included the changes of immune cells and cytokines in the immune microenvironment of periodontitis in the section of drug therapy so as to make it clearer how the treatments took effects accordingly. In the future, more research needs to be done to improve immunotherapy methods and understand the risks and long-term efficacy of these methods in periodontitis.


Subject(s)
Immunomodulation , Periodontitis/immunology , Periodontitis/therapy , Animals , Biomarkers , Clinical Decision-Making , Combined Modality Therapy , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Disease Management , Disease Susceptibility , Host-Pathogen Interactions/immunology , Humans , Immune System/cytology , Immune System/drug effects , Immune System/immunology , Immune System/metabolism , Molecular Targeted Therapy , Periodontitis/diagnosis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...