Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 386
Filter
1.
Trials ; 25(1): 332, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773595

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is the most common non-cutaneous malignancy in men and leads to the second most common cause of cancer related mortality in men. Early detection of PCa allows for a potentially curative intervention. Most men will live over a decade from the time of their PCa diagnosis. Thus, treatments must balance curative interventions with their impact on quality of life. Radical prostatectomy (RP) is one such potentially curative intervention but often leads to erectile dysfunction (ED) and urinary incontinence (UI). Approximately 90,000 RPs are performed each year in the USA. Post-operative ED and UI is thought to occur in part from traumatic peripheral nerve injury (TPNI) to the neurovascular bundles that surround the prostate. Thus, patients undergoing RP may be a population that would benefit from clinical studies that look at TPNI. METHODS: The study is a single-institution, double-blinded placebo-controlled, randomized clinical trial in which patients immediately post-RP receive either 4-aminopyrdine (4AP) or placebo in a 1:1 fashion. The primary outcome is evaluation of the efficacy of 4AP in accelerating the early return of baseline erectile and urinary function post-radical prostatectomy. DISCUSSION: This study is critical as it could reduce the morbidity associated with RP, a commonly performed operation, and identify a patient population that may greatly benefit into further TPNI research. TRIAL REGISTRATION: ClinicalTrials.gov NCT03701581. Prospectively registered on October 10, 2018.


Subject(s)
Erectile Dysfunction , Peripheral Nerve Injuries , Prostatectomy , Prostatic Neoplasms , Urinary Incontinence , Humans , Prostatectomy/adverse effects , Prostatectomy/methods , Male , Double-Blind Method , Erectile Dysfunction/etiology , Erectile Dysfunction/drug therapy , Peripheral Nerve Injuries/etiology , Peripheral Nerve Injuries/drug therapy , Urinary Incontinence/etiology , Prostatic Neoplasms/surgery , Treatment Outcome , Randomized Controlled Trials as Topic , Middle Aged , Postoperative Complications/etiology , Recovery of Function
2.
Int J Biol Macromol ; 268(Pt 1): 131594, 2024 May.
Article in English | MEDLINE | ID: mdl-38621568

ABSTRACT

Treating severe peripheral nerve injuries is difficult. Nerve repair with conduit small gap tubulization is a treatment option but still needs to be improved. This study aimed to assess the use of microgels containing growth factors, along with chitosan-based conduits, for repairing nerves. Using the water-oil emulsion technique, microgels of methacrylic alginate (AlgMA) that contained vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) were prepared. The effects on rat Schwann cells (RSC96) and human umbilical vein endothelial cells (HUVECs) were evaluated. Chitosan-based conduits were fabricated and used in conjunction with microgels containing two growth factors to treat complete neurotmesis in rats. The results showed that the utilization of dual growth factor microgels improved the migration and decreased the apoptosis of RSC96 cells while promoting the growth and formation of tubes in HUVECs. The utilization of dual growth factor microgels and chitosan-based conduits resulted in notable advancements in the regeneration and myelination of nerve fibers, recovery of neurons, alleviation of muscle atrophy and recovery of neuromotor function and nerve conduction. In conclusion, the use of dual growth factor AlgMA microgels in combination with chitosan-based conduits has the potential to significantly improve the effectiveness of nerve repair.


Subject(s)
Alginates , Chitosan , Human Umbilical Vein Endothelial Cells , Nerve Regeneration , Schwann Cells , Chitosan/chemistry , Chitosan/pharmacology , Alginates/chemistry , Alginates/pharmacology , Animals , Humans , Rats , Nerve Regeneration/drug effects , Schwann Cells/drug effects , Microgels/chemistry , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/therapy , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Tissue Scaffolds/chemistry , Methacrylates/chemistry , Methacrylates/pharmacology , Cell Movement/drug effects
3.
PLoS One ; 19(3): e0287390, 2024.
Article in English | MEDLINE | ID: mdl-38507417

ABSTRACT

OBJECTIVE: To determine the effective dose and therapeutic potential of maropitant using through expression of mediators of oxidative stress, inflammatory and of the unfolded protein response (UPR) (bio) markers on spinal cord using a model of neuropathic pain induced through chronic constriction injury (CCI) in rats. STUDY DESIGN: Randomized, blinded, prospective experimental study. ANIMALS: 98 male Wistar rats. METHODS: Rats were anesthetized with sevoflurane and after CCI, they were randomly assigned to the following groups that received: vehicle, 3, 6, 15, 30 e 50 mg/kg/24q of maropitant. The effect on inflammatory mediators (IL10, TNFα), oxidative stress (GPx, CAT, SOD), microglial (IBA-1) and neuronal (NeuN, TACR1) markers was evaluated though immunohistochemistry and expression levels of markers of hypoxia (HIF1α, Nrf2), antioxidant enzymes (Catalse, Sod1 and GPx1), and endoplasmic reticulum stress mediators (GRP78, CHOP and PERK) through qRT-PCR. RESULTS: Intraperitoneal injection (IP) of maropitant inhibited nociception with ID50 values of 4,1 mg/kg (5,85-19,36) in a neuropathic pain model through CCI. A dose of 30 mg/kg/24q was significantly effective in reducing mechanical allodynia 1 to 4h after treatment with nociception inhibition (145,83%). A reduction in the expression of hypoxia factors (HIF1α, Nrf2) was observed, along with an increase in antioxidant activity (CAT, SOD and GPX). Additionally, there was a reduction in inflammatory markes (IL10, TNFα), microglial (IBA-1), and neuronal markers (NeuN, TACR1). CONCLUSION AND CLINICAL RELEVANCE: These findings demonstrate that the determined dose, administered daily for seven days, had an antinociceptive effect, as well as anti-inflammatory and antioxidant activity.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Quinuclidines , Rats , Male , Animals , Antioxidants/metabolism , Rats, Wistar , Neuroinflammatory Diseases , Peripheral Nerve Injuries/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Interleukin-10/metabolism , NF-E2-Related Factor 2/metabolism , Prospective Studies , Oxidative Stress , Hyperalgesia/drug therapy , Endoplasmic Reticulum Stress , Neuralgia/drug therapy , Neuralgia/metabolism , Superoxide Dismutase/metabolism , Hypoxia/drug therapy
4.
Int J Pharm ; 655: 123978, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38458406

ABSTRACT

Peripheral nerve injury is a critical condition that can disrupt nerve functions. Despite the progress in engineering artificial nerve guidance conduits (NGCs), nerve regeneration remains challenging. Here, we developed new nanofibrous NGCs using polycaprolactone (PCL) and chitosan (CH) containing piracetam (PIR)/vitamin B12(VITB12) with an electrospinning method. The lumen of NGCs was coated by hyaluronic acid (HA) to promote regeneration in sciatic nerve injury. The NGCs were characterized via Scanning Electron Microscopy (SEM), Fourier transform infrared (FTIR), tensile, swelling, contact angle, degradation, and drug release tests. Neuronal precursor cell line (PCL12 cell) and rat mesenchymal stem cells derived from bone marrow (MSCs) were seeded on the nanofibrous conduits. After that, the biocompatibility of the NGCs was evaluated by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, and SEM images. The SEM demonstrated that PCL/CH/PIR/VITB12 NGCs had nonaligned, interconnected, smooth fibers. The mechanical properties of these NGCs were similar to rat sciatic nerve. These conduits had an appropriate swelling and degradation rate. The In Vitro studies exhibited favorable biocompatibility of the PCL/CH/PIR/VITB12 NGCs towards PC12 cells and MSCs. The in vitro studies exhibited favorable biocompatibility of the PCL/CH/PIR/VIT B12 NGCs towards MSCs and PC12 cells. To analyze functional efficacy, NGCs were implanted into a 10 mm Wistar rat sciatic nerve gap and bridged the proximal and distal stump of the defect. After three months, the results of sciatic functional index (55.3 ± 1.8), hot plate latency test (5.6 ± 0.5 s), gastrocnemius muscle wet weight-loss (38.57 ± 1.6 %) and histopathological examination using hematoxylin-eosin (H&E) /toluidine blue/ Anti-Neurofilament (NF200) staining demonstrated that the produced conduit recovered motor and sensory functions and had comparable nerve regeneration compared to the autograft that can be as the gold standard to bridge the nerve gaps.


Subject(s)
Chitosan , Nanofibers , Peripheral Nerve Injuries , Piracetam , Rats , Animals , Rats, Wistar , Hyaluronic Acid , Vitamin B 12 , Sciatic Nerve , Tissue Scaffolds , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/pathology , PC12 Cells , Nerve Regeneration
5.
J Biomed Mater Res B Appl Biomater ; 112(2): e35378, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356051

ABSTRACT

Globally, peripheral nerve injury (PNI) is a common clinical issue. Successfully repairing severe PNIs has posed a major challenge for clinicians. GW3965 is a highly selective LXR agonist, and previous studies have demonstrated its positive protective effects in both central and peripheral nerve diseases. In this work, we examined the potential reparative effects of GW3965-loaded polylactic acid co-glycolic acid microspheres in conjunction with a chitosan nerve conduit for peripheral nerve damage. The experiment revealed that GW3965 promoted Schwann cell proliferation and neurotrophic factor release in vitro. In vivo experiments conducted on rats showed that GW3965 facilitated the restoration of motor function, promoted axon and myelin regeneration in the sciatic nerve, and enhanced the microenvironment of nerve regeneration. These results offer a novel therapeutic approach for the healing of nerve damage. Overall, this work provides valuable insights and presents a promising therapeutic strategy for addressing PNI.


Subject(s)
Benzoates , Benzylamines , Chitosan , Peripheral Nerve Injuries , Rats , Animals , Chitosan/pharmacology , Liver X Receptors/therapeutic use , Microspheres , Schwann Cells , Sciatic Nerve/injuries , Peripheral Nerve Injuries/drug therapy , Nerve Regeneration
6.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38255977

ABSTRACT

Peripheral nerve injuries lead to severe functional impairments and long recovery times, with limited effectiveness and accessibility of current treatments. This has increased interest in natural bioactive compounds, such as ursolic acid (UA). Our study evaluated the effect of an oleolyte rich in UA from white grape pomace (WGPO) on neuronal regeneration in mice with induced sciatic nerve resection, administered concurrently with the induced damage (the WGPO group) and 10 days prior (the PRE-WGPO group). The experiment was monitored at two-time points (4 and 10 days) after injury. After 10 days, the WGPO group demonstrated a reduction in muscle atrophy, evidenced by an increased number and diameter of muscle fibers and a decreased Atrogin-1 and Murf-1 expression relative to the denervated control. It was also observed that 85.7% of neuromuscular junctions (NMJs) were fully innervated, as indicated by the colocalization of α-bungarotoxin and synaptophysin, along with the significant modulation of Oct-6 and S-100. The PRE-WGPO group showed a more beneficial effect on nerve fiber reformation, with a significant increase in myelin protein zero and 95.2% fully innervated NMJs, and a pro-hypertrophic effect in resting non-denervated muscles. Our findings suggest WGPO as a potential treatment for various conditions that require the repair of nerve and muscle injuries.


Subject(s)
Peripheral Nerve Injuries , Animals , Mice , Peripheral Nerve Injuries/drug therapy , Ursolic Acid , Sciatic Nerve , Dietary Supplements , Muscle Fibers, Skeletal
7.
Adv Healthc Mater ; 13(10): e2303539, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38233357

ABSTRACT

Peripheral nerve injury (PNI) is a common clinical problem and regenerating peripheral nerve defects remain a significant challenge. Poly(polyol sebacate) (PPS) polymers are developed as promising materials for biomedical applications due to their biodegradability, biocompatibility, elastomeric properties, and ease of production. However, the application of PPS-based biomaterials in nerve tissue engineering, especially in PNI repair, is limited. In this study, PPS-based composite nanofibers poly(l-lactic acid)-poly(polycaprolactone triol-co-sebacic acid-co-N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid sodium salt) (PLLA-PPSB) are aimed to construct through electrospinning and assess their in vitro biocompatibility with Schwann cells (SCs) and in vivo repair capabilities for peripheral nerve defects. For the first time, the biocompatibility and bioactivity of PPS-based nanomaterial are examined at the molecular, cellular, and animal levels for PNI repair. Electrospun PLLA-PPSB nanofibers display favorable physicochemical properties and biocompatibility, providing an effective interface for the proliferation, glial expression, and adhesion of SCs in vitro. In vivo experiments using a 10-mm rat sciatic nerve defect model show that PLLA-PPSB nanofiber nerve conduits enhance myelin formation, axonal regeneration, angiogenesis, and functional recovery. Transcriptome analysis and biological validation indicate that PLLA-PPSB nanofibers may promote SC proliferation by activating the PI3K/Akt signaling pathway. This suggests the promising potential of PLLA-PPSB nanomaterial for PNI repair.


Subject(s)
Blood Coagulation Factors , Nanofibers , Peripheral Nerve Injuries , Rats , Animals , Nanofibers/therapeutic use , Nanofibers/chemistry , Phosphatidylinositol 3-Kinases , Sciatic Nerve/physiology , Tissue Scaffolds/chemistry , Peripheral Nerve Injuries/drug therapy , Polyesters/chemistry , Nerve Regeneration
8.
Macromol Biosci ; 24(5): e2300476, 2024 May.
Article in English | MEDLINE | ID: mdl-38245857

ABSTRACT

Peripheral nerve injuries (PNI) represent a prevalent and severe category of damage resulting from traumatic incidents. Predominantly, the deficiency in nerve regeneration can be ascribed to enduring inflammatory reactions, hence imposing substantial clinical implications for patients. Fisetin, a flavonoid derived from plants, is naturally present in an array of vegetables and fruits, including strawberries, apples, onions, and cucumbers. It exhibits immunomodulatory properties through the reduction of inflammation and oxidative stress. In the present research, a nerve defect is addressed for the first time utilizing a scaffold primed for controlled fisetin release. In this regard, fisetin-loaded chitosan hydrogels are incorporated into the lumen of polycaprolactone (PCL) nerve guide conduits (NGCs). The hydrogel maintained a steady release of an appropriate fisetin dosage. The study outcomes indicated that the fisetin/chitosan/polycaprolactone (FIS/CS/PCL) NGCs amplified Schwann cell proliferation and neural expression, curtailed oxidative stress, alleviated inflammation, and improved functions, electrophysiological properties, and morphology. This pioneering scaffold has the potential to contribute significantly to the field of neuroengineering.


Subject(s)
Chitosan , Flavonols , Hydrogels , Inflammation , Nerve Regeneration , Oxidative Stress , Polyesters , Flavonols/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Oxidative Stress/drug effects , Animals , Nerve Regeneration/drug effects , Polyesters/chemistry , Polyesters/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Schwann Cells/drug effects , Schwann Cells/metabolism , Tissue Scaffolds/chemistry , Rats , Guided Tissue Regeneration/methods , Cell Proliferation/drug effects , Flavonoids/pharmacology , Flavonoids/chemistry , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/therapy
9.
J Orthop Sci ; 29(2): 653-659, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36858838

ABSTRACT

BACKGROUND: Peripheral nerve injuries are common and serious conditions. The effect of Neurotropin® (NTP), a nonprotein extract derived from the inflamed skin of rabbits inoculated with vaccinia virus, on peripheral nerve regeneration has not been fully elucidated. However, it has analgesic properties via the activation of descending pain inhibitory systems. Therefore, the current study aimed to determine the effects of NTP on peripheral nerve regeneration. METHODS: We examined axonal outgrowth of dorsal root ganglion (DRG) neurons using immunocytochemistry in vitro. In addition, nerve regeneration was evaluated functionally, electrophysiologically, and histologically in a rat sciatic nerve crush injury model in vivo. Furthermore, gene expression of neurotrophic factors in the injured sciatic nerves and DRGs was evaluated. RESULTS: In the dorsal root ganglion neurons in vitro, NTP promoted axonal outgrowth at a concentration of 10 mNU/mL. Moreover, the systemic administration of NTP contributed to the recovery of motor and sensory function at 2 weeks, and of sensory function, nerve conduction velocity, terminal latency, and axon-remyelination 4 weeks after sciatic nerve injury. In the gene expression assessment, insulin-like growth factor 1 and vascular endothelial growth factor expressions were increased in the injured sciatic nerve 2 days postoperatively. CONCLUSIONS: Therefore, NTP might be effective in not only treating chronic pain but also promoting peripheral nerve regeneration after injury.


Subject(s)
Crush Injuries , Peripheral Nerve Injuries , Polysaccharides , Rats , Animals , Rabbits , Peripheral Nerve Injuries/drug therapy , Vascular Endothelial Growth Factor A , Nerve Regeneration/physiology , Sciatic Nerve/surgery , Sciatic Nerve/injuries
10.
Mater Horiz ; 11(4): 1032-1045, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38073476

ABSTRACT

Peripheral nerve injury (PNI) is a common clinical challenge, requiring timely and orderly initiation of synergistic anti-inflammatory and reparative therapy. Although the existing cascade drug delivery system can realize sequential drug release through regulation of the chemical structure of drug carriers, it is difficult to adjust the release kinetics of each drug based on the patient's condition. Therefore, there is an urgent need to develop a cascade drug delivery system that can dynamically adjust drug release and realize personalized treatment. Herein, we developed a responsive cascade drug delivery scaffold (RCDDS) which can adapt to the therapeutic time window, in which Vitamin B12 is used in early controllable release to suppress inflammation and nerve growth factor promotes regeneration by cascade loading. The RCDDS exhibited the ability to modulate the drug release kinetics by hierarchically opening polymer chains triggered by ultrasound, enabling real-time adjustment of the anti-inflammatory and neuroregenerative therapeutic time window depending on the patient's status. In the rat sciatic nerve injury model, the RCDDS group was able to achieve neural repair effects comparable to the autograft group in terms of tissue structure and motor function recovery. The development of the RCDDS provides a useful route toward an intelligent cascade drug delivery system for personalized therapy.


Subject(s)
Peripheral Nerve Injuries , Rats , Humans , Animals , Peripheral Nerve Injuries/drug therapy , Sciatic Nerve/injuries , Sciatic Nerve/physiology , Drug Delivery Systems , Drug Carriers/pharmacology , Drug Carriers/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
11.
Biomed Pharmacother ; 170: 116024, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113623

ABSTRACT

Bioactive macromolecular drugs known as Growth Factors (GFs), approved by the Food and Drug Administration (FDA), have found successful application in clinical practice. They hold significant promise for addressing peripheral nerve injuries (PNIs). Peripheral nerve guidance conduits (NGCs) loaded with GFs, in the context of tissue engineering, can ensure sustained and efficient release of these bioactive compounds. This, in turn, maintains a stable, long-term, and effective GF concentration essential for treating damaged peripheral nerves. Peripheral nerve regeneration is a complex process that entails the secretion of various GFs. Following PNI, GFs play a pivotal role in promoting nerve cell growth and survival, axon and myelin sheath regeneration, cell differentiation, and angiogenesis. They also regulate the regenerative microenvironment, stimulate plasticity changes post-nerve injury, and, consequently, expedite nerve structure and function repair. Both exogenous and endogenous GFs, including NGF, BDNF, NT-3, GDNF, IGF-1, bFGF, and VEGF, have been successfully loaded onto NGCs using techniques like physical adsorption, blend doping, chemical covalent binding, and engineered transfection. These approaches have effectively promoted the repair of peripheral nerves. Numerous studies have demonstrated similar tissue functional therapeutic outcomes compared to autologous nerve transplantation. This evidence underscores the substantial clinical application potential of GFs in the domain of peripheral nerve repair. In this article, we provide an overview of GFs in the context of peripheral nerve regeneration and drug delivery systems utilizing NGCs. Looking ahead, commercial materials for peripheral nerve repair hold the potential to facilitate the effective regeneration of damaged peripheral nerves and maintain the functionality of distant target organs through the sustained release of GFs.


Subject(s)
Peripheral Nerve Injuries , Humans , Peripheral Nerve Injuries/drug therapy , Pharmaceutical Preparations , Peripheral Nerves/physiology , Drug Delivery Systems , Macromolecular Substances , Nerve Regeneration , Sciatic Nerve
12.
Eur Rev Med Pharmacol Sci ; 27(23): 11340-11350, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38095383

ABSTRACT

OBJECTIVE: Peripheral nerve injuries present challenges in achieving full functional restoration, necessitating effective therapeutic strategies. Oxytocin, known for its neuroprotective and anti-inflammatory properties, has shown potential in nerve recovery. This study aims to elucidate the role of oxytocin in nerve recovery via the nuclear factor erythroid 2-related factor 2 (Nrf2) and irisin pathways. MATERIALS AND METHODS: Adult male Wistar rats (n=30) were subjected to surgical dissection of sciatic nerves and divided into Control, Surgery and Saline Group, and Surgery and Oxytocin (OT) group. Electromyographic (EMG) recordings, inclined plane tests, and histological assessments were conducted to evaluate nerve function, and Nerve growth factor (NGF) immunoexpression and axonal parameters were measured. Plasma irisin levels, nerve NGF, and Nrf2 levels were quantified. RESULTS: The Surgery and Saline Group exhibited impaired EMG latency, amplitude, and inclined plane score compared to Controls, while the Surgery and OT Group demonstrated improved outcomes. Histomorphometric analysis revealed increased NGF immunoexpression, axon number, diameter, and reduced fibrosis in the Surgery and OT Group. Plasma irisin levels were higher following oxytocin administration. Additionally, nerve NGF and Nrf2 levels were elevated in the Surgery and OT Group. CONCLUSIONS: OT administration mitigated nerve injury effects, promoting functional and histological improvements. Elevated NGF and Nrf2 levels, along with increased irisin, indicated the potential interplay of these pathways in enhancing nerve recovery. The results align with OT's neuroprotective and anti-inflammatory roles, suggesting its potential as a therapeutic intervention for nerve injuries. OT's positive impact on nerve recovery is associated with its modulation of Nrf2 and irisin pathways, which collectively enhance antioxidant defense and neurotrophic support and mitigate inflammation. These findings underline OT's potential as a therapeutic agent to enhance nerve regeneration and recovery. Further research is needed to elucidate the intricate molecular mechanisms and potential clinical applications of OT in nerve injury management.


Subject(s)
Oxytocin , Peripheral Nerve Injuries , Rats , Animals , Male , Oxytocin/pharmacology , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/pathology , Rats, Wistar , NF-E2-Related Factor 2 , Fibronectins , Nerve Growth Factor/pharmacology , Sciatic Nerve , Anti-Inflammatory Agents/pharmacology
13.
Sci Adv ; 9(51): eadi1078, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38117891

ABSTRACT

Peripheral nerve regeneration is a complex physiological process. Single-function nerve scaffolds often struggle to quickly adapt to the imbalanced regenerative microenvironment, leading to slow nerve regeneration and limited functional recovery. In this study, we demonstrate a "pleiotropic gas transmitter" strategy based on endogenous reactive oxygen species (ROS), which trigger the on-demand H2S release at the defect area for transected peripheral nerve injury (PNI) repair through concurrent neuroregeneration and neuroprotection processing. This H2S delivery system consists of an H2S donor (peroxyTCM) encapsulated in a ROS-responsive polymer (mPEG-PMet) and loaded into a temperature-sensitive poly (amino acid) hydrogel (mPEG-PA-PP). This multi-effect combination strategy greatly promotes the regeneration of PNI, attributed to the physiological effects of H2S. These effects include the inhibition of inflammation and oxidative stress, protection of nerve cells, promotion of angiogenesis, and the restoration of normal mitochondrial function. The adaptive release of pleiotropic messengers to modulate the tissue regeneration microenvironment offers promising peripheral nerve repair and tissue engineering opportunities.


Subject(s)
Hydrogen Sulfide , Peripheral Nerve Injuries , Humans , Hydrogen Sulfide/pharmacology , Reactive Oxygen Species , Polyethylene Glycols , Peripheral Nerve Injuries/drug therapy , Nerve Regeneration
14.
Toxins (Basel) ; 15(12)2023 12 08.
Article in English | MEDLINE | ID: mdl-38133195

ABSTRACT

This study was designed to compare the effects of various doses of botulinum neurotoxin A (BoNT/A) on nerve regeneration. Sixty-five six-week-old rats with sciatic nerve injury were randomly allocated to three experimental groups, a control group, and a sham group. The experimental groups received a single session of intraneural BoNT/A (3.5, 7.0, or 14 U/kg) injection immediately after nerve-crushing injury. The control group received normal intraneural saline injections after sciatic nerve injury. At three, six, and nine weeks after nerve damage, immunofluorescence staining, an ELISA, and toluidine blue staining was used to evaluate the regenerated nerves. Serial sciatic functional index analyses and electrophysiological tests were performed every week for nine weeks. A higher expression of GFAP, S100ß, GAP43, NF200, BDNF, and NGF was seen in the 3.5 U/kg and 7.0 U/kg BoNT/A groups. The average area and myelin thickness were significantly greater in the 3.5 U/kg and 7.0 U/kg BoNT/A groups. The sciatic functional index and compound muscle action potential amplitudes exhibited similar trends. These findings indicate that the 3.5 U/kg and 7.0 U/kg BoNT/A groups exhibited better nerve regeneration than the 14 U/kg BoNT/A and control group. As the 3.5 U/kg and the 7.0 U/kg BoNT/A groups exhibited no statistical difference, we recommend using 3.5 U/kg BoNT/A for its cost-effectiveness.


Subject(s)
Botulinum Toxins, Type A , Peripheral Nerve Injuries , Sciatic Neuropathy , Rats , Animals , Botulinum Toxins, Type A/pharmacology , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/metabolism , Nerve Regeneration , Sciatic Nerve/injuries
15.
Biomater Adv ; 154: 213623, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37837905

ABSTRACT

The development of nerve wraps for use in the repair of peripheral nerves has shown promise over recent years. A pharmacological effect to improve regeneration may be achieved by loading such materials with therapeutic agents, for example ibuprofen, a non-steroidal anti-inflammatory drug with neuroregenerative properties. In this study, four commercially available polymers (polylactic acid (PLA), polycaprolactone (PCL) and two co-polymers containing different ratios of PLA to PCL) were used to fabricate ibuprofen-loaded nerve wraps using blend electrospinning. In vitro surgical handling experiments identified a formulation containing a PLA/PCL 70/30 molar ratio co-polymer as the most suitable for in vivo implantation. In a rat model, ibuprofen released from electrospun materials significantly improved the rate of axonal growth and sensory recovery over a 21-day recovery period following a sciatic nerve crush. Furthermore, RT-qPCR analysis of nerve segments revealed that the anti-inflammatory and neurotrophic effects of ibuprofen may still be observed 21 days after implantation. This suggests that the formulation developed in this work could have potential to improve nerve regeneration in vivo.


Subject(s)
Ibuprofen , Peripheral Nerve Injuries , Rats , Animals , Ibuprofen/pharmacology , Ibuprofen/therapeutic use , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/surgery , Polyesters , Anti-Inflammatory Agents/pharmacology , Sciatic Nerve/surgery
16.
Int J Mol Sci ; 24(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37629137

ABSTRACT

Peripheral nerve injuries are common neurological disorders, and the available treatment options, such as conservative management and surgical repair, often yield limited results. However, there is growing interest in the potential of using chitosan-based biopolymers as a novel therapeutic approach to treating these injuries. Chitosan-based biopolymers possess unique characteristics, including biocompatibility, biodegradability, and the ability to stimulate cell proliferation, making them highly suitable for repairing nerve defects and promoting nerve regeneration and functional recovery. Furthermore, these biopolymers can be utilized in drug delivery systems to control the release of therapeutic agents and facilitate the growth of nerve cells. This comprehensive review focuses on the latest advancements in utilizing chitosan-based biopolymers for peripheral nerve regeneration. By harnessing the potential of chitosan-based biopolymers, we can pave the way for innovative treatment strategies that significantly improve the outcomes of peripheral nerve injury repair, offering renewed hope and better prospects for patients in need.


Subject(s)
Chitosan , Peripheral Nerve Injuries , Humans , Peripheral Nerve Injuries/drug therapy , Chitosan/therapeutic use , Conservative Treatment , Biopolymers/therapeutic use , Cell Proliferation
17.
Eur J Neurosci ; 58(6): 3555-3568, 2023 09.
Article in English | MEDLINE | ID: mdl-37608574

ABSTRACT

Limited axon regeneration following peripheral nerve injury may be related to activation of the lysosomal protease, asparaginyl endopeptidase (AEP, δ-secretase) and its degradation of the microtubule associated protein, Tau. Activity of AEP was increased at the site of sciatic nerve transection and repair but blocked in mice treated systemically with a specific AEP inhibitor, compound 11 (CP11). Treatments with CP11 enhanced axon regeneration in vivo. Amplitudes of compound muscle action potentials recorded 4 weeks after nerve transection and repair and 2 weeks after daily treatments with CP11 were double those of vehicle-treated mice. At that time after injury, axons of significantly more motor and sensory neurons had regenerated successfully and reinnervated the tibialis anterior and gastrocnemius muscles in CP11-treated mice than vehicle-treated controls. In cultured adult dorsal root ganglion neurons derived from wild type mice that were treated in vitro for 24 h with CP11, neurites were nearly 50% longer than in vehicle-treated controls and similar to neurite lengths in cultures treated with the TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF). Combined treatment with CP11 and 7,8-DHF did not enhance outgrowth more than treatments with either one alone. Enhanced neurite outgrowth produced by CP11 was found also in the presence of the TrkB inhibitor, ANA-12, indicating that the enhancement was independent of TrkB signalling. Longer neurites were found after CP11 treatment in both TrkB+ and TrkB- neurons. Delta secretase inhibition by CP11 is a treatment for peripheral nerve injury with great potential.


Subject(s)
Axons , Peripheral Nerve Injuries , Animals , Mice , Amyloid Precursor Protein Secretases , Peripheral Nerve Injuries/drug therapy , Nerve Regeneration , Neurites
18.
Eur Rev Med Pharmacol Sci ; 27(12): 5841-5853, 2023 06.
Article in English | MEDLINE | ID: mdl-37401321

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the effects of cinnamon bark essential oil (CBO) on analgesia, motor activity, balance, and coordination in rats with sciatic nerve damage. MATERIALS AND METHODS: Rats were divided into three groups as simply randomized. The right sciatic nerve (RSN) of the Sham group was explored. Only vehicle solution was applied for 28 days. The RSN of the sciatic nerve injury (SNI) group was explored. Damage was created by unilateral clamping, and vehicle solution was applied for 28 days. The RSN of the sciatic nerve injury+cinnamon bark essential oil (SNI+CBO) group was explored. SNI was created by unilateral clamping and CBO was applied for 28 days. In the experiment study, motor activity, balance, and coordination measurements were made with rotarod and accelerod tests. A hot plate test was performed for analgesia measurements. Histopathology studies were carried out with the sciatic nerve tissues. RESULTS: In the rotarod test, there was a statistically significant difference between the SNI group and the SNI+CBO group (p<0.05). According to the accelerod test findings, there was a statistically significant difference between the SNI group with the Sham and SNI+CBO groups. In the hot plate test, there was a statistically significant difference between the SNI group with the Sham and SNI+CBO groups (p<0.05). In comparison to the Sham group and the SNI group, the SNI+CBO group was shown to have the greatest expression level of vimentin. CONCLUSIONS: We have concluded that CBO can be used as an adjuvant treatment in cases of SNI, increased pain, nociception, impaired balance, motor activity, and coordination. Our results will be supported by further studies.


Subject(s)
Oils, Volatile , Peripheral Nerve Injuries , Sciatic Neuropathy , Rats , Animals , Sciatic Neuropathy/drug therapy , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/pathology , Sciatic Nerve , Cinnamomum zeylanicum , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/pathology , Pain/pathology , Oils, Volatile/pharmacology
20.
Medicine (Baltimore) ; 102(29): e34256, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37478277

ABSTRACT

BACKGROUND: Peripheral nerve injuries (PNI) resulting from trauma can be severe and permanently disabling, approximately one-third of PNIs demonstrate incomplete recovery and poor functional restoration. However, despite extensive research on this aspect, complete functional recovery remains a challenge. In East Asian countries, Chinese herbal Buyang Huanwu Decoction (BHD) has been used to treat PNI for more than 200 years, and the studies of BHD to treat PNI have been increasing in recent years based on positive clinical outcomes. The purpose of this meta-analysis was to scientifically evaluate the safety and clinical efficacy of BHD in patients with PNI. METHOD: A literature search was conducted on PubMed, EMBASE, Cochrane Library, CNKI, Wanfang, VIP, and Sinomed databases for randomized controlled clinical trials that evaluated the safety and effects of BHD alone or combination treatment on PNI. RESULTS: A total of 14 studies involving 1415 participants were included in this study. Each trial did not show significant heterogeneity or publication bias. The results showed that significant improvements of the total clinical effective rate (odds ratio = 3.55; 95% confidence interval [CI] = [2.62, 4.81]; P < .0001), radial nerve function score (standardized mean difference [SMD] = 1.28; 95% CI = [1.09, 1.47]; P = .007), motor nerve conduction velocity (SMD = 1.59; 95% CI = [1.40, 1.78]; P < .0001), sensory nerve conduction velocity (SMD = 1.69; 95% CI = [1.34, 2.05]; P < .0001), and electromyography amplitude (SMD = 2.67; 95% CI = [1.27, 4.06]; P = .0002), and significantly reduce of the visual analog scale scores (SMD = -3.85; 95% CI = [-7.55, -0.15]; P = .04) in the BHD group compared with the control group. In addition, there were no serious and permanent adverse effects in the 2 groups, the difference was not significant (odds ratio = 1.00; 95% CI = [0.40, 2.50]; P = 1.00). CONCLUSION: Current evidence suggests that BHD is an effective and safe treatment for PNI and could be treated as a complementary and alternative option with few side effects compared to a single treatment with neurotrophic drugs or electrical stimulation. However, considering the low methodological quality of the included studies, further rigorous studies are required.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Drugs, Chinese Herbal , Peripheral Nerve Injuries , Humans , Drugs, Chinese Herbal/therapeutic use , Peripheral Nerve Injuries/drug therapy , Randomized Controlled Trials as Topic , Medicine, Chinese Traditional/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...