Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 814
Filter
1.
Sci Rep ; 14(1): 16096, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997331

ABSTRACT

Peripheral nerve injury is a prevalent clinical problem that often leads to lifelong disability and reduced quality of life. Although peripheral nerves can regenerate, recovery after severe injury is slow and incomplete. The current gold standard treatment, autologous nerve transplantation, has limitations including donor site morbidity and poor functional outcomes, highlighting the need for improved repair strategies. We developed a reproducible in vitro hollow channel collagen gel construct to investigate peripheral nerve regeneration (PNR) by exploring the influence of key extracellular matrix (ECM) proteins on axonal growth and regeneration. Channels were coated with ECM proteins: collagen IV, laminin, or fibronectin and seeded with dorsal root ganglia (DRG) collected from E16 rat embryos to compare the ability of the ECM proteins to enhance axonal growth. Robust axonal extension and Schwann cell (SC) infiltration were observed in fibronectin-coated channels, suggesting its superiority over other ECM proteins. Differential effects of ECM proteins on axons and SCs indicated direct growth stimulation beyond SC-mediated guidance. In vitro laceration injury modeling further confirmed fibronectin's superior pro-regenerative effects, showcasing its potential in enhancing axonal regrowth post-injury. Advancing in vitro modeling that closely replicates native microenvironments will accelerate progress in overcoming the limitations of current nerve repair approaches.


Subject(s)
Extracellular Matrix Proteins , Ganglia, Spinal , Nerve Regeneration , Peripheral Nerve Injuries , Animals , Nerve Regeneration/physiology , Rats , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/metabolism , Ganglia, Spinal/metabolism , Extracellular Matrix Proteins/metabolism , Axons/physiology , Axons/metabolism , Collagen/metabolism , Schwann Cells/metabolism , Schwann Cells/physiology , Fibronectins/metabolism , Rats, Sprague-Dawley , Tissue Scaffolds/chemistry , Peripheral Nerves/physiology , Laminin/metabolism
2.
Int J Mol Sci ; 25(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39000003

ABSTRACT

Peripheral nerve injuries (PNIs) represent a significant clinical challenge, particularly in elderly populations where axonal remyelination and regeneration are impaired. Developing therapies to enhance these processes is crucial for improving PNI repair outcomes. Glutamate carboxypeptidase II (GCPII) is a neuropeptidase that plays a pivotal role in modulating glutamate signaling through its enzymatic cleavage of the abundant neuropeptide N-acetyl aspartyl glutamate (NAAG) to liberate glutamate. Within the PNS, GCPII is expressed in Schwann cells and activated macrophages, and its expression is amplified with aging. In this study, we explored the therapeutic potential of inhibiting GCPII activity following PNI. We report significant GCPII protein and activity upregulation following PNI, which was normalized by the potent and selective GCPII inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In vitro, 2-PMPA robustly enhanced myelination in dorsal root ganglion (DRG) explants. In vivo, using a sciatic nerve crush injury model in aged mice, 2-PMPA accelerated remyelination, as evidenced by increased myelin sheath thickness and higher numbers of remyelinated axons. These findings suggest that GCPII inhibition may be a promising therapeutic strategy to enhance remyelination and potentially improve functional recovery after PNI, which is especially relevant in elderly PNI patients where this process is compromised.


Subject(s)
Glutamate Carboxypeptidase II , Peripheral Nerve Injuries , Remyelination , Animals , Mice , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/metabolism , Remyelination/drug effects , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamate Carboxypeptidase II/metabolism , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Aging/drug effects , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Mice, Inbred C57BL , Nerve Regeneration/drug effects , Sciatic Nerve/injuries , Sciatic Nerve/drug effects , Male , Axons/drug effects , Axons/metabolism
3.
Medicina (Kaunas) ; 60(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929606

ABSTRACT

Background and Objectives: This study aimed to investigate the relationship between neuropathic pain and CREB-binding protein (CBP) and methyl-CpG-binding protein 2 (MeCP2) expression levels in a rat model with spared nerve injury (SNI). Materials and Methods: Rat (male Sprague-Dawley white rats) models with surgical SNI (n = 6) were prepared, and naive rats (n = 5) were used as controls. The expression levels of CBP and MeCP2 in the spinal cord and dorsal root ganglion (DRG) were compared through immunohistochemistry at 7 and 14 days after surgery. The relationship between neuropathic pain and CBP/MeCP2 was also analyzed through intrathecal siRNA administration. Results: SNI induced a significant increase in the number of CBPs in L4 compared with contralateral DRG as well as with naive rats. The number of MeCP2 cells in the dorsal horn on the ipsilateral side decreased significantly compared with the contralateral dorsal horn and the control group. SNI induced a significant decrease in the number of MeCP2 neurons in the L4 ipsilateral DRG compared with the contralateral DRG and naive rats. The intrathecal injection of CBP siRNA significantly inhibited mechanical allodynia induced by SNI compared with non-targeting siRNA treatment. MeCP2 siRNA injection showed no significant effect on mechanical allodynia. Conclusions: The results suggest that CBP and MeCP2 may play an important role in the generation of neuropathic pain following peripheral nerve injury.


Subject(s)
CREB-Binding Protein , Disease Models, Animal , Methyl-CpG-Binding Protein 2 , Neuralgia , Rats, Sprague-Dawley , Animals , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Neuralgia/metabolism , Neuralgia/etiology , Male , Rats , CREB-Binding Protein/metabolism , Ganglia, Spinal/metabolism , RNA, Small Interfering , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/metabolism , Spinal Cord/metabolism , Immunohistochemistry
4.
Sci Adv ; 10(26): eadm8454, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941462

ABSTRACT

The formation of vascular niche is pivotal during the early stage of peripheral nerve regeneration. Nevertheless, the mechanisms of vascular niche in the regulation of peripheral nerve repair remain unclear. Netrin-1 (NTN1) was found up-regulated in nerve stump after peripheral nerve injury (PNI). Herein, we demonstrated that NTN1-high endothelial cells (NTN1+ECs) were the critical component of vascular niche, fostering angiogenesis, axon regeneration, and repair-related phenotypes. We also found that NTN1+EC-derived exosomes (NTN1 EC-EXO) were involved in the formation of vascular niche as a critical role. Multi-omics analysis further verified that NTN1 EC-EXO carried a low-level expression of let7a-5p and activated key pathways associated with niche formation including focal adhesion, axon guidance, phosphatidylinositol 3-kinase-AKT, and mammalian target of rapamycin signaling pathway. Together, our study suggested that the construction of a pre-regenerative niche induced by NTN1 EC-EXO could establish a beneficial microenvironment for nerve repair and facilitate functional recovery after PNI.


Subject(s)
Endothelial Cells , Exosomes , Nerve Regeneration , Netrin-1 , Peripheral Nerve Injuries , Netrin-1/metabolism , Netrin-1/genetics , Exosomes/metabolism , Nerve Regeneration/genetics , Animals , Endothelial Cells/metabolism , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/pathology , Mice , Neovascularization, Physiologic , Signal Transduction , Humans , Peripheral Nerves/metabolism
5.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928194

ABSTRACT

Gap injuries to the peripheral nervous system result in pain and loss of function, without any particularly effective therapeutic options. Within this context, mesenchymal stem cell (MSC)-derived exosomes have emerged as a potential therapeutic option. Thus, the focus of this study was to review currently available data on MSC-derived exosome-mounted scaffolds in peripheral nerve regeneration in order to identify the most promising scaffolds and exosome sources currently in the field of peripheral nerve regeneration. We conducted a systematic review following PRISMA 2020 guidelines. Exosome origins varied (adipose-derived MSCs, bone marrow MSCs, gingival MSC, induced pluripotent stem cells and a purified exosome product) similarly to the materials (Matrigel, alginate and silicone, acellular nerve graft [ANG], chitosan, chitin, hydrogel and fibrin glue). The compound muscle action potential (CMAP), sciatic functional index (SFI), gastrocnemius wet weight and histological analyses were used as main outcome measures. Overall, exosome-mounted scaffolds showed better regeneration than scaffolds alone. Functionally, both exosome-enriched chitin and ANG showed a significant improvement over time in the sciatica functional index, CMAP and wet weight. The best histological outcomes were found in the exosome-enriched ANG scaffold with a high increase in the axonal diameter and muscle cross-section area. Further studies are needed to confirm the efficacy of exosome-mounted scaffolds in peripheral nerve regeneration.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Nerve Regeneration , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Animals , Tissue Scaffolds/chemistry , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/metabolism , Mesenchymal Stem Cell Transplantation/methods
6.
Neuroreport ; 35(12): 771-779, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38935077

ABSTRACT

Recent studies have shown that autophagy is activated in response to nerve damage and occurs simultaneously with the initial stages of Schwann cell-mediated demyelination. Although several studies have reported that macroautophagy is involved in the peripheral nerve, the role of chaperone-mediated autophagy (CMA) has not yet been investigated in peripheral nerve injury. The present study investigates the role of CMA in the sciatic nerve. Using a mouse model of sciatic nerve injury, the authors employed immunofluorescence analysis to observe the expression of LAMP2A, a critical marker for CMA. RNA sequencing was performed to observe the transcriptional profile of Lamp2a in Schwann cells. Bioinformatics analysis was carried out to observe the hub genes associated with Lamp2a . Expression of Lamp2a , a key gene in CMA, increased following sciatic nerve injury, based on an immunofluorescence assay. To identify differentially expressed genes using Lamp2a , RNA sequence analysis was conducted using rat Schwann cells overexpressing Lamp2a . The nine hub genes ( Snrpf, Polr1d, Snip1, Aqr, Polr2h, Ssbp1, Mterf3, Adcy6 , and Sbds ) were identified using the CytoHubba plugin of Cytoscape. Functional analysis revealed that Lamp2a overexpression affected the transcription levels of genes associated with mitotic spindle organization and mRNA splicing via the spliceosome. In addition, Polr1d and Snrpf1 were downregulated throughout postnatal development but elevated following sciatic nerve injury, according to a bioinformatics study. CMA may be an integral pathway in sciatic nerve injury via mRNA splicing.


Subject(s)
Computational Biology , Lysosomal-Associated Membrane Protein 2 , Schwann Cells , Sciatic Nerve , Animals , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Mice , Schwann Cells/metabolism , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Rats , Male , Chaperone-Mediated Autophagy/genetics , Mice, Inbred C57BL , Sciatic Neuropathy/genetics , Sciatic Neuropathy/metabolism
7.
JCI Insight ; 9(12)2024 May 21.
Article in English | MEDLINE | ID: mdl-38912580

ABSTRACT

Peripheral nerve injury-induced neuronal hyperactivity in the dorsal root ganglion (DRG) participates in neuropathic pain. The calcium-activated potassium channel subfamily N member 1 (KCNN1) mediates action potential afterhyperpolarization (AHP) and gates neuronal excitability. However, the specific contribution of DRG KCNN1 to neuropathic pain is not yet clear. We report that chronic constriction injury (CCI) of the unilateral sciatic nerve or unilateral ligation of the fourth lumbar nerve produced the downregulation of Kcnn1 mRNA and KCNN1 protein in the injured DRG. This downregulation was partially attributed to a decrease in DRG estrogen-related receptor gamma (ESRRG), a transcription factor, which led to reduced binding to the Kcnn1 promoter. Rescuing this downregulation prevented CCI-induced decreases in total potassium voltage currents and AHP currents, reduced excitability in the injured DRG neurons, and alleviated CCI-induced development and maintenance of nociceptive hypersensitivities, without affecting locomotor function and acute pain. Mimicking the CCI-induced DRG KCNN1 downregulation resulted in augmented responses to mechanical, heat, and cold stimuli in naive mice. Our findings indicate that ESRRG-controlled downregulation of DRG KCNN1 is likely essential for the development and maintenance of neuropathic pain. Thus, KCNN1 may serve as a potential target for managing this disorder.


Subject(s)
Down-Regulation , Ganglia, Spinal , Neuralgia , Sensory Receptor Cells , Animals , Male , Mice , Action Potentials , Disease Models, Animal , Ganglia, Spinal/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Mice, Inbred C57BL , Neuralgia/metabolism , Neuralgia/genetics , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/genetics , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Sensory Receptor Cells/metabolism
8.
ACS Nano ; 18(26): 16556-16576, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38889128

ABSTRACT

Critical peripheral nerve deficiencies present as one of the most formidable conundrums in the realm of clinical medicine, frequently culminating in structural degradation and derangement of the neuromuscular apparatus. Engineered extracellular vesicles (EVs) exhibit the potential to ameliorate nerve impairments. However, the advent of Wallerian degeneration (WD), an inexorable phenomenon that ensues post peripheral nerve injury, serves as an insurmountable impediment to the direct therapeutic efficacy of EVs. In this investigation, we have fashioned a dynamic network for the conveyance of PTEN-induced kinase 1 (PINK1) mRNA (E-EV-P@HPCEP) using an adaptive hydrogel with reactive oxygen species (ROS)/Ca2+ responsive ability as the vehicle, bearing dual-targeted, engineered EVs. This intricate system is to precisely deliver PINK1 to senescent Schwann cells (SCs) while concurrently orchestrating a transformation in the inflammatory-senescent milieu following injury, thereby stymying the progression of WD in peripheral nerve fibers through the stimulation of autophagy within the mitochondria of the injured cells and the maintenance of mitochondrial mass equilibrium. WD, conventionally regarded as an inexorable process, E-EV-P@HPCEP achieved functionalized EV targeting, orchestrating a dual-response dynamic release mechanism via boronate ester bonds and calcium chelation, effectuating an enhancement in the inflammatory-senescent microenvironment, which expedites the therapeutic management of nerve deficiencies and augments the overall reparative outcome.


Subject(s)
Calcium , Hydrogels , RNA, Messenger , Reactive Oxygen Species , Schwann Cells , Hydrogels/chemistry , Hydrogels/pharmacology , Reactive Oxygen Species/metabolism , Calcium/metabolism , Calcium/chemistry , Animals , RNA, Messenger/metabolism , RNA, Messenger/genetics , Schwann Cells/metabolism , Protein Kinases/metabolism , Humans , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/pathology , Rats , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism
9.
J Nanobiotechnology ; 22(1): 283, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789980

ABSTRACT

BACKGROUND: Endothelial cell (EC)-driven intraneural revascularization (INRV) and Schwann cells-derived exosomes (SCs-Exos) both play crucial roles in peripheral nerve injury (PNI). However, the interplay between them remains unclear. We aimed to elucidate the effects and underlying mechanisms of SCs-Exos on INRV following PNI. RESULTS: We found that GW4869 inhibited INRV, as well as that normoxic SCs-Exos (N-SCs-Exos) exhibited significant pro-INRV effects in vivo and in vitro that were potentiated by hypoxic SCs-Exos (H-SCs-Exos). Upregulation of glycolysis emerged as a pivotal factor for INRV after PNI, as evidenced by the observation that 3PO administration, a glycolytic inhibitor, inhibited the INRV process in vivo and in vitro. H-SCs-Exos more significantly enhanced extracellular acidification rate/oxygen consumption rate ratio, lactate production, and glycolytic gene expression while simultaneously suppressing acetyl-CoA production and pyruvate dehydrogenase E1 subunit alpha (PDH-E1α) expression than N-SCs-Exos both in vivo and in vitro. Furthermore, we determined that H-SCs-Exos were more enriched with miR-21-5p than N-SCs-Exos. Knockdown of miR-21-5p significantly attenuated the pro-glycolysis and pro-INRV effects of H-SCs-Exos. Mechanistically, miR-21-5p orchestrated EC metabolism in favor of glycolysis by targeting von Hippel-Lindau/hypoxia-inducible factor-1α and PDH-E1α, thereby enhancing hypoxia-inducible factor-1α-mediated glycolysis and inhibiting PDH-E1α-mediated oxidative phosphorylation. CONCLUSION: This study unveiled a novel intrinsic mechanism of pro-INRV after PNI, providing a promising therapeutic target for post-injury peripheral nerve regeneration and repair.


Subject(s)
Endothelial Cells , Exosomes , Glycolysis , Peripheral Nerve Injuries , Schwann Cells , Schwann Cells/metabolism , Exosomes/metabolism , Animals , Endothelial Cells/metabolism , Mice , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/therapy , Male , Rats , MicroRNAs/metabolism , MicroRNAs/genetics , Mice, Inbred C57BL , Neovascularization, Physiologic , Rats, Sprague-Dawley , Aniline Compounds , Benzylidene Compounds
10.
J Neuroinflammation ; 21(1): 134, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802868

ABSTRACT

BACKGROUND: Since the 1990s, evidence has accumulated that macrophages promote peripheral nerve regeneration and are required for enhancing regeneration in the conditioning lesion (CL) response. After a sciatic nerve injury, macrophages accumulate in the injury site, the nerve distal to that site, and the axotomized dorsal root ganglia (DRGs). In the peripheral nervous system, as in other tissues, the macrophage response is derived from both resident macrophages and recruited monocyte-derived macrophages (MDMs). Unresolved questions are: at which sites do macrophages enhance nerve regeneration, and is a particular population needed. METHODS: Ccr2 knock-out (KO) and Ccr2gfp/gfp knock-in/KO mice were used to prevent MDM recruitment. Using these strains in a sciatic CL paradigm, we examined the necessity of MDMs and residents for CL-enhanced regeneration in vivo and characterized injury-induced nerve inflammation. CL paradigm variants, including the addition of pharmacological macrophage depletion methods, tested the role of various macrophage populations in initiating or sustaining the CL response. In vivo regeneration, measured from bilateral proximal test lesions (TLs) after 2 d, and macrophages were quantified by immunofluorescent staining. RESULTS: Peripheral CL-enhanced regeneration was equivalent between crush and transection CLs and was sustained for 28 days in both Ccr2 KO and WT mice despite MDM depletion. Similarly, the central CL response measured in dorsal roots was unchanged in Ccr2 KO mice. Macrophages at both the TL and CL, but not between them, stained for the pro-regenerative marker, arginase 1. TL macrophages were primarily CCR2-dependent MDMs and nearly absent in Ccr2 KO and Ccr2gfp/gfp KO mice. However, there were only slightly fewer Arg1+ macrophages in CCR2 null CLs than controls due to resident macrophage compensation. Zymosan injection into an intact WT sciatic nerve recruited Arg1+ macrophages but did not enhance regeneration. Finally, clodronate injection into Ccr2gfp KO CLs dramatically reduced CL macrophages. Combined with the Ccr2gfp KO background, depleting MDMs and TL macrophages, and a transection CL, physically removing the distal nerve environment, nearly all macrophages in the nerve were removed, yet CL-enhanced regeneration was not impaired. CONCLUSIONS: Macrophages in the sciatic nerve are neither necessary nor sufficient to produce a CL response.


Subject(s)
Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Receptors, CCR2 , Wallerian Degeneration , Animals , Macrophages/metabolism , Macrophages/pathology , Mice , Nerve Regeneration/physiology , Wallerian Degeneration/pathology , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Receptors, CCR2/deficiency , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/metabolism , Mice, Inbred C57BL , Mice, Knockout , Sciatic Neuropathy/pathology , Axons/pathology , Mice, Transgenic , Disease Models, Animal , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 598-607, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38752248

ABSTRACT

Objective: To investigate the feasibility of selenium-methylselenocysteine (SMC) to promote peripheral nerve regeneration and its mechanism of action. Methods: Rat Schwann cells RSC96 cells were randomly divided into 5 groups, which were group A (without any treatment, control group), group B (adding 100 µmol/L H 2O 2), group C (adding 100 µmol/L H 2O 2+100 µmol/L SMC), group D (adding 100 µmol/L H 2O 2+200 µmol/L SMC), group E (adding 100 µmol/L H 2O 2+400 µmol/L SMC); the effect of SMC on cell proliferation was detected by MTT method, and the level of oxidative stress was detected by immunofluorescence for free radicals [reactive oxygen species (ROS)] after determining the appropriate dose group. Thirty-six 4-week-old male Sprague Dawley rats were randomly divided into 3 groups, namely, the sham operation group (Sham group), the sciatic nerve injury group (PNI group), and the SMC treatment group (SMC group), with 12 rats in each group; the rats in the PNI group were fed with food and water normally after modelling operation, and the rats in the SMC group were added 0.75 mg/kg SMC to the drinking water every day. At 4 weeks after operation, the sciatic nerves of rats in each group were sampled for neuroelectrophysiological detection of highest potential of compound muscle action potential (CMAP). The levels of inflammatory factors [interleukin 17 (IL-17), IL-6, IL-10 and oxidative stress factors catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA)] were detected by ELISA assay. The luxol fast blue (LFB) staining was used to observe the myelin density, fluorescence intensity of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) was observed by immunofluorescence staining, and myelin morphology was observed by transmission electron microscopy with measurement of axon diameter. Western blot was used to detect the protein expressions of p38 mitogen-activated protein kinases (p38MAPK), phosphorylated p38MAPK (p-p38MAPK), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2-related factor 2 (Nrf2). Results: MTT assay showed that the addition of SMC significantly promoted the proliferation of RSC96 cells, and the low concentration could achieve an effective effect, so the treatment method of group C was selected for the subsequent experiments; ROS immunofluorescence test showed that group B showed a significant increase in the intensity of ROS fluorescence compared with that of group A, and group C showed a significant decrease in the intensity of ROS fluorescence compared with that of group B ( P<0.05). Neuroelectrophysiological tests showed that the highest potential of CMAP in SMC group was significantly higher than that in PNI and Sham groups ( P<0.05). ELISA assay showed that the levels of IL-6, IL-17, and MDA in PNI group were significantly higher than those in Sham group, and the levels of IL-10, SOD, and CAT were significantly lower; the levels of IL-6, IL-17, and MDA in SMC group were significantly lower than those in PNI group, and the levels of IL-10, SOD, and CAT were significantly higher ( P<0.05). LFB staining and transmission electron microscopy showed that the myelin density and the diameter of axons in the SMC group were significantly higher than those of the PNI group and the Sham group ( P<0.05). Immunofluorescence staining showed that the fluorescence intensity of GFAP and MBP in the SMC group were significantly stronger than those in the PNI group and Sham group ( P<0.05). Western blot showed that the relative expressions of Nrf2 and HO-1 proteins in the SMC group were significantly higher than those in the PNI group and Sham group, and the ratio of p-p38MAPK/p38MAPK proteins was significantly higher in the PNI group than that in the SMC group and Sham group ( P<0.05). Conclusion: SMC may inhibit oxidative stress and inflammation after nerve injury by up-regulating the Nrf2/HO-1 pathway, and then inhibit the phosphorylation of p38MAPK pathway to promote the proliferation of Schwann cells, which ultimately promotes the formation of myelin sheaths and accelerates the regeneration of peripheral nerves.


Subject(s)
Nerve Regeneration , Oxidative Stress , Rats, Sprague-Dawley , Schwann Cells , Sciatic Nerve , Selenium , Selenocysteine , Animals , Nerve Regeneration/drug effects , Rats , Male , Selenocysteine/analogs & derivatives , Selenocysteine/pharmacology , Schwann Cells/metabolism , Schwann Cells/drug effects , Oxidative Stress/drug effects , Sciatic Nerve/drug effects , Selenium/pharmacology , Cell Proliferation/drug effects , Peripheral Nerve Injuries/metabolism
12.
Elife ; 122024 May 14.
Article in English | MEDLINE | ID: mdl-38742628

ABSTRACT

Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.


Subject(s)
Peripheral Nerve Injuries , Animals , Mice , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Nerve Regeneration/physiology , Motor Neurons/physiology , Nociceptors/physiology , Nociceptors/metabolism , Sequence Analysis, RNA , Mechanoreceptors/physiology , Mechanoreceptors/metabolism , Axotomy , Male , Sciatic Nerve/injuries , Neurons/physiology
13.
Acta Biomater ; 182: 28-41, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38761961

ABSTRACT

The regenerative microenvironment after peripheral nerve injury is imbalanced and difficult to rebalance, which is mainly affected by inflammation, oxidative stress, and inadequate blood supply. The difficulty in remodeling the nerve regeneration microenvironment is the main reason for slow nerve regeneration. Traditional drug treatments have certain limitations, such as difficulty in penetrating the blood-nerve barrier and lack of pleiotropic effects. Therefore, there is an urgent need to build multifunctional nerve grafts that can effectively regulate the regenerative microenvironment and promote nerve regeneration. Nitric oxide (NO), a highly effective gas transmitter with diatomic radicals, is an important regulator of axonal growth and migration, synaptic plasticity, proliferation of neural precursor cells, and neuronal survival. Moreover, NO provides potential anti-inflammation, anti-oxidation, and blood vessel promotion applications. However, excess NO may cause cell death and neuroinflammatory cell damage. The prerequisite for NO treatment of peripheral nerve injury is that it is gradually released over time. In this study, we constructed an injectable NO slow-release system with two main components, including macromolecular NO donor nanoparticles (mPEG-P(MSNO-EG) nanoparticles, NO-NPs) and a carrier for the nanoparticles, mPEG-PA-PP injectable temperature-sensitive hydrogel. Due to the multiple physiological regulation of NO and better physiological barrier penetration, the conduit effectively regulates the inflammatory response and oxidative stress of damaged peripheral nerves, promotes nerve vascularization, and nerve regeneration and docking, accelerating the nerve regeneration process. STATEMENT OF SIGNIFICANCE: The slow regeneration speed of peripheral nerves is mainly due to the destruction of the regeneration microenvironment. Neural conduits with drug delivery capabilities have the potential to improve the microenvironment of nerve regeneration. However, traditional drugs are hindered by the blood nerve barrier and cannot effectively target the injured area. NO, an endogenous gas signaling molecule, can freely cross the blood nerve barrier and act on target cells. However, excessive NO can lead to cell apoptosis. In this study, a NO sustained-release system was constructed to regulate the microenvironment of nerve regeneration through various pathways and promote nerve regeneration.


Subject(s)
Delayed-Action Preparations , Nerve Regeneration , Nitric Oxide , Animals , Nitric Oxide/metabolism , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Nerve Regeneration/drug effects , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/metabolism , Rats, Sprague-Dawley , Rats , Peripheral Nerves/drug effects , Peripheral Nerves/pathology , Nanoparticles/chemistry , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/therapeutic use , Male , Hydrogels/chemistry , Sciatic Nerve/drug effects
14.
Neurosci Lett ; 833: 137813, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38723761

ABSTRACT

A significant public health burden is peripheral nerve damage (PNI), which is frequently brought on by trauma. Macrophages were essential to the effective regeneration of nerves and restoration of function. It is still not entirely understood how macrophages and Schwann cells interact after damage during remyelination. Here, we established an inflammatory model in bone marrow-derived macrophages (BMDMs) and a rat sciatic nerve damage model to investigate the possible relationship between lipopolysaccharides (LPS)-induced exosomes derived from Schwann cells (LPS SCs-Exos) and peripheral nerve repair. The pro-inflammatory macrophage was changed into a pro-regeneration macrophage by LPS SC-Exos. Notably, it was discovered that SC-Exos had a substantial enrichment of OTULIN. OTULIN was a key mediator in the regulatory effects of LPS SC-Exos by deubiquitinating ERBB2 and preventing its degradation. The local injection of SC-Exos into the nerve damage site led in a faster functional recovery, axon regeneration and remyelination, and an increased M2 macrophage polarization, whereas OTULIN knockdown reversed these effects in vivo. Our results indicate that LPS SC-Exos may offer a therapeutic avenue for peripheral nerve regeneration by promoting macrophage polarization toward an M2 phenotype through the shuttling of OTULIN and deubiquitination of ERBB2. SIGNIFICANCE STATEMENT: OTULIN protein from SC-Exos mediated the macrophages polarization and axonal growth in BMDMs through promoting ubiquitination of ERBB2 and triggering the degradation of ERBB2. The findings offered prospective therapeutic hints for PNI therapy approaches that target axonal regrowth.


Subject(s)
Exosomes , Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Rats, Sprague-Dawley , Schwann Cells , Animals , Schwann Cells/metabolism , Exosomes/metabolism , Macrophages/metabolism , Peripheral Nerve Injuries/metabolism , Rats , Nerve Regeneration/physiology , Nerve Regeneration/drug effects , Receptor, ErbB-2/metabolism , Male , Ubiquitination , Mice , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Mice, Inbred C57BL , Lipopolysaccharides
15.
Neurol Res ; 46(8): 743-751, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38721917

ABSTRACT

Background: Injury of peripheral nerve capable of regeneration with much poorer prognosis affects people's life quality. The recovery of nerve function after transplantation for peripheral nerve injury remain a worldwide problem. Silicon-induced biofilms as vascularized biological conduits can promote nerve regeneration by encapsulating autologous or allogeneic nerve graft.Objective: We proposed to explore the effect of silicon-induced biofilms on nerves regeneration and whether the VEGF/VEGFR2/ERK pathway was involved in the present study.Methods: Biofilms around the transplanted nerves in peripheral nerve injury rats were induced by silicon. Vascularization and proteins related to VEGF/VEGFR2/ERK were measured. Pathology and morphology of nerves were investigated after encapsulating the transplanted nerves by silicon-induced biofilms.Results: Our results indicated that the biofilms induced by silicon for 6 weeks showed the most intensive vascularization and the optimal effect on nerve regeneration. Moreover, silicon-induced biofilms for 4, 6 and 8 weeks could significantly secrete VEGF with the highest content at week 6 after induction. VEGFR2, VEGF, p-VEGFR2, ERK1, ERK2, p-ERK1 and p-ERK2 were expressed in the biofilms. p-VEGFR2, p-ERK1 and p-ERK2 expression were different at each time point and significantly increased at week 6 compared with that at week 4 or week 8 which was consistent with that 6 week of was the optimum time for biofilms induction to improve the nerve repair after peripheral nerve injury.Conclusion: Our results suggested that combination of silicon-induced autologous vascularized biofilm and autologous transplantation may promote the repair of rat sciatic nerve defect quickly through VEGF/VEGFR2/ERK pathway.


Subject(s)
Biofilms , Nerve Regeneration , Peripheral Nerve Injuries , Rats, Sprague-Dawley , Silicon , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Animals , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor A/metabolism , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Silicon/pharmacology , Peripheral Nerve Injuries/metabolism , Biofilms/drug effects , Rats , Male , Disease Models, Animal , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Sciatic Nerve/drug effects , Sciatic Nerve/injuries
16.
Neuroscience ; 551: 55-68, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38788828

ABSTRACT

Gamma-aminobutyric acid and glycine (GABA/Gly) are predominantly inhibitory neurotransmitters in the mature central nervous system; however, they mediate membrane potential depolarization during development. These differences in actions depend on intracellular Cl- concentrations ([Cl-]i), which are primarily regulated by potassium chloride cotransporter 2 (KCC2). After nerve injury, KCC2 expression markedly decreases and GABA/Gly mediate depolarization. Following nerve regeneration, KCC2 expression recovers and GABA/Gly become inhibitory, suggesting that KCC2 reduction and GABA/Gly excitation may be crucial for axonal regeneration. To directly clarify their involvement in regeneration, we analyzed recovery processes after tibial nerve severance and suturing between heterozygous KCC2 knockout mice (HT), whose KCC2 levels are halved, and their wild-type littermates (WT). Compared with WT mice, the sciatic functional index-indicating lower limb motor function-was significantly higher until 28 days after operation (D28) in HT mice. Furthermore, at D7, many neurofilament-positive fibers were elongated into the distal part of the sutured nerve in HT mice only, and myelinated axonal density was significantly higher at D21 and D28 in HT animals. Electron microscopy and galanin immunohistochemistry indicated a shorter nerve degeneration period in HT mice. Moreover, a less severe decrease in choline acetyltransferase was observed in HT mice. These results suggest that nerve degeneration and regeneration proceed more rapidly in HT mice, resulting in milder motor dysfunction. Via similar microglial activation, nerve surgery may reduce KCC2 levels more rapidly in HT mice, followed by earlier increased [Cl-]i and longer-lasting GABA/Gly excitation. Taken together, reduced KCC2 may accelerate nerve regeneration via GABA/Gly excitation.


Subject(s)
Axons , K Cl- Cotransporters , Mice, Knockout , Nerve Regeneration , Symporters , Tibial Nerve , Animals , Symporters/metabolism , Symporters/genetics , Nerve Regeneration/physiology , Tibial Nerve/injuries , Tibial Nerve/metabolism , Axons/metabolism , Mice , Male , Mice, Inbred C57BL , Peripheral Nerve Injuries/metabolism , Disease Models, Animal
17.
Neurochem Res ; 49(8): 1905-1925, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38807021

ABSTRACT

Peripheral nerve injuries (PNIs) are the term used to describe injuries that occur to the nerve fibers of the peripheral nervous system (PNS). Such injuries may be caused by trauma, infection, or aberrant immunological response. Although the peripheral nervous system has a limited capacity for self-repair, in cases of severe damage, this process is either interrupted entirely or is only partially completed. The evaluation of variables that promote the repair of peripheral nerves has consistently been a focal point. Exosomes are a subtype of extracellular vesicles that originate from cellular sources and possess abundant proteins, lipids, and nucleic acids, play a critical role in facilitating intercellular communication. Due to their modifiable composition, they possess exceptional capabilities as carriers for therapeutic compounds, including but not limited to mRNAs or microRNAs. Exosome-based therapies have gained significant attention in the treatment of several nervous system diseases due to their advantageous properties, such as low toxicity, high stability, and limited immune system activation. The objective of this review article is to provide an overview of exosome-based treatments that have been developed in recent years for a range of PNIs, including nerve trauma, diabetic neuropathy, amyotrophic lateral sclerosis (ALS), glaucoma, and Guillain-Barre syndrome (GBS). It was concluded that exosomes could provide favorable results in the improvement of peripheral PNIs by facilitating the transfer of regenerative factors. The development of bioengineered exosome therapy for PNIs should be given more attention to enhance the efficacy of exosome treatment for PNIs.


Subject(s)
Exosomes , Peripheral Nerve Injuries , Exosomes/metabolism , Exosomes/transplantation , Humans , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/metabolism , Animals , Nerve Regeneration/physiology
18.
Glia ; 72(8): 1402-1417, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38591338

ABSTRACT

It is well-established that spinal microglia and peripheral macrophages play critical roles in the etiology of neuropathic pain; however, growing evidence suggests sex differences in pain hypersensitivity owing to microglia and macrophages. Therefore, it is crucial to understand sex- and androgen-dependent characteristics of pain-related myeloid cells in mice with nerve injury-induced neuropathic pain. To deplete microglia and macrophages, pexidartinib (PLX3397), an inhibitor of the colony-stimulating factor 1 receptor, was orally administered, and mice were subjected to partial sciatic nerve ligation (PSL). Following PSL induction, healthy male and female mice and male gonadectomized (GDX) mice exhibited similar levels of spinal microglial activation, peripheral macrophage accumulation, and mechanical allodynia. Treatment with PLX3397 significantly suppressed mechanical allodynia in normal males; this was not observed in female and GDX male mice. Sex- and androgen-dependent differences in the PLX3397-mediated preventive effects were observed on spinal microglia and dorsal root ganglia (DRG) macrophages, as well as in expression patterns of pain-related inflammatory mediators in these cells. Conversely, no sex- or androgen-dependent differences were detected in sciatic nerve macrophages, and inhibition of peripheral CC-chemokine receptor 5 prevented neuropathic pain in both sexes. Collectively, these findings demonstrate the presence of considerable sex- and androgen-dependent differences in the etiology of neuropathic pain in spinal microglia and DRG macrophages but not in sciatic nerve macrophages. Given that the mechanisms of neuropathic pain may differ among experimental models and clinical conditions, accumulating several lines of evidence is crucial to comprehensively clarifying the sex-dependent regulatory mechanisms of pain.


Subject(s)
Microglia , Neuralgia , Pyrroles , Sex Characteristics , Animals , Male , Female , Mice , Neuralgia/metabolism , Neuralgia/drug therapy , Neuralgia/etiology , Microglia/drug effects , Microglia/metabolism , Pyrroles/pharmacology , Aminopyridines/pharmacology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Sciatic Nerve/injuries , Sciatic Nerve/drug effects , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/metabolism , Disease Models, Animal
19.
J Biomater Sci Polym Ed ; 35(10): 1550-1570, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38630632

ABSTRACT

In recent years, mouse nerve growth factor (mNGF) has emerged as an important biological regulator to repair peripheral nerve injury, but its systemic application is restricted by low efficiency and large dosage requirement. These limitations prompted us to search for biomaterials that can be locally loaded. Oxidized sodium alginate hydrogel (OSA) exhibits good biocompatibility and physicochemical properties, and can be loaded with drugs to construct a sustained-release system that can act locally on nerve injury. Here, we constructed a sustained-release system of OSA-mouse nerve growth factor (mNGF), and investigated the loading and release of the drug through Fourier transform infrared spectroscopy and drug release curves. In vitro and in vivo experiments showed that OSA-mNGF significantly promoted the biological activities of RSC-96 cells and facilitated the recovery from sciatic nerve crush injury in rats. This observation may be attributed to the additive effect of OSA on promoting Schwann cell biological activities or its synergistic effect of cross-activating phosphoinositide 3-kinase (PI3K) through extracellular signal regulated kinase (ERK) signaling. Although the specific mechanism of OSA action needs to be explored in the future, the current results provide a valuable preliminary research basis for the clinical application of the OSA-mNGF sustained-release system for nerve repair.


Subject(s)
Alginates , Delayed-Action Preparations , Drug Liberation , Hydrogels , Nerve Growth Factor , Peripheral Nerve Injuries , Alginates/chemistry , Alginates/pharmacology , Animals , Nerve Growth Factor/chemistry , Delayed-Action Preparations/chemistry , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/metabolism , Schwann Cells/drug effects , Schwann Cells/metabolism , Sciatic Nerve/injuries , Sciatic Nerve/drug effects , Nerve Regeneration/drug effects , Oxidation-Reduction , Cell Line , Male , Rats, Sprague-Dawley , Drug Carriers/chemistry , Phosphatidylinositol 3-Kinases/metabolism
20.
Microsc Res Tech ; 87(8): 1733-1741, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38501548

ABSTRACT

The peripheral nerve injury (PNI) affects the morphology of the whole locomotor apparatus, which can reach the myotendinous junction (MTJ) interface. In the injury condition, the skeletal muscle satellite cells (SC) are triggered, activated, and proliferated to repair their structure, and in the MTJ, the telocytes (TC) are associated to support the interface with the need for remodeling; in that way, these cells can be associated with SC. The study aimed to describe the SC and TC relationship after PNI at the MTJ. Sixteen adult Wistar rats were divided into Control Group (C, n = 8) and PNI Group (PNI, n = 8), PNI was performed by the constriction of the sciatic nerve. The samples were processed for transmission electron microscopy and immunostaining analysis. In the C group was evidenced the arrangement of sarcoplasmic evaginations and invaginations, the support collagen layer with a TC inside it, and an SC through vesicles internally and externally to then. In the PNI group were observed the disarrangement of invaginations and evaginations and sarcomeres degradation at MTJ, as the disposition of telopodes adjacent and in contact to the SC with extracellular vesicles and exosomes in a characterized paracrine activity. These findings can determine a link between the TCs and the SCs at the MTJ remodeling. RESEARCH HIGHLIGHTS: Peripheral nerve injury promotes the myotendinous junction (MTJ) remodeling. The telocytes (TC) and the satellite cells (SC) are present at the myotendinous interface. TC mediated the SC activity at MTJ.


Subject(s)
Extracellular Vesicles , Microscopy, Electron, Transmission , Rats, Wistar , Satellite Cells, Skeletal Muscle , Telocytes , Animals , Telocytes/physiology , Telocytes/ultrastructure , Satellite Cells, Skeletal Muscle/physiology , Satellite Cells, Skeletal Muscle/cytology , Rats , Extracellular Vesicles/ultrastructure , Extracellular Vesicles/metabolism , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/metabolism , Male , Sciatic Nerve/ultrastructure , Tendons/physiology , Muscle, Skeletal/ultrastructure , Myotendinous Junction
SELECTION OF CITATIONS
SEARCH DETAIL
...