Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38721924

ABSTRACT

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Subject(s)
AMP-Activated Protein Kinases , Caffeic Acids , Peritoneal Dialysis , Peritoneal Fibrosis , Phenylethyl Alcohol , Rats, Sprague-Dawley , Sirtuin 1 , Animals , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/prevention & control , Sirtuin 1/metabolism , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Rats , Male , AMP-Activated Protein Kinases/metabolism , Peritoneal Dialysis/adverse effects , Mitochondria/drug effects , Mitochondria/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Peritoneum/pathology , Peritoneum/drug effects , Peritoneum/metabolism , Homeostasis/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/metabolism , Membrane Potential, Mitochondrial/drug effects , Dialysis Solutions
2.
BMC Complement Med Ther ; 24(1): 204, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789949

ABSTRACT

PURPOSE: This study aimed to evaluate the potential of astragalus polysaccharide (APS) pretreatment in enhancing the homing and anti-peritoneal fibrosis capabilities of bone marrow mesenchymal stromal cells (BMSCs) and to elucidate the underlying mechanisms. METHODS: Forty male Sprague-Dawley rats were allocated into four groups: control, peritoneal dialysis fluid (PDF), PDF + BMSCs, and PDF + APSBMSCs (APS-pre-treated BMSCs). A peritoneal fibrosis model was induced using PDF. Dil-labeled BMSCs were administered intravenously. Post-transplantation, BMSC homing to the peritoneum and pathological alterations were assessed. Stromal cell-derived factor-1 (SDF-1) levels were quantified via enzyme-linked immunosorbent assay (ELISA), while CXCR4 expression in BMSCs was determined using PCR and immunofluorescence. Additionally, a co-culture system involving BMSCs and peritoneal mesothelial cells (PMCs) was established using a Transwell setup to examine the in vitro effects of APS on BMSC migration and therapeutic efficacy, with the CXCR4 inhibitor AMD3100 deployed to dissect the role of the SDF-1/CXCR4 axis and its downstream impacts. RESULTS: In vivo and in vitro experiments confirmed that APS pre-treatment notably facilitated the targeted homing of BMSCs to the peritoneal tissue of PDF-treated rats, thereby amplifying their therapeutic impact. PDF exposure markedly increased SDF-1 levels in peritoneal and serum samples, which encouraged the migration of CXCR4-positive BMSCs. Inhibition of the SDF-1/CXCR4 axis through AMD3100 application diminished BMSC migration, consequently attenuating their therapeutic response to peritoneal mesenchyme-to-mesothelial transition (MMT). Furthermore, APS upregulated CXCR4 expression in BMSCs, intensified the activation of the SDF-1/CXCR4 axis's downstream pathways, and partially reversed the AMD3100-induced effects. CONCLUSION: APS augments the SDF-1/CXCR4 axis's downstream pathway activation by increasing CXCR4 expression in BMSCs. This action bolsters the targeted homing of BMSCs to the peritoneal tissue and amplifies their suppressive influence on MMT, thereby improving peritoneal fibrosis.


Subject(s)
Astragalus Plant , Chemokine CXCL12 , Mesenchymal Stem Cells , Peritoneal Fibrosis , Polysaccharides , Rats, Sprague-Dawley , Receptors, CXCR4 , Animals , Receptors, CXCR4/metabolism , Chemokine CXCL12/metabolism , Rats , Male , Peritoneal Fibrosis/drug therapy , Peritoneal Fibrosis/metabolism , Polysaccharides/pharmacology , Mesenchymal Stem Cells/drug effects , Disease Models, Animal , Cyclams/pharmacology
3.
Int J Med Sci ; 21(6): 1049-1063, 2024.
Article in English | MEDLINE | ID: mdl-38774747

ABSTRACT

Peritoneal dialysis (PD), hemodialysis and kidney transplantation are the three therapies to treat uremia. However, PD is discontinued for peritoneal membrane fibrosis (PMF) and loss of peritoneal transport function (PTF) due to damage from high concentrations of glucose in PD fluids (PDFs). The mechanism behind PMF is unclear, and there are no available biomarkers for the evaluation of PMF and PTF. Using microarray screening, we found that a new long noncoding RNA (lncRNA), RPL29P2, was upregulated in the PM (peritoneal membrane) of long-term PD patients, and its expression level was correlated with PMF severity and the PTF loss. In vitro and rat model assays suggested that lncRNA RPL29P2 targets miR-1184 and induces the expression of collagen type I alpha 1 chain (COL1A1). Silencing RPL29P2 in the PD rat model might suppress the HG-induced phenotypic transition of Human peritoneal mesothelial cells (HPMCs), alleviate HG-induced fibrosis and prevent the loss of PTF. Overall, our findings revealed that lncRNA RPL29P2, which targets miR-1184 and collagen, may represent a useful marker and therapeutic target of PMF in PD patients.


Subject(s)
Collagen Type I, alpha 1 Chain , Collagen Type I , MicroRNAs , Peritoneal Dialysis , Peritoneal Fibrosis , Peritoneum , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/pathology , Peritoneal Fibrosis/etiology , Rats , Collagen Type I, alpha 1 Chain/genetics , Male , Peritoneum/pathology , Collagen Type I/metabolism , Collagen Type I/genetics , Middle Aged , Female , Disease Models, Animal , Glucose/metabolism
4.
J Cell Mol Med ; 28(10): e18381, 2024 May.
Article in English | MEDLINE | ID: mdl-38780509

ABSTRACT

Peritoneal fibrosis is a common pathological response to long-term peritoneal dialysis (PD) and a major cause for PD discontinuation. Understanding the cellular and molecular mechanisms underlying the induction and progression of peritoneal fibrosis is of great interest. In our study, in vitro study revealed that signal transducer and activator of transcription 3 (STAT3) is a key factor in fibroblast activation and extracellular matrix (ECM) synthesis. Furthermore, STAT3 induced by IL-6 trans-signalling pathway mediate the fibroblasts of the peritoneal stroma contributed to peritoneal fibrosis. Inhibition of STAT3 exerts an antifibrotic effect by attenuating fibroblast activation and ECM production with an in vitro co-culture model. Moreover, STAT3 plays an important role in the peritoneal fibrosis in an animal model of peritoneal fibrosis developed in mice. Blocking STAT3 can reduce the peritoneal morphological changes induced by chlorhexidine gluconate. In conclusion, our findings suggested STAT3 signalling played an important role in peritoneal fibrosis. Therefore, blocking STAT3 might become a potential treatment strategy in peritoneal fibrosis.


Subject(s)
Aminosalicylic Acids , Fibroblasts , Peritoneal Fibrosis , Phenotype , STAT3 Transcription Factor , Signal Transduction , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/pathology , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/genetics , STAT3 Transcription Factor/metabolism , Animals , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Mice , Aminosalicylic Acids/pharmacology , Signal Transduction/drug effects , Disease Models, Animal , Peritoneum/pathology , Peritoneum/metabolism , Interleukin-6/metabolism , Extracellular Matrix/metabolism , Male , Mice, Inbred C57BL , Humans , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Peritoneal Dialysis/adverse effects , Benzenesulfonates
5.
Cells ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38607044

ABSTRACT

Among patients on peritoneal dialysis (PD), 50-80% will develop peritoneal fibrosis, and 0.5-4.4% will develop life-threatening encapsulating peritoneal sclerosis (EPS). Here, we investigated the role of extracellular vesicles (EVs) on the TGF-ß- and PDGF-B-driven processes of peritoneal fibrosis. EVs were isolated from the peritoneal dialysis effluent (PDE) of children receiving continuous ambulatory PD. The impact of PDE-EVs on the epithelial-mesenchymal transition (EMT) and collagen production of the peritoneal mesothelial cells and fibroblasts were investigated in vitro and in vivo in the chlorhexidine digluconate (CG)-induced mice model of peritoneal fibrosis. PDE-EVs showed spherical morphology in the 100 nm size range, and their spectral features, CD63, and annexin positivity were characteristic of EVs. PDE-EVs penetrated into the peritoneal mesothelial cells and fibroblasts and reduced their PDE- or PDGF-B-induced proliferation. Furthermore, PDE-EVs inhibited the PDE- or TGF-ß-induced EMT and collagen production of the investigated cell types. PDE-EVs contributed to the mesothelial layer integrity and decreased the submesothelial thickening of CG-treated mice. We demonstrated that PDE-EVs significantly inhibit the PDGF-B- or TGF-ß-induced fibrotic processes in vitro and in vivo, suggesting that EVs may contribute to new therapeutic strategies to treat peritoneal fibrosis and other fibroproliferative diseases.


Subject(s)
Extracellular Vesicles , Peritoneal Dialysis , Peritoneal Fibrosis , Child , Humans , Mice , Animals , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/pathology , Transforming Growth Factor beta/metabolism , Peritoneum , Peritoneal Dialysis/adverse effects , Collagen/metabolism
6.
Sci Rep ; 14(1): 7412, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548914

ABSTRACT

Peritoneal membrane dysfunction in peritoneal dialysis (PD) is primarily attributed to angiogenesis; however, the integrity of vascular endothelial cells can affect peritoneal permeability. Hyaluronan, a component of the endothelial glycocalyx, is reportedly involved in preventing proteinuria in the normal glomerulus. One hypothesis suggests that development of encapsulating peritoneal sclerosis (EPS) is triggered by protein leakage due to vascular endothelial injury. We therefore investigated the effect of hyaluronan in the glycocalyx on peritoneal permeability and disease conditions. After hyaluronidase-mediated degradation of hyaluronan on the endothelial cells of mice, macromolecules, including albumin and ß2 microglobulin, leaked into the dialysate. However, peritoneal transport of small solute molecules was not affected. Pathologically, hyaluronan expression was diminished; however, expression of vascular endothelial cadherin and heparan sulfate, a core protein of the glycocalyx, was preserved. Hyaluronan expression on endothelial cells was studied using 254 human peritoneal membrane samples. Hyaluronan expression decreased in patients undergoing long-term PD treatment and EPS patients treated with conventional solutions. Furthermore, the extent of hyaluronan loss correlated with the severity of vasculopathy. Hyaluronan on endothelial cells is involved in the peritoneal transport of macromolecules. Treatment strategies that preserve hyaluronan in the glycocalyx could prevent the leakage of macromolecules and subsequent related complications.


Subject(s)
Peritoneal Dialysis , Peritoneal Fibrosis , Humans , Animals , Mice , Hyaluronic Acid/metabolism , Endothelial Cells , Peritoneal Dialysis/adverse effects , Peritoneum/metabolism , Biological Transport , Dialysis Solutions/metabolism , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/metabolism
7.
Free Radic Biol Med ; 214: 54-68, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311259

ABSTRACT

Peritoneal mesothelial cell senescence promotes the development of peritoneal dialysis (PD)-related peritoneal fibrosis. We previously revealed that Brahma-related gene 1 (BRG1) is increased in peritoneal fibrosis yet its role in modulating peritoneal mesothelial cell senescence is still unknown. This study evaluated the mechanism of BRG1 in peritoneal mesothelial cell senescence and peritoneal fibrosis using BRG1 knockdown mice, primary peritoneal mesothelial cells and human peritoneal samples from PD patients. The augmentation of BRG1 expression accelerated peritoneal mesothelial cell senescence, which attributed to mitochondrial dysfunction and mitophagy inhibition. Mitophagy activator salidroside rescued fibrotic responses and cellular senescence induced by BRG1. Mechanistically, BRG1 was recruited to oxidation resistance 1 (OXR1) promoter, where it suppressed transcription of OXR1 through interacting with forkhead box protein p2. Inhibition of OXR1 abrogated the improvement of BRG1 deficiency in mitophagy, fibrotic responses and cellular senescence. In a mouse PD model, BRG1 knockdown restored mitophagy, alleviated senescence and ameliorated peritoneal fibrosis. More importantly, the elevation level of BRG1 in human PD was associated with PD duration and D/P creatinine values. In conclusion, BRG1 accelerates mesothelial cell senescence and peritoneal fibrosis by inhibiting mitophagy through repression of OXR1. This indicates that modulating BRG1-OXR1-mitophagy signaling may represent an effective treatment for PD-related peritoneal fibrosis.


Subject(s)
Peritoneal Dialysis , Peritoneal Fibrosis , Animals , Humans , Mice , Cellular Senescence/genetics , Mitochondrial Proteins/metabolism , Mitophagy/genetics , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/pathology , Peritoneum/metabolism , Peritoneum/pathology
8.
Mol Biomed ; 5(1): 3, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38172378

ABSTRACT

The disruptor of telomeric silencing 1-like (DOT1L), a specific histone methyltransferase that catalyzed methylation of histone H3 on lysine 79, was associated with the pathogenesis of many diseases, but its role in peritoneal fibrosis remained unexplored. Here, we examined the role of DOT1L in the expression and activation of protein tyrosine kinases and development of peritoneal fibrosis. We found that a significant rise of DOT1L expression in the fibrotic peritoneum tissues from long-term PD patients and mice. Inhibition of DOT1L significantly attenuated the profibrotic phenotypic differentiation of mesothelial cells and macrophages, and alleviated peritoneal fibrosis. Mechanistically, RNA sequencing and proteomic analysis indicated that DOT1L was mainly involved in the processes of protein tyrosine kinase binding and extracellular matrix structural constituent in the peritoneum. Chromatin immunoprecipitation (ChIP) showed that intranuclear DOT1L guided H3K79me2 to upregulate EGFR in mesothelial cells and JAK3 in macrophages. Immunoprecipitation and immunofluorescence showed that extranuclear DOT1L could interact with EGFR and JAK3, and maintain the activated signaling pathways. In summary, DOT1L promoted the expression and activation of tyrosine kinases (EGFR in mesothelial cells and JAK3 in macrophages), promoting cells differentiate into profibrotic phenotype and thus peritoneal fibrosis. We provide the novel mechanism of dialysis-related peritoneal fibrosis (PF) and the new targets for clinical drug development. DOT1L inhibitor had the PF therapeutic potential.


Subject(s)
Histone-Lysine N-Methyltransferase , Peritoneal Fibrosis , Protein-Tyrosine Kinases , Animals , Female , Humans , Male , Mice , ErbB Receptors/metabolism , ErbB Receptors/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Janus Kinase 3/metabolism , Janus Kinase 3/genetics , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Peritoneal Fibrosis/pathology , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Up-Regulation/drug effects
9.
Int Immunopharmacol ; 128: 111561, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38262160

ABSTRACT

Peritoneal fibrosis is a severe clinical complication associated with peritoneal dialysis (PD) and impacts its efficacy and patient outcomes. The process of mesothelial-mesenchymal transition (MMT) in peritoneal mesothelial cells plays a pivotal role in fibrogenesis, whereas metabolic reprogramming, characterized by excessive glycolysis, is essential in MMT development. No reliable therapies are available despite substantial progress made in understanding the mechanisms underlying peritoneal fibrosis. Protective effect of omega-3 polyunsaturated fatty acids (ω3 PUFAs) has been described in PD-induced peritoneal fibrosis, although the detailed mechanisms remain unknown. It is known that ω3 PUFAs bind to and activate the free fatty acid receptor 4 (FFAR4). However, the expression and role of FFAR4 in the peritoneum have not been investigated. Thus, we hypothesized that ω3 PUFAs would alleviate peritoneal fibrosis by inhibiting hyperglycolysis and MMT through FFAR4 activation. First, we determined FFAR4 expression in peritoneal mesothelium in humans and mice. FFAR4 expression was abnormally decreased in patients on PD and mice and HMrSV5 mesothelial cells exposed to PD fluid (PDF); this change was restored by the ω3 PUFAs (EPA and DHA). ω3 PUFAs significantly inhibited peritoneal hyperglycolysis, MMT, and fibrosis in PDF-treated mice and HMrSV5 mesothelial cells; these changes induced by ω3 PUFAs were blunted by treatment with the FFAR4 antagonist AH7614 and FFAR4 siRNA. Additionally, ω3 PUFAs induced FFAR4, Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß), and AMPK and suppressed mTOR, leading to the inhibition of hyperglycolysis, demonstrating that the ω3 PUFAs-mediated FFAR4 activation ameliorated peritoneal fibrosis by inhibiting hyperglycolysis and MMT via CaMKKß/AMPK/mTOR signaling. As natural FFAR4 agonists, ω3 PUFAs may be considered for the treatment of PD-associated peritoneal fibrosis.


Subject(s)
Fatty Acids, Omega-3 , Peritoneal Fibrosis , Humans , Mice , Animals , Peritoneal Fibrosis/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , AMP-Activated Protein Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
10.
Int Urol Nephrol ; 56(6): 1987-1999, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38097887

ABSTRACT

BACKGROUND: Peritoneal fibrosis (PF), a common complication of long-term peritoneal dialysis, accounts for peritoneal ultrafiltration failure to develop into increased mortality. Nintedanib has previously been shown to protect against multi-organ fibrosis, including PF. Unfortunately, the precise molecular mechanism underlying nintedanib in the pathogenesis of PF remains elusive. METHODS: The mouse model of PF was generated by chlorhexidine gluconate (CG) injection with or without nintedanib administration, either with the simulation for the cell model of PF by constructing high-glucose (HG)-treated human peritoneal mesothelial cells (HPMCs). HE and Masson staining were applied to assess the histopathological changes of peritoneum and collagen deposition. FISH, RT-qPCR, western blot and immunofluorescence were employed to examine distribution or expression of targeted genes. Cell viability was detected using CCK-8 assay. Cell morphology was observed under a microscope. RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays were applied to validate the H19-EZH2-KLF2 regulatory axis. RESULTS: Aberrantly overexpressed H19 was observed in both the mouse and cell model of PF, of which knockdown significantly blocked HG-induced mesothelial-to-mesenchymal transition (MMT) of HPMCs. Moreover, loss of H19 further strengthened nintedanib-mediated suppressive effects against MMT process in a mouse model of PF. Mechanistically, H19 could epigenetically repressed KLF2 via recruiting EZH2. Furthermore, TGF-ß/Smad pathway was inactivated by nintedanib through mediating H19/KLF2 axis. CONCLUSION: In summary, nintedanib disrupts MMT process through regulating H19/EZH2/KLF2 axis and TGF-ß/Smad pathway, which laid the experimental foundation for nintedanib in the treatment of PF.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Epithelial-Mesenchymal Transition , Indoles , Kruppel-Like Transcription Factors , Peritoneal Fibrosis , Peritoneal Fibrosis/prevention & control , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/etiology , Animals , Mice , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Epithelial-Mesenchymal Transition/drug effects , Indoles/pharmacology , Enhancer of Zeste Homolog 2 Protein/metabolism , Cells, Cultured , Mice, Inbred C57BL , Disease Models, Animal , Humans , Male
11.
Biochem Biophys Res Commun ; 693: 149376, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38104523

ABSTRACT

Peritoneal dialysis (PD) and prolonged exposure to PD fluids (PDF) induce peritoneal membrane (PM) fibrosis and hypervascularity, leading to functional PM degeneration. 2-deoxy-glucose (2-DG) has shown potential as PM antifibrotic by inhibiting hyper-glycolysis induced mesothelial-to-mesenchymal transition (MMT). We investigated whether administration of 2-DG with several PDF affects the permeability of mesothelial and endothelial barrier of the PM. The antifibrotic effect of 2-DG was confirmed by the gel contraction assay with embedded mesothelial (MeT-5A) or endothelial (EA.hy926) cells cultured in Dianeal® 2.5 % (CPDF), BicaVera® 2.3 % (BPDF), Balance® 2.3 % (LPDF) with/without 2-DG addition (0.2 mM), and qPCR for αSMA, CDH2 genes. Moreover, 2-DG effect was tested on the permeability of monolayers of mesothelial and endothelial cells by monitoring the transmembrane resistance (RTM), FITC-dextran (10, 70 kDa) diffusion and mRNA expression levels of CLDN-1 to -5, ZO1, SGLT1, and SGLT2 genes. Contractility of MeT-5A cells in CPDF/2-DG was decreased, accompanied by αSMA (0.17 ± 0.03) and CDH2 (2.92 ± 0.29) gene expression fold changes. Changes in αSMA, CDH2 were found in EA.hy926 cells, though αSMA also decreased under LPDF/2-DG incubation (0.42 ± 0.02). Overall, 2-DG mitigated the PDF-induced alterations in mesothelial and endothelial barrier function as shown by RTM, dextran transport and expression levels of the CLDN-1 to -5, ZO1, and SGLT2. Thus, supplementation of PDF with 2-DG not only reduces MMT but also improves functional permeability characteristics of the PM mesothelial and endothelial barrier.


Subject(s)
Peritoneal Dialysis , Peritoneal Fibrosis , Humans , Sodium-Glucose Transporter 2/metabolism , Deoxyglucose/pharmacology , Deoxyglucose/metabolism , Endothelial Cells , Peritoneal Dialysis/adverse effects , Peritoneum/pathology , Dialysis Solutions/metabolism , Dialysis Solutions/pharmacology , Peritoneal Fibrosis/metabolism , Glucose/metabolism , Epithelial Cells/metabolism , Cells, Cultured
12.
Aging (Albany NY) ; 15(14): 6921-6932, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37466443

ABSTRACT

OBJECTIVE: Chronic stimulation of peritoneal dialysis (PD) fluid leads to the epithelial-mesenchymal transformation (EMT) of mesothelial cells, peritoneal fibrosis (PF), and ultimately ultrafiltration failure. Some studies have proposed that mesenchymal stem cells (MSCs) can alleviate PF. This study aimed to investigate whether the exosomes from human umbilical cord MSCs (hUMSCs) could alleviate peritoneal EMT. METHODS: Human peritoneal mesothelial cell line (HMrSV5) were treated with high glucose (HG) for 48 hours to induce the peritoneal EMT model. An inverted fluorescence microscope was used to observe the internalization of exosomes derived from hUMSCs (hUMSC-Exos). Western blot and real-time PCR were used to evaluate the expression of α-SMA, Vimentin, E-cadherin, PTEN, and AKT/FOXO3a. The relationships of lncRNA CDHR and miR-3149, miR-3149 and PTEN were detected by dual luciferase reporter gene assay. RESULTS: Compared with HG-induced HMrSV5, E-cadherin and PTEN levels significantly increased whereas α-SMA and Vimentin levels significantly decreased after treatment of hUMSC-CM and hUMSC-Exos (P < 0.05). An inverted fluorescence microscope showed HMrSV5 can absorb exosomes to alleviate EMT. Furthermore, exosomes extracted from lnc-CDHR siRNA-transfected hUMSCs can't ameliorate HMrSV5 EMT. Moreover, both CDHR overexpressed and miR-3149 inhibitor in HG-induced HMrSV5 alleviated the expression of α-SMA, and Vimentin, and increased the expression of E-cadherin and PTEN, and AKT/FOXO3a. A rescue experiment showed that CDHR overexpressed expression was repressed by miR-3149 in the HG-induced peritoneal EMT model. CONCLUSIONS: Exosomal lnc-CDHR derived from hUMSCs may competitively bind to miR-3149 to regulate suppression on target PTEN genes and alleviate EMT of HMrSV5 through AKT/FOXO pathway.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Peritoneal Fibrosis , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Epithelial-Mesenchymal Transition/genetics , Vimentin/metabolism , Peritoneal Fibrosis/chemically induced , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/metabolism , Cadherins/genetics , Cadherins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Umbilical Cord/metabolism , Mesenchymal Stem Cells/metabolism
13.
BMC Cancer ; 23(1): 559, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37328752

ABSTRACT

BACKGROUND: Peritoneal metastasis is one of the main causes of death in patients with gastric cancer (GC). Galectin-1 regulates various undesirable biological behaviors in GC and may be key in GC peritoneal metastasis. METHODS: In this study, we elucidated the regulatory role of galectin-1 in GC cell peritoneal metastasis. GC and peritoneal tissues underwent hematoxylin-eosin (HE), immunohistochemical (IHC), and Masson trichrome staining to analyze the difference in galectin-1 expression and peritoneal collagen deposition in different GC clinical stages. The regulatory role of galectin-1 in GC cell adhesion to mesenchymal cells and in collagen expression was determined using HMrSV5 human peritoneal mesothelial cells (HPMCs). Collagen and corresponding mRNA expression were detected with western blotting and reverse transcription PCR, respectively. The promoting effect of galectin-1 on GC peritoneal metastasis was verified in vivo. Collagen deposition and collagen I, collagen III, and fibronectin 1 (FN1) expression in the peritoneum of the animal models were detected by Masson trichrome and IHC staining. RESULTS: Galectin-1 and collagen deposition in the peritoneal tissues was correlated with GC clinical staging and were positively correlated. Galectin-1 enhanced the ability of GC cells to adhere to the HMrSV5 cells by promoting collagen I, collagen III, and FN1 expression. The in vivo experiments confirmed that galectin-1 promoted GC peritoneal metastasis by promoting peritoneal collagen deposition. CONCLUSION: Galectin-1-induced peritoneal fibrosis may create a favorable environment for GC cell peritoneal metastasis.


Subject(s)
Galectin 1 , Peritoneal Fibrosis , Peritoneal Neoplasms , Stomach Neoplasms , Animals , Humans , Galectin 1/genetics , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/metabolism , Peritoneal Neoplasms/secondary , Peritoneum/pathology , Stomach Neoplasms/pathology
14.
J Extracell Vesicles ; 12(7): e12334, 2023 07.
Article in English | MEDLINE | ID: mdl-37357686

ABSTRACT

Progressive peritoneal fibrosis and the loss of peritoneal function often emerged in patients undergoing long-term peritoneal dialysis (PD), resulting in PD therapy failure. Varieties of cell-cell communications among peritoneal cells play a significant role in peritoneal fibrogenesis. Extracellular vesicles (EVs) have been confirmed to involve in intercellular communication by transmitting proteins, nucleic acids or lipids. However, their roles and functional mechanisms in peritoneal fibrosis remain to be determined. Using integrative analysis of EV proteomics and single-cell RNA sequencing, we characterized the EVs isolated from PD patient's effluent and revealed that mesothelial cells are the main source of EVs in PD effluent. We demonstrated that transforming growth factor-ß1 (TGF-ß1) can substitute for PD fluid to stimulate mesothelial cells releasing EVs, which in turn promoted fibroblast activation and peritoneal fibrogenesis. Blockade of EVs secretion by GW4869 or Rab27a knockdown markedly suppressed PD-induced fibroblast activation and peritoneal fibrosis. Mechanistically, injured mesothelial cells produced EVs containing high level of integrin-linked kinase (ILK), which was delivered to fibroblast and activated them via p38 MAPK signalling pathway. Clinically, the expression of ILK was up-regulated in fibrotic peritoneum of patients undergoing long-term PD. The percentage of ILK positive EVs in PD effluent correlated with peritoneal dysfunction and the degree of peritoneal damage. Our study highlights that peritoneal EVs mediate communications between mesothelial cells and fibroblasts to initiate peritoneal fibrogenesis. Targeting EVs or ILK could provide a novel therapeutic strategy to combat peritoneal fibrosis.


Subject(s)
Extracellular Vesicles , Peritoneal Dialysis , Peritoneal Fibrosis , Humans , Peritoneal Fibrosis/metabolism , Extracellular Vesicles/metabolism , Fibroblasts/metabolism
15.
Biofactors ; 49(4): 940-955, 2023.
Article in English | MEDLINE | ID: mdl-37154260

ABSTRACT

Peritoneal adhesions are postsurgical fibrotic complications connected to peritoneal inflammation. The exact mechanism of development is unknown; however, an important role is attributed to activated mesothelial cells (MCs) overproducing macromolecules of extracellular matrix (ECM), including hyaluronic acid (HA). It was suggested that endogenously-produced HA contributes to the regulation of different fibrosis-related pathologies. However, little is known about the role of altered HA production in peritoneal fibrosis. We focused on the consequences of the increased turnover of HA in the murine model of peritoneal adhesions. Changes of HA metabolism were observed in early phases of peritoneal adhesion development in vivo. To study the mechanism, human MCs MeT-5A and murine MCs isolated from the peritoneum of healthy mice were pro-fibrotically activated by transforming growth factor ß (TGFß), and the production of HA was attenuated by two modulators of carbohydrate metabolism, 4-methylumbelliferone (4-MU) and 2-deoxyglucose (2-DG). The attenuation of HA production was mediated by upregulation of HAS2 and downregulation of HYAL2 and connected to the lower expression of pro-fibrotic markers, including fibronectin and α-smooth muscle actin (αSMA). Moreover, the inclination of MCs to form fibrotic clusters was also downregulated, particularly in 2-DG-treated cells. The effects of 2-DG, but not 4-MU, were connected to changes in cellular metabolism. Importantly, the inhibition of AKT phosphorylation was observed after the use of both HA production inhibitors. In summary, we identified endogenous HA as an important regulator of peritoneal fibrosis, not just a passive player during this pathological process.


Subject(s)
Hyaluronic Acid , Peritoneal Fibrosis , Humans , Mice , Animals , Hyaluronic Acid/metabolism , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/metabolism , Transforming Growth Factor beta/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Deoxyglucose
16.
J Gene Med ; 25(9): e3524, 2023 09.
Article in English | MEDLINE | ID: mdl-37194352

ABSTRACT

BACKGROUND: Peritoneal fibrosis is a common complication of peritoneal dialysis, which may lead to ultrafiltration failure and ultimately treatment discontinuation. LncRNAs participate in many biological processes during tumorigenesis. We investigated the role of AK142426 in peritoneal fibrosis. METHODS: The AK142426 level in peritoneal dialysis (PD) fluid was detected by quantitative real-time-PCR assay. The M2 macrophage distribution was determined by flow cytometry. The inflammatory cytokines of TNF-α and TGF-ß1 were measured by ELISA assay. The direct interaction between AK142426 and c-Jun was evaluated by RNA pull-down assay. In addition, the c-Jun and fibrosis related proteins were assessed by western blot analysis. RESULTS: The PD-induced peritoneal fibrosis mouse model was successfully established. More importantly, PD treatment induced M2 macrophage polarization and the inflammation in PD fluid, which might be associated with exosome transmission. Fortunately, AK142426 was observed to be upregulated in PD fluid. Mechanically, knockdown of AK142426 suppressed M2 macrophage polarization and inflammation. Furthermore, AK142426 could upregulate c-Jun through binding c-Jun protein. In rescue experiments, overexpression of c-Jun could partially abolish the inhibitory effect of sh-AK142426 on the activation of M2 macrophages and inflammation. Consistently, knockdown of AK142426 alleviated peritoneal fibrosis in vivo. CONCLUSIONS: This study demonstrated that knockdown of AK142426 suppressed M2 macrophage polarization and inflammation in peritoneal fibrosis via binding to c-Jun, suggesting that AK142426 might be a promising therapeutic target for patients of peritoneal fibrosis.


Subject(s)
Peritoneal Dialysis , Peritoneal Fibrosis , Animals , Mice , Dialysis Solutions/metabolism , Dialysis Solutions/pharmacology , Inflammation/genetics , Macrophages/metabolism , Macrophages/pathology , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/metabolism
17.
Int J Mol Sci ; 24(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37108115

ABSTRACT

Growing evidence indicates that hepatocyte growth factor (HGF) possesses potent antifibrotic activity. Furthermore, macrophages migrate to inflamed sites and have been linked to the progression of fibrosis. In this study, we utilized macrophages as vehicles to express and deliver the HGF gene and investigated whether macrophages carrying the HGF expression vector (HGF-M) could suppress peritoneal fibrosis development in mice. We obtained macrophages from the peritoneal cavity of mice stimulated with 3% thioglycollate and used cationized gelatin microspheres (CGMs) to produce HGF expression vector-gelatin complexes. Macrophages phagocytosed these CGMs, and gene transfer into macrophages was confirmed in vitro. Peritoneal fibrosis was induced by intraperitoneal injection of chlorhexidine gluconate (CG) for three weeks; seven days after the first CG injection, HGF-M was administered intravenously. Transplantation of HGF-M significantly suppressed submesothelial thickening and reduced type III collagen expression. Moreover, in the HGF-M-treated group, the number of α-smooth muscle actin- and TGF-ß-positive cells were significantly lower in the peritoneum, and ultrafiltration was preserved. Our results indicated that the transplantation of HGF-M prevented the progression of peritoneal fibrosis and indicated that this novel gene therapy using macrophages may have potential for treating peritoneal fibrosis.


Subject(s)
Peritoneal Fibrosis , Mice , Animals , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/therapy , Peritoneal Fibrosis/metabolism , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Gelatin/metabolism , Disease Models, Animal , Actins/metabolism , Peritoneum/pathology , Fibrosis , Macrophages/metabolism
18.
Lab Invest ; 103(4): 100050, 2023 04.
Article in English | MEDLINE | ID: mdl-36870292

ABSTRACT

Long-term peritoneal dialysis (PD) is often associated with peritoneal dysfunction leading to withdrawal from PD. The characteristic pathologic features of peritoneal dysfunction are widely attributed to peritoneal fibrosis and angiogenesis. The detailed mechanisms remain unclear, and treatment targets in clinical settings have yet to be identified. We investigated transglutaminase 2 (TG2) as a possible novel therapeutic target for peritoneal injury. TG2 and fibrosis, inflammation, and angiogenesis were investigated in a chlorhexidine gluconate (CG)-induced model of peritoneal inflammation and fibrosis, representing a noninfectious model of PD-related peritonitis. Transforming growth factor (TGF)-ß type I receptor (TGFßR-I) inhibitor and TG2-knockout mice were used for TGF-ß and TG2 inhibition studies, respectively. Double immunostaining was performed to identify cells expressing TG2 and endothelial-mesenchymal transition (EndMT). In the rat CG model of peritoneal fibrosis, in situ TG2 activity and protein expression increased during the development of peritoneal fibrosis, as well as increases in peritoneal thickness and numbers of blood vessels and macrophages. TGFßR-I inhibitor suppressed TG2 activity and protein expression, as well as peritoneal fibrosis and angiogenesis. TGF-ß1 expression, peritoneal fibrosis, and angiogenesis were suppressed in TG2-knockout mice. TG2 activity was detected by α-smooth muscle actin-positive myofibroblasts, CD31-positive endothelial cells, and ED-1-positive macrophages. CD31-positive endothelial cells in the CG model were α-smooth muscle actin-positive, vimentin-positive, and vascular endothelial-cadherin-negative, suggesting EndMT. In the CG model, EndMT was suppressed in TG2-knockout mice. TG2 was involved in the interactive regulation of TGF-ß. As inhibition of TG2 reduced peritoneal fibrosis, angiogenesis, and inflammation associated with TGF-ß and vascular endothelial growth factor-A suppression, TG2 may provide a new therapeutic target for ameliorating peritoneal injuries in PD.


Subject(s)
Peritoneal Fibrosis , Mice , Rats , Animals , Peritoneal Fibrosis/chemically induced , Peritoneal Fibrosis/prevention & control , Peritoneal Fibrosis/metabolism , Vascular Endothelial Growth Factor A/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Actins/metabolism , Chlorhexidine/adverse effects , Chlorhexidine/metabolism , Endothelial Cells/metabolism , Peritoneum/pathology , Transforming Growth Factor beta1/metabolism , Fibrosis , Inflammation/metabolism , Transforming Growth Factor beta/metabolism , Mice, Knockout
19.
Front Immunol ; 14: 1137332, 2023.
Article in English | MEDLINE | ID: mdl-36911746

ABSTRACT

Background: Peritoneal dialysis (PD) is an effective replacement therapy for end-stage renal disease patients. However, long-term exposure to peritoneal dialysate will lead to the development of peritoneal fibrosis. Epigenetics has been shown to play an important role in peritoneal fibrosis, but the role of histone deacetylases 8 (HDAC8) in peritoneal fibrosis have not been elucidated. In this research, we focused on the role and mechanisms of HDAC8 in peritoneal fibrosis and discussed the mechanisms involved. Methods: We examined the expression of HDAC8 in the peritoneum and dialysis effluent of continuous PD patients. Then we assessed the role and mechanism of HDAC8 in peritoneal fibrosis progression in mouse model of peritoneal fibrosis induced by high glucose peritoneal dialysis fluid by using PCI-34051. In vitro, TGF-ß1 or IL-4 were used to stimulate human peritoneal mesothelial cells (HPMCs) or RAW264.7 cells to establish two cell injury models to further explore the role and mechanism of HDAC8 in epithelial-mesenchymal transition (EMT) and macrophage polarization. Results: We found that HDAC8 expressed highly in the peritoneum from patients with PD-related peritonitis. We further revealed that the level of HDAC8 in the dialysate increased over time, and HDAC8 was positively correlated with TGF-ß1 and vascular endothelial growth factor (VEGF), and negatively correlated with cancer antigen 125. In mouse model of peritoneal fibrosis induced by high glucose dialysate, administration of PCI-34051 (a selective HDAC8 inhibitor) significantly prevented the progression of peritoneal fibrosis. Treatment with PCI-34051 blocked the phosphorylation of epidermal growth factor receptor (EGFR) and the activation of its downstream signaling pathways ERK1/2 and STAT3/HIF-1α. Inhibition of HDAC8 also reduced apoptosis. In vitro, HDAC8 silencing with PCI-34051 or siRNA inhibited TGF-ß1-induced EMT and apoptosis in HPMCs. In addition, continuous high glucose dialysate or IL-4 stimulation induced M2 macrophage polarization. Blockade of HDAC8 reduced M2 macrophage polarization by inhibiting the activation of STAT6 and PI3K/Akt signaling pathways. Conclusions: We demonstrated that HDAC8 promoted the EMT of HPMCs via EGFR/ERK1/2/STAT3/HIF-1α, induced M2 macrophage polarization via STAT6 and PI3K/Akt signaling pathways, and ultimately accelerated the process of peritoneal fibrosis.


Subject(s)
Percutaneous Coronary Intervention , Peritoneal Fibrosis , Animals , Humans , Mice , Dialysis Solutions/pharmacology , Epithelial-Mesenchymal Transition , ErbB Receptors , Glucose/pharmacology , Histone Deacetylases , Interleukin-4/pharmacology , Macrophages/metabolism , Peritoneal Fibrosis/metabolism , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/pharmacology
20.
Perit Dial Int ; 43(6): 448-456, 2023 11.
Article in English | MEDLINE | ID: mdl-36998201

ABSTRACT

BACKGROUND: The roles of tight junction (TJ) proteins in peritoneal membrane transport and peritoneal dialysis (PD) require further characterisation. Dipeptidyl peptidase-4 is expressed in mesothelial cells, and its activity may affect peritoneal membrane function and morphology. METHODS: Human peritoneal mesothelial cells (HPMCs) were isolated and cultured from omentum obtained during abdominal surgery, and paracellular transport functions were evaluated by measuring transmesothelial electrical resistance (TMER) and dextran flux. Sprague-Dawley rats were infused daily with 4.25% peritoneal dialysate with and without sitagliptin administration for 8 weeks. At the end of this period, rat peritoneal mesothelial cells (RPMCs) were isolated to evaluate TJ protein expression. RESULTS: In HPMCs, the protein expression of claudin-1, claudin-15, occludin and E-cadherin was decreased by TGF-ß treatment but reversed by sitagliptin co-treatment. TMER was decreased by TGF-ß treatment but improved by sitagliptin co-treatment. Consistent with this, dextran flux was increased by TGF-ß treatment and reversed by sitagliptin co-treatment. In the animal experiment, sitagliptin-treated rats had a lower D2/D0 glucose ratio and a higher D2/P2 creatinine ratio than PD controls during the peritoneal equilibration test. Protein expression of claudin-1, claudin-15 and E-cadherin decreased in RPMCs from PD controls but was not affected in those from sitagliptin-treated rats. Peritoneal fibrosis was induced in PD controls but ameliorated in sitagliptin-treated rats. CONCLUSION: The expression of TJ proteins including claudin-1 and claudin-15 was associated with transport function both in HPMCs and in a rat model of PD. Sitagliptin prevents peritoneal fibrosis in PD and can potentially restore peritoneal mesothelial cell TJ proteins.


Subject(s)
Peritoneal Dialysis , Peritoneal Fibrosis , Humans , Rats , Animals , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/metabolism , Tight Junction Proteins/metabolism , Claudin-1/genetics , Claudin-1/metabolism , Dextrans/metabolism , Dextrans/pharmacology , Rats, Sprague-Dawley , Peritoneum/metabolism , Transforming Growth Factor beta/metabolism , Cadherins/metabolism , Cadherins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...