Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Toxicol ; 43(12): 1859-1871, 2023 12.
Article in English | MEDLINE | ID: mdl-37528559

ABSTRACT

In the North Sea and North Atlantic coastal areas, fish experience relatively high background levels of persistent organic pollutants. This study aimed to compare the mode of action of environmentally relevant concentrations of mixtures of halogenated compounds in Atlantic cod. Juvenile male cod with mean weight of 840 g were exposed by gavage to dietary mixtures of chlorinated (PCBs, DDT analogs, chlordane, lindane, and toxaphene), brominated (PBDEs), and fluorinated (PFOS) compounds for 4 weeks. One group received a combined mixture of all three compound groups. The results showed that the accumulated levels of chemicals in cod liver after 4 weeks of exposure reflected concentrations found in wild fish in this region. Pathway analysis revealed that the treatment effects by each of the three groups of chemicals (chlorinated, brominated, and fluorinated) converged on activation of the unfolded protein response (UPR). Upstream regulator analysis predicted that almost all the key transcription factors (XBP1, ERN1, ATF4, EIF2AK3, and NFE2L2) regulating the UPR were significantly activated. No additive effect was observed in cod co-treated with all three compound groups. In conclusion, the genome-wide transcriptomic study suggests that the UPR pathway is a sensitive common target of halogenated organic environmental pollutants in fish.


Subject(s)
Environmental Pollutants , Gadus morhua , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Male , Gadus morhua/metabolism , Persistent Organic Pollutants/metabolism , Persistent Organic Pollutants/pharmacology , Liver , Polychlorinated Biphenyls/analysis , Environmental Pollutants/analysis , Water Pollutants, Chemical/analysis
2.
Environ Pollut ; 334: 122108, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37422083

ABSTRACT

Mixtures of chlorinated persistent organic pollutants (C-POPs-Mix) are chemically related risk factors for type 2 diabetes mellitus (T2DM); however, the effects of chronic exposure to C-POPs-Mix on microbial dysbiosis remain poorly understood. Herein, male and female zebrafish were exposed to C-POPs-Mix at a 1:1 ratio of five organochlorine pesticides and Aroclor 1254 at concentrations of 0.02, 0.1, and 0.5 µg/L for 12 weeks. We measured T2DM indicators in blood and profiled microbial abundance and richness in the gut as well as transcriptomic and metabolomic alterations in the liver. Exposure to C-POPs-Mix significantly increased blood glucose levels while decreasing the abundance and alpha diversity of microbial communities only in females at concentrations of 0.02 and 0.1 µg/L. The majorly identified microbial contributors to microbial dysbiosis were Bosea minatitlanensis, Rhizobium tibeticum, Bifidobacterium catenulatum, Bifidobacterium adolescentis, and Collinsella aerofaciens. PICRUSt results suggested that altered pathways were associated with glucose and lipid production and inflammation, which are linked to changes in the transcriptome and metabolome of the zebrafish liver. Metagenomics outcomes revealed close relationships between intestinal and liver disruptions to T2DM-related molecular pathways. Thus, microbial dysbiosis in T2DM-triggered zebrafish occurred as a result of chronic exposure to C-POPs-Mix, indicating strong host-microbiome interactions.


Subject(s)
Diabetes Mellitus, Type 2 , Environmental Pollutants , Gastrointestinal Microbiome , Microbiota , Animals , Male , Female , Diabetes Mellitus, Type 2/metabolism , Zebrafish/metabolism , Persistent Organic Pollutants/metabolism , Persistent Organic Pollutants/pharmacology , Dysbiosis/chemically induced , Dysbiosis/microbiology , Environmental Pollutants/metabolism
3.
Anal Methods ; 13(5): 575-594, 2021 02 07.
Article in English | MEDLINE | ID: mdl-33507166

ABSTRACT

Active pharmaceutical ingredients (APIs) are increasingly being identified as contaminants of emerging concern (CECs). They have potentially detrimental ecological and human health impacts but most are not currently subject to environmental regulation. Addressing the life cycle of these pharmaceuticals plays a significant role in identifying the potential sources and understanding the environmental impact that pharmaceuticals may have in surface waters. The stability and biological activity of these "micro-pollutants" can lead to a pseudo persistence, with ensuing unknown chronic behavioural and health-related effects. Research that investigates pharmaceuticals predominantly focuses on their occurrence and effect within surface water environments. However, this review will help to collate this information with factors that affect their environmental concentration. This review focuses on six pharmaceuticals (clarithromycin, ciprofloxacin, sulfamethoxazole, venlafaxine, gemfibrozil and diclofenac), chosen because they are heavily consumed globally, have poor removal rates in conventional activated sludge wastewater treatment plants (CAS WWTPs), and are persistent in the aquatic environment. Furthermore, these pharmaceuticals are included in numerous published prioritisation studies and/or are on the Water Framework Directive (WFD) "Watch List" or are candidates for the updated Watch List (WL). This review investigates the concentrations seen in European Union (EU) surface waters and examines factors that influence final concentrations prior to release, thus giving a holistic overview on the source of pharmaceutical surface water pollution. A period of 10 years is covered by this review, which includes research from 2009-2020 examining over 100 published studies, and highlighting that pharmaceuticals can pose a severe risk to surface water environments, with each stage of the lifecycle of the pharmaceutical determining its concentration. This review additionally highlights the necessity to improve education surrounding appropriate use, disposal and waste management of pharmaceuticals, while implementing a source directed and end of pipe approach to reduce pharmaceutical occurrence in surface waters.


Subject(s)
COVID-19 , Climate Change , Pandemics , Persistent Organic Pollutants , Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Aquatic Organisms/drug effects , COVID-19/epidemiology , Drug Industry , Ecotoxicology , European Union , Humans , Persistent Organic Pollutants/isolation & purification , Persistent Organic Pollutants/metabolism , Persistent Organic Pollutants/pharmacology , Pharmaceutical Preparations/isolation & purification , Pharmaceutical Preparations/metabolism , Plants/drug effects , SARS-CoV-2 , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/pharmacology , Water Purification
4.
Mol Cell Endocrinol ; 503: 110698, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31891770

ABSTRACT

Endocrine-disrupting chemicals (EDCs), such as perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, hexachlorobenzene, and polychlorinated biphenyl 153 are persistent pollutants that are found in human follicular fluid (FF). These compounds may affect endocrine function, disrupt steroid secretion by granulosa cells, and play a role in granulosa cell tumor (GCT) development. GCTs demonstrate endocrine activity, expressing aromatase and secreting 17ß-estradiol (E2). We aimed to determine the effects of a mixture of EDCs, similar to that found in human FF, on human granulosa tumor cell lines representing the juvenile (JGCT) and adult (AGCT) forms (COV434 and KGN cells, respectively). We found that all the individual compounds and mixtures tested altered granulosa tumor cell function by disrupting E2 secretion. In KGN cells, which possess significantly higher basal aromatase gene expression, and therefore secrete more E2 than JGCT cells, EDC mixtures activated estrogen receptors (ERs) and G protein-coupled receptor-30 signaling, thereby stimulating E2 secretion, without affecting aromatase expression. By contrast, in COV434 cells, which demonstrate higher CYP1A1 expression, a key mediator of estrogen metabolism, than KGN cells, EDC mixtures reduced E2 secretion in parallel with increases in the 2-hydroxyestrogen 1/E2 ratio and CYP1A1 expression, implying an upregulation of E2 metabolism. These results indicate that the EDC mixture present in FF disrupts E2 secretion in JGCT and AGCT cells according to the estrogen metabolic potential of the cell type, involving both classical and non-classical ER pathways.


Subject(s)
Endocrine Disruptors/pharmacology , Estradiol/metabolism , Estrogens/metabolism , Granulosa Cell Tumor/metabolism , Persistent Organic Pollutants/pharmacology , Cell Line, Tumor , Endocrine Disruptors/isolation & purification , Female , Follicular Fluid/chemistry , Granulosa Cell Tumor/pathology , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Granulosa Cells/pathology , Humans , Metabolic Networks and Pathways/drug effects , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Secretory Pathway/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...