Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1386260, 2024.
Article in English | MEDLINE | ID: mdl-38975349

ABSTRACT

Introduction: Lrba is a cytoplasmic protein involved in vesicular trafficking. Lrba-deficient (Lrba-/-) mice exhibit substantially higher levels of IgA in both serum and feces than wild-type (WT) mice. Transforming growth factor ß1 (TGFß1) and its receptors (TGFßR I and II) is essential for differentiating IgA+ B cells. Furthermore, increased IgA production suggests a potential connection between Lrba and the TGFßR signaling pathway in IgA production. However, the specific function of Lrba in B cell biology remains unknown. Aim: Given the increased IgA levels in Lrba-/- mice, the goal in this work was to explore the lymph organs where the switch to IgA occurs, and if TGFßR function is affected. Methods: Non-immunized Lrba-/- mice were compared with Lrba+/+ mice. IgA levels in the serum and feces, as well as during peripheral B cell development, were determined. IgA+ B cells and plasma cells were assessed in the small intestine and secondary lymphoid organs, such as the spleen, mesenteric lymph nodes, and Peyer's patches. The TGFßR signaling pathway was evaluated by determining the expression of TGFßR on B cells. Additionally, SMAD2 phosphorylation was measured under basal conditions and in response to recombinant TGFß. Finally, confocal microscopy was performed to investigate a possible interaction between Lrba and TGFßR in B cells. Results: Lrba-/- mice exhibited significantly higher levels of circulating IgA, IgA+ B, and plasma cells than in peripheral lymphoid organs those in WT mice. TGFßR expression on the membrane of B cells was similar in both Lrba-/- and Lrba+/+ mice. However, intracellular TGFßR expression was reduced in Lrba-/- mice. SMAD2 phosphorylation showed increased levels under basal conditions; stimulation with recombinant TGFß elicited a poorer response than in that in Lrba+/+ B cells. Finally, we found that Lrba colocalizes with TGFßR in B cells. Conclusion: Lrba is essential in controlling TGFßR signaling, subsequently regulating SMAD2 phosphorylation on B cells. This mechanism may explain the increased differentiation of IgA+ B cells and production of IgA-producing plasma cells.


Subject(s)
B-Lymphocytes , Cell Differentiation , Immunoglobulin A , Signal Transduction , Animals , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Differentiation/immunology , Immunoglobulin A/immunology , Mice, Inbred C57BL , Mice, Knockout , Peyer's Patches/immunology , Peyer's Patches/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Receptors, Transforming Growth Factor beta/genetics , Smad2 Protein/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
2.
Carbohydr Polym ; 339: 122256, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823922

ABSTRACT

Recently, the intestinal lymphatic transport based on Peyer's patches (PPs) is emerging as a promising absorption pathway for natural polysaccharides. Herein, the aim of this study is to investigate the PP-based oral absorption of a pectic polysaccharide from Smilax china L. (SCLP), as well as its uptake and transport mechanisms in related immune cells. Taking advantages of the traceability of fluorescently labeled SCLP, we confirmed that SCLP could be absorbed into PPs and captured by their mononuclear phagocytes (dendritic cells and macrophages) following oral administration. Subsequently, the systematic in vitro study suggested that the endocytic mechanisms of SCLP by model mononuclear phagocytes (BMDCs and RAW264.7 cells) mainly involved caveolae-mediated endocytosis, macropinocytosis and phagocytosis. More importantly, SCLP directly binds and interacts with toll-like receptor 2 (TLR2) and galectin 3 (Gal-3) receptor, and was taken up by mononuclear phagocytes in receptor-mediated manner. After internalization, SCLP was intracellularly transported primarily through endolysosomal pathway and ultimately localized in lysosomes. In summary, this work reveals novel information and perspectives about the in vivo fate of SCLP, which will contribute to further research and utilization of SCLP and other pectic polysaccharides.


Subject(s)
Peyer's Patches , Smilax , Animals , Mice , RAW 264.7 Cells , Peyer's Patches/metabolism , Smilax/chemistry , Endocytosis , Pectins/chemistry , Pectins/metabolism , Macrophages/metabolism , Macrophages/drug effects , Phagocytosis/drug effects , Phagocytes/metabolism , Phagocytes/drug effects , Toll-Like Receptor 2/metabolism , Mice, Inbred BALB C , Male , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Administration, Oral
3.
Cell Mol Life Sci ; 81(1): 231, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780647

ABSTRACT

CD200 is an anti-inflammatory protein that facilitates signal transduction through its receptor, CD200R, in cells, resulting in immune response suppression. This includes reducing M1-like macrophages, enhancing M2-like macrophages, inhibiting NK cell cytotoxicity, and downregulating CTL responses. Activation of CD200R has been found to modulate dendritic cells, leading to the induction or enhancement of Treg cells expressing Foxp3. However, the precise mechanisms behind this process are still unclear. Our previous study demonstrated that B cells in Peyer's patches can induce Treg cells, so-called Treg-of-B (P) cells, through STAT6 phosphorylation. This study aimed to investigate the role of CD200 in Treg-of-B (P) cell generation. To clarify the mechanisms, we used wild-type, STAT6 deficient, and IL-24 deficient T cells to generate Treg-of-B (P) cells, and antagonist antibodies (anti-CD200 and anti-IL-20RB), an agonist anti-CD200R antibody, CD39 inhibitors (ARL67156 and POM-1), a STAT6 inhibitor (AS1517499), and soluble IL-20RB were also applied. Our findings revealed that Peyer's patch B cells expressed CD200 to activate the CD200R on T cells and initiate the process of Treg-of-B (P) cells generation. CD200 and CD200R interaction triggers the phosphorylation of STAT6, which regulated the expression of CD200R, CD39, and IL-24 in T cells. CD39 regulated the expression of IL-24, which sustained the expression of CD223 and IL-10 and maintained the cell viability. In summary, the generation of Treg-of-B (P) cells by Peyer's patch B cells was through the CD200R-STAT6-CD39-IL-24 axis pathway.


Subject(s)
B-Lymphocytes , STAT6 Transcription Factor , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , STAT6 Transcription Factor/metabolism , Mice, Inbred C57BL , Orexin Receptors/metabolism , Orexin Receptors/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, CD/immunology , Signal Transduction , Phosphorylation , Peyer's Patches/immunology , Peyer's Patches/metabolism , Peyer's Patches/cytology , Apyrase/metabolism , Apyrase/immunology , Membrane Glycoproteins
4.
Mol Pharm ; 21(6): 2828-2837, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38723178

ABSTRACT

Nefecon, a targeted-release capsule formulation of budesonide approved for the reduction of proteinuria in adults with primary immunoglobulin A nephropathy, targets overproduction of galactose-deficient immunoglobulin A type 1 in the Peyer's patches at the gut mucosal level. To investigate whether the commercial formulation of Nefecon capsules reliably releases budesonide to the distal ileum, a human study was conducted with test capsules reproducing the delayed-release function of Nefecon capsules. Caffeine was included in the test capsules as a marker for capsule opening in the gut since it appears rapidly in saliva after release from orally administered dosage forms. Magnetic resonance imaging with black iron oxide was used to determine the capsule's position in the gut at the time caffeine was first measured in saliva and additionally to directly visualize dispersion of the capsule contents in the gut. In vitro dissolution results confirmed that the test capsules had the same delayed-release characteristics as Nefecon capsules. In 10 of 12 human volunteers, the capsule was demonstrated to open in the distal ileum; in the other two subjects, it opened just past the ileocecal junction. These results compared favorably with the high degree of variability seen in other published imaging studies of delayed-release formulations targeting the gut. The test capsules were shown to reliably deliver their contents to the distal ileum, the region with the highest concentration of Peyer's patches.


Subject(s)
Budesonide , Capsules , Drug Delivery Systems , Ileum , Humans , Ileum/metabolism , Ileum/drug effects , Adult , Drug Delivery Systems/methods , Male , Budesonide/administration & dosage , Budesonide/pharmacokinetics , Budesonide/chemistry , Female , Capsules/chemistry , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Magnetic Resonance Imaging/methods , Administration, Oral , Middle Aged , Caffeine/chemistry , Caffeine/administration & dosage , Peyer's Patches/metabolism , Peyer's Patches/drug effects , Young Adult
5.
Mucosal Immunol ; 17(4): 509-523, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38492746

ABSTRACT

Induction and regulation of specific intestinal immunoglobulin (Ig)A responses critically depend on dendritic cell (DC) subsets and the T cells they activate in the Peyer's patches (PP). We found that oral immunization with cholera toxin (CT) as an adjuvant resulted in migration-dependent changes in the composition and localization of PP DC subsets with increased numbers of cluster of differentiation (CD)103- conventional DC (cDC)2s and lysozyme-expressing DC (LysoDCs) in the subepithelial dome and of CD103+ cDC2s that expressed CD101 in the T cell zones, while oral ovalbumin (OVA) tolerization was instead associated with greater accumulation of cDC1s and peripherally induced regulatory T cells (pTregs) in this area. Decreased IgA responses were observed after CT-adjuvanted immunization in huCD207DTA mice lacking CD103+ cDC2s, while oral OVA tolerization was inefficient in cDC1-deficient Batf3-/- mice. Using OVA transgenic T cell receptor CD4 T cell adoptive transfer models, we found that co-transferred endogenous wildtype CD4 T cells can hinder the induction of OVA-specific IgA responses through secretion of interleukin-10. CT could overcome this blocking effect, apparently through a modulating effect on pTregs while promoting an expansion of follicular helper T cells. The data support a model where cDC1-induced pTreg normally suppresses PP responses for any given antigen and where CT's oral adjuvanticity effect is dependent on promoting follicular helper T cell responses through induction of CD103+ cDC2s.


Subject(s)
Antigens, CD , CD11b Antigen , Cell Movement , Cholera Toxin , Dendritic Cells , Immune Tolerance , Immunization , Immunoglobulin A , Integrin alpha Chains , Mice, Knockout , Ovalbumin , Peyer's Patches , T-Lymphocytes, Regulatory , Animals , Mice , Peyer's Patches/immunology , Peyer's Patches/metabolism , Integrin alpha Chains/metabolism , Antigens, CD/metabolism , Dendritic Cells/immunology , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Administration, Oral , Cholera Toxin/immunology , Ovalbumin/immunology , Ovalbumin/administration & dosage , T-Lymphocytes, Regulatory/immunology , CD11b Antigen/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Mice, Transgenic , Mice, Inbred C57BL , Adoptive Transfer , Repressor Proteins
6.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338808

ABSTRACT

Peyer's patches (PPs) are part of the gut-associated lymphatic tissue (GALT) and represent the first line of the intestinal immunological defense. They consist of follicles with lymphocytes and an overlying subepithelial dome with dendritic cells and macrophages, and they are covered by the follicle-associated epithelium (FAE). A sealed paracellular pathway in the FAE is crucial for the controlled uptake of luminal antigens. Quercetin is the most abundant plant flavonoid and has a barrier-strengthening effect on tight junctions (TJs), a protein complex that regulates the paracellular pathway. In this study, we aimed to analyze the effect of quercetin on porcine PPs and the surrounding villus epithelium (VE). We incubated both tissue types for 4 h in Ussing chambers, recorded the transepithelial electrical resistance (TEER), and measured the unidirectional tracer flux of [3H]-mannitol. Subsequently, we analyzed the expression, protein amount, and localization of three TJ proteins, claudin 1, claudin 2, and claudin 4. In the PPs, we could not detect an effect of quercetin after 4 h, neither on TEER nor on the [3H]-mannitol flux. In the VE, quercetin led to a higher TEER value, while the [3H]-mannitol flux was unchanged. The pore-forming claudin 2 was decreased while the barrier-forming claudin 4 was increased and the expression was upregulated. Claudin 1 was unchanged and all claudins could be located in the paracellular membrane by immunofluorescence microscopy. Our study shows the barrier-strengthening effect of quercetin in porcine VE by claudin 4 upregulation and a claudin 2 decrease. Moreover, it underlines the different barrier properties of PPs compared to the VE.


Subject(s)
Peyer's Patches , Quercetin , Animals , Swine , Quercetin/pharmacology , Quercetin/metabolism , Peyer's Patches/metabolism , Claudin-4/metabolism , Claudin-2/metabolism , Claudin-1/metabolism , Intestine, Small/metabolism , Claudins/metabolism , Tight Junctions/metabolism , Mannitol/pharmacology
7.
Mol Immunol ; 166: 39-49, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219401

ABSTRACT

Butyrophilin-like 2 (BTNL2) is a T cell inhibitory molecule that interacts with unknown binding partners to modulate the immune response in a number of inflammatory and autoimmune diseases. In this study, we found that the inhibitory effects of BTNL2 on T cell activation and effector functions can be executed by its N-terminal IgV domain (BTNL2 IgV1) alone. Structure-guided mutation of key residues on BTNL2 IgV1 based on known receptor-ligand interfaces involving immunoglobulin superfamily members revealed that BTNL2 uses a non-canonical binding interface with its putative receptor. A high avidity BTNL2 IgV1 probe revealed that in an inducible model of ulcerative colitis, severe colitis was accompanied by a selective enrichment of BTNL2-receptor expressing effector-memory CD4+ and CD8+ T cells in the Peyer's patches. Intraperitoneal administration of BTNL2 IgV1 resulted in a significant delay in the progression of DSS-induced colitis and also showed reduced activation of the BTNL2-receptor-expressing T cells in the Peyer's patches. Thus, this study demonstrates that the BTNL2-receptor-expressing T cells in the Peyer's patches participate in the disease pathogenesis and can serve as a novel therapeutic target in ulcerative colitis, which can be modulated by BTNL2 IgV1.


Subject(s)
Colitis, Ulcerative , Colitis , Butyrophilins/metabolism , CD8-Positive T-Lymphocytes , Colitis, Ulcerative/chemically induced , Peyer's Patches/metabolism , Animals
8.
Int Immunopharmacol ; 128: 111544, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38266445

ABSTRACT

The dysregulation of B cell maturation and putrescine metabolism has been implicated in various diseases. However, the causal relationship between them and the underlying mechanisms remain unclear. In this study, we investigated the impact of exogenous putrescine on B cell differentiation in the intestinal microenvironment. Our results demonstrated that administration of exogenous putrescine significantly impaired the proportion of germinal center B (GC B) cells in Peyer's patches (PPs) and lamina propria. Through integration of bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq), we identified putrescine-mediated changes in gene drivers, including those involved in the B cell receptor (BCR) signaling pathway and fatty acid oxidation. Furthermore, putrescine drinking disrupted T-B cell interactions and increased reactive oxygen species (ROS) production in B cells. In vitro activation of B cells confirmed the direct suppression of putrescine on GC B cells differentiation and ROS production. Additionally, we explored the Pearson correlations between putrescine biosynthesis activity and B cell infiltration in pan-cancers, revealing negative correlations in colon adenocarcinoma, stomach adenocarcinoma, and lung adenocarcinoma, but positive correlations in liver hepatocellular carcinoma, and breast invasive carcinoma. Our findings provided novel insights into the suppressive effects of elevated enteric putrescine on intestinal B cells differentiation and highlighted the complex and distinctive immunoregulatory role of putrescine in different microenvironments. These findings expand our understanding of the role of polyamines in B cell immunometabolism and related diseases.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Putrescine/metabolism , Reactive Oxygen Species/metabolism , Adenocarcinoma/metabolism , Peyer's Patches/metabolism , Colonic Neoplasms/metabolism , Germinal Center , Cell Differentiation , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL