Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 805
Filter
1.
Food Chem ; 462: 140949, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213976

ABSTRACT

Hydrogels based on natural polymers have aroused interest from the scientific community. The aim of this investigation was to obtain natural extracts from mango peels and to evaluate their addition (1, 3, and 5%) on the rheological behavior of mango starch hydrogels. The total phenolic content, antioxidant activities, and phenolic acid profile of the natural extracts were evaluated. The viscoelastic and thixotropic behavior of hydrogels with the addition of natural extracts was evaluated. The total phenol content and antioxidant activity of the extracts increased significantly (p<0.05) with the variation of the ethanol-water ratio; the phenolic acid profile showed the contain of p-coumaric, ellagic, ferulic, chlorogenic acids, epicatechein, catechin, querecetin, and mangiferin. The viscoelastic behavior of the hydrogels showed that the storage modulus G' is larger than the loss modulus G'' indicating a viscoelastic solid behavior. The addition of extract improved the thermal stability of the hydrogels. 1% of the extracts increase viscoelastic and thixotropic properties, while concentrations of 3 to 5% decreased. The recovery percentage (%Re) decreases at concentrations from 0% to 1% of natural extracts, however, at concentrations from 3% to 5% increased.


Subject(s)
Antioxidants , Hydrogels , Mangifera , Plant Extracts , Rheology , Starch , Mangifera/chemistry , Hydrogels/chemistry , Plant Extracts/chemistry , Starch/chemistry , Antioxidants/chemistry , Viscosity , Fruit/chemistry , Phenols/chemistry
2.
Food Chem ; 463(Pt 1): 141109, 2025 Jan 15.
Article in English | MEDLINE | ID: mdl-39265409

ABSTRACT

Blue maize is used in the production of various traditional foods, and its phytochemical composition has been claimed to possess health benefits. In this study, two blue maize hybrids with pigmented germ grown in five environments were studied under the hypothesis that the germ could have a different anthocyanin profile from that of anthocyanins synthesized in the aleurone layer, and that those in the germ could increase the total anthocyanin content in the whole grain. The percentage of pigmented germ, total anthocyanin content (TA) and total soluble phenols in the germ, whole grain and tortilla were evaluated to determine how tortilla color is modified. For the first time, the anthocyanin and fatty acid profiles of pigmented germ were determined. In the anthocyanin profile, anthocyanins derived from peonidin stood out, making 50.7 %. The most abundant fatty acid was linoleic acid (40.6 %). Whole kernel TA content increased when the maize had a higher percentage of pigmented germ, with minimal changes when grain was transformed to tortilla, resulting in darker tortillas. The large variation in TA among environments highlights the importance of identifying the environments that most favor anthocyanin synthesis.


Subject(s)
Anthocyanins , Phytochemicals , Seeds , Zea mays , Zea mays/chemistry , Zea mays/growth & development , Anthocyanins/analysis , Anthocyanins/chemistry , Seeds/chemistry , Phytochemicals/chemistry , Phytochemicals/analysis , Color , Phenols/analysis , Phenols/chemistry , Fatty Acids/chemistry , Fatty Acids/analysis
3.
Molecules ; 29(19)2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39407486

ABSTRACT

In this research, we aimed to determine the antioxidant activity of an atomized extract of Cnidoscolus diacanthus (Pax & K. Hoffm.) J.F. Macbr., known in Peru as "huanarpo hembra", and its effect on sex hormone levels. Its phytochemical profile was determined using liquid chromatography-mass spectrometry (LC-MS), while its total phenol content (TPC) and total flavonoids (TFs) were determined using the Folin-Ciocalteu method and the aluminum chloride method. Its antioxidant activity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), the radical 2,2-azino-bis-3-ethylbenzthiazolin-6 sulfonic acid (ABTS), and ferric-reducing antioxidant power (FRAP). The biological activity of C. diacanthus and its effect on sexual hormones were determined in Holtzman rats of both sexes. Phytochemical analysis revealed the presence of flavonoids and phenolic compounds in its leaves and stems, mainly rutin, quercetin, chlorogenic acid, and genistein. However, the stem extract contained higher total phenol (464.38 ± 4.40 GAE/g) and flavonoid (369.17 ± 3.16 mg QE/g of extract) contents than the leaf extract (212.38 ± 3.19 mg GAE/g and 121.49 ± 2.69 mg QE/g). For DPPH, ABTS, and FRAP, the Trolox-equivalent antioxidant capacity (TEAC) was 597.20 ± 5.40 µmol/g, 452.67 ± 5.76 µmol/g, and 535.91 ± 1.56 µmol/g, respectively, for the stems, while for the leaves, it was 462.39 ± 3.99 µmol/g, 202.32 ± 5.20 µmol/g, and 198.13 ± 1.44 µmol/g, respectively. In terms of the values for hormonal levels, at a dose of 100 mg/kg of the extract, testosterone levels of 1.430 ng/mL (with the leaf extract) and 1.433 ng/mL (with the stem extract), respectively, were found in the male rats. Regarding estradiol levels, in the female rats, these were 10.425 ng/mL (leaf extract) and 8.775 ng/mL (stem extract), while their levels of luteinizing hormone were 0.320 mIU/mL (leaf extract) and 0.273 mIU/mL (stem extract). For the follicle-stimulating hormone, levels of 0.858 mIU/mL (leaf extract) and 0.840 mIU/mL (stem extract) were found in the female rats, and levels of 0.220 mIU/mL (leaf extract) and 0.200 mIU/mL (stem extract) were found in the male rats. It is concluded that the C. diacanthus stem extract had a greater antioxidant capacity than the leaf extract, while both extracts had a superior effect on the sex hormone levels in the female rats compared to the male rats.


Subject(s)
Antioxidants , Plant Extracts , Plant Leaves , Plant Stems , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Rats , Male , Plant Stems/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Female , Peru , Gonadal Steroid Hormones/metabolism , Phenols/chemistry , Phenols/analysis , Phenols/pharmacology , Euphorbiaceae/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/analysis
4.
Clin Oral Investig ; 28(11): 578, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377827

ABSTRACT

OBJECTIVES: To analyze the incorporation of cardanol trimethacrylate monomer (CTMA), derived from the cashew nut shell liquid, as a substitute for Bis-GMA in acrylic resins formulations and its effect on experimental resin composites' physicochemical and mechanical properties. MATERIALS AND METHODS: The intermediary cardanol epoxy was synthesized via cardanol epoxidation, followed by the synthesis of CTMA through methacrylic anhydride solvent-free esterification. Experimental resin composites were formulated with an organic matrix composed of Bis-GMA/TEGDMA (50/50 wt %) (control). CTMA was gradually added to replace different proportions of Bis-GMA: 10 wt % (CTMA-10), 20 wt % (CTMA-20), 40 wt % (CTMA-40), and 50 wt % (CTMA-50). The composites were characterized by degree of conversion, water sorption and solubility, viscosity, thermogravimetric analysis, dynamic mechanical analysis, flexural strength and elastic modulus. Data were analyzed with one-way ANOVA and Tukey's post-hoc test (α = 0.05), except for water sorption data, which were analyzed by Kruskall-Wallis and Dunn's method. RESULTS: CTMA-based and control composites did not show statistically significant differences regarding degree of conversion, flexural strength and elastic modulus. CTMA reduced the viscosity and solubility compared to the Bis-GMA-based composite. The CTMA-40 and CTMA-50 exhibited significantly lower water sorption compared to the control. Also, acceptable thermal stability and viscoelastic properties were obtained for safe use in the oral cavity. CONCLUSIONS: Incorporating CTMA into composites resulted in similar chemical and mechanical properties compared to Bis-GMA-based material while reducing viscosity, water sorption and solubility. CLINICAL RELEVANCE: CTMA could be used as a trimethacrylate monomer replacing Bis-GMA in resin composites, thereby minimizing BPA exposure.


Subject(s)
Bisphenol A-Glycidyl Methacrylate , Composite Resins , Flexural Strength , Materials Testing , Phenols , Polymethacrylic Acids , Solubility , Composite Resins/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Phenols/chemistry , Viscosity , Polymethacrylic Acids/chemistry , Elastic Modulus , Methacrylates/chemistry , Thermogravimetry , Polyethylene Glycols/chemistry , Anacardium/chemistry
5.
Biochim Biophys Acta Biomembr ; 1866(8): 184389, 2024 12.
Article in English | MEDLINE | ID: mdl-39378913

ABSTRACT

Acetylcholinesterase (AChE) plays a pivotal role in the cholinergic system, and its inhibition is sought after in a wide range of applications, from insect control to Alzheimer's disease treatment. While the primary physiological isoforms of AChE are membrane-bound proteins, most assays for discovering new, safer, and potent inhibitors are conducted using commercially available soluble isoforms, such as the electric eel AChE (eeAChE). In this study, we conducted a comparative analysis of the activity and selectivity to phenolic inhibitors of recombinant human AChE, eeAChE and a mutant variant of human AChE known as dAChE4. Despite numerous mutations, dAChE4 closely resembles its parental protein and serves as a suitable model for monomeric human AChE. We also established an in vitro system of membrane-bound AChE to create a model that closely mimics the physiological isoforms. This system ensures the proper work of the enzyme and allowed us to control the exact concentration of enzyme and lipids per assay.


Subject(s)
Acetylcholinesterase , Cholinesterase Inhibitors , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Humans , Animals , Phenols/pharmacology , Phenols/chemistry , Electrophorus , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Nanostructures/chemistry
6.
Molecules ; 29(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39275097

ABSTRACT

Olive trees not only produce olives but also generate a substantial amount of waste and by-products, including leaves, pomace (the solid remains after pressing olives for oil), and wastewater from the olive oil-making process. The waste products, particularly the leaves, contain bioactive compounds, especially phenolic compounds, known for their health benefits, such as high antioxidant potential and the ability to reduce inflammation. These compounds have shown promise in preventing and treating cancer. This review, based on in vitro evidence, provides a detailed description and discussion of the mechanisms through which these compounds from olive leaves can prevent development, the ways they might act against cancer cells, and their potential to increase the sensitivity of tumor cells to conventional anticancer therapy. The possible synergistic effects of these compounds suggest that olive leaf extracts may offer a promising approach for cancer treatment, compared with isolated compounds, thus providing novel possibilities for cancer therapy.


Subject(s)
Olea , Plant Extracts , Plant Leaves , Olea/chemistry , Plant Leaves/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Phenols/pharmacology , Phenols/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals
7.
Int J Mol Sci ; 25(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39337480

ABSTRACT

Pomegranate (Punica granatum L.) peel is a potential source of bioactive phenolic compounds such as ellagic acid and α- and ß-punicalagin. This work explores the efficiency of natural deep eutectic solvents combined with ultrasound-assisted extraction (UAE) and pressurized liquid extraction (PLE) for their extraction. Five NaDESs were evaluated by employing UAE (25 °C, for 50 min) to determine their total phenolic content (Folin-Ciocalteu assay) and ellagic acid and α- and ß-punicalagin contents (high-performance liquid chromatography (HPLC-DAD)). The NaDES composed of choline chloride (ChCl) and glycerol (Gly) (1:2, molar ratio) was the most efficient in the UAE when compared with the rest of the NaDESs and water extracts. Therefore, ChCl:Gly was further evaluated using PLE at different temperatures (40, 80, 120 and 160 °C). The PLE-NaDES extract obtained at 80 °C for 20 min at 1500 psi exhibited the highest contents of ellagic acid and α- and ß-punicalagin compared to the rest of the temperatures and PLE-water extracts obtained under the same extraction conditions. Combining UAE or PLE with a NaDES emerges as a sustainable alternative for extracting ellagic acid and α- and ß-punicalagin from pomegranate peel.


Subject(s)
Ellagic Acid , Phenols , Plant Extracts , Pomegranate , Pomegranate/chemistry , Phenols/chemistry , Phenols/isolation & purification , Phenols/analysis , Plant Extracts/chemistry , Ellagic Acid/chemistry , Ellagic Acid/isolation & purification , Deep Eutectic Solvents/chemistry , Chromatography, High Pressure Liquid/methods , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/isolation & purification , Fruit/chemistry , Solvents/chemistry
8.
Curr Microbiol ; 81(11): 361, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287836

ABSTRACT

A great number of free radicals have a negative impact on the human body, and an increased interest in the identification of new natural molecules with antioxidant properties has emerged due to concerns about synthetic antioxidants. Here, the antioxidant effect of four exo-polysaccharides (EPS) extracts obtained from submerged cultivation of Nothophellinus andinopatagonicus and Pseudoinonotus crustosus (N and P, respectively) in two culture media (M1 and M2) at 2 concentrations (100 and 250 µg/ml) was studied; then, its relation with the chemical composition of the EPS was evaluated. To assess the antioxidant activities of the extracts, several in vitro assays were performed: DPPH and ABTS radical scavenging, ferric-reducing antioxidant power, chelating ability on ferrous ions, and inhibition of the lipid peroxidation. The concentrations tested here were much lower than those reported in previous works. Despite variations in chemical composition and monosaccharide profiles among the extracts, all demonstrated antioxidant activity, although the type of activity differed; only P-M1 exhibited a good antioxidant activity across all assays. This extract contained the highest proportion of phenolic compounds, and also displayed the highest radical scavenging activity. Although the utilization of polysaccharides as functional food ingredients remains limited, we propose P-M1 as a promising candidate for a nutraceutical product. Additionally, a formulation could be made with a combination of extracts to create an antioxidant-rich supplement. Additional research is needed to confirm our findings in a cellular environment and to elucidate the mechanisms that drive their antioxidant activities, ultimately facilitating their development and utilization as nutraceutical products.


Subject(s)
Antioxidants , Antioxidants/pharmacology , Antioxidants/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Argentina , Polysaccharides/pharmacology , Polysaccharides/chemistry , Lipid Peroxidation/drug effects , Phenols/pharmacology , Phenols/chemistry , Hypocreales/chemistry , Hypocreales/metabolism , Benzothiazoles/metabolism
9.
PLoS One ; 19(8): e0307640, 2024.
Article in English | MEDLINE | ID: mdl-39178191

ABSTRACT

The demand for plant-based products has increased in recent years, due to several aspects related to health and environmental consciousness. This study aimed to produce and characterize a plant-based dairy alternative dessert based on araticum pulp and chickpea extract without added sugar and fat. Three formulations were prepared: Formulation 1 (F1): 20% araticum pulp + 80% chickpea extract; Formulation 2 (F2): 30% araticum pulp + 70% chickpea extract; and Formulation 3 (F3): 40% araticum pulp + 60% chickpea extract. All formulations' chemical composition, sensorial characteristics, viscosity, total phenolic content, antioxidant activity, and microbiological stability were analyzed during 28 days of storage at 4°C and a relative humidity of 23%. Energetic value ranged from 64 to 71 kcal/100g, and carbohydrate content from 9.68 to 11.06, protein from 3.38 to 3.04, lipids from 1.41 to 1.60, ashes from 0.53 to 0.59 and crude fiber from 0.86 to 1.34 g/100g among the formulations. The increase in the proportion of araticum pulp in the formulations reduced moisture content by 1.2 to 2.1% (F1: 84.2, F2: 83.2, and F3: 82.4), protein content by 3 to 9% (F1: 3.3, F2: 3.2, and F3: 3.0), and pH value by 5.8 to 10.7% (F1: 5.50, F2: 5.18, and F3: 4.91), and increased the TSS by 1.1 to 1.3-fold (F1: 8.36, F2: 8.98, and F3: 10.63 º Brix), total phenolics content by 1.5 to 2.0-fold (F1: 4,677, F2: 6,943, and F3: 10,112 gallic acid µmol/L) and antioxidant activity by 1.8 to 2.8-fold (F1: 1,974, F2: 3,664, and F3: 5.523). During the 28 days of storage at 4°C, the formulations F1 and F2 showed better stability of phenolic compounds and antioxidant activity; however, the formulation F3 showed acceptable microbiological quality up to 28 days of storage, higher viscosity, 8 to 16-fold higher than the formulations F1 and F2, respectively (F1: 238.90, F2: 474.30, and F3:3,959.77 mPa.s), antioxidant capacity and better scores in sensory analysis. The present study showed that the plant-based dessert elaborated with araticum pulp and chickpea extract might be considered a potential dairy alternative product with high antioxidant activity, protein content, and a viscosity similar to yogurt; however, its sensory aspects need improvement.


Subject(s)
Antioxidants , Cicer , Plant Extracts , Cicer/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Plant Extracts/chemistry , Humans , Viscosity , Phenols/analysis , Phenols/chemistry , Taste
10.
Food Chem ; 460(Pt 3): 140807, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39146719

ABSTRACT

Reliable analytical methods are the basis for the elucidation of phenolic compounds in foods. This study aimed to optimize and validate a method for determining 42 phenolics using reverse-phase (RP) high-performance liquid chromatography (HPLC) coupled to diode-array-detector-DAD. The performance of two RP columns was evaluated. The 150x4.6 mm 3-µm column showed superior separation quality, whereas 35 of the 42 phenolics showed a separation resolution ≥1.5. The method's linearity, precision (coefficient variation< 3.09%), recovery (87.5-103.2%), specificity, limits of detection (0.04-0.25 mg/L), and quantification (0.06-0.25 mg/L) had acceptable ranges. Thirty phenolics were quantified in Citrus peels, mainly flavanones, flavanols, flavonols, and phenolic acids, highlighting the high values of hesperidin (535-35070 mg/kg) and naringin (26-36466 mg/kg). Lemon peels named 'Lisboa,' 'Thaiti,' 'Thaiti-2000', and 'Thaiti-2001' presented the main phenolics associated with antioxidant capacity. The presented method was robust for determining 42 phenolic compounds, offering a new approach for bioactive compound quantification in food matrices.


Subject(s)
Citrus , Fruit , Phenols , Citrus/chemistry , Chromatography, High Pressure Liquid , Phenols/analysis , Phenols/chemistry , Phenols/isolation & purification , Fruit/chemistry , Brazil , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Chromatography, Reverse-Phase/methods , Chromatography, Reverse-Phase/instrumentation , Antioxidants/chemistry , Antioxidants/analysis
11.
J Chromatogr A ; 1733: 465258, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39167883

ABSTRACT

A hybrid organic monolithic column made of poly(lauryl methacrylate-co-1,6-hexanediol dimethacrylate) and the metal-organic framework MIL-68(Al) was prepared for the first time. The column was used in capillary liquid chromatography, both in isocratic and gradient elution modes. Separation performance towards small molecules of different chemical nature (polycyclic aromatic hydrocarbons, alkylbenzenes, phenols, etc.) was studied. Monte Carlo simulations were made to both select the proper precursors to obtain empty metal-organic framework micropores in the monolithic polymer and also, to analyze the potential free access of the studied analytes into the micropores (necessary to improve mass transfer and column efficiency). The hereby synthesized metal-organic framework microcrystals allowed obtaining homogeneous hybrid monolithic columns. Adding of MIL-68(Al) (1030 m2 g-1 BET specific surface area) increased the surface area from 3.9 m2 g-1 for the parent monolith to 18.2 m2 g-1 for the hybrid column containing 8 mg mL-1 of the microcrystals. Chromatographic performance of this new column was evaluated by studying retention factors, resolution, and plate counts at room temperature. Different compounds, not completely resolved in the parent monolith, were partially or completely separated after metal-organic framework addition. Using the monolithic column with only 2 mg mL-1 of MIL-68(Al), five alkylbenzenes were completely separated with very symmetrical peak shapes, resolution factors up to 3.60 and plate counts of 4300 plates m-1 for n-hexylbenzene. This value is higher than those obtained by other authors who used organic monolithic columns with embedded metal-organic frameworks to perform separations at room temperature. Additionally, nine polycyclic aromatic hydrocarbons were partially or completely resolved in gradient elution mode. The hybrid monolithic columns exhibited very good intra-day (%RSD=1.9), inter-day (%RSD=2.6), and column-to-column (%RSD=4.3) reproducibility values. Easy and fast column preparation, and versatility to efficiently separate several compounds of different chemical nature in isocratic and gradient mode, makes this new hybrid column a very good option for the analysis of small molecules in capillary (or nano) HPLC.


Subject(s)
Metal-Organic Frameworks , Polycyclic Aromatic Hydrocarbons , Chromatography, High Pressure Liquid/methods , Metal-Organic Frameworks/chemistry , Polycyclic Aromatic Hydrocarbons/isolation & purification , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Monte Carlo Method , Phenols/isolation & purification , Phenols/analysis , Phenols/chemistry , Porosity
12.
Food Chem ; 460(Pt 2): 140332, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39106805

ABSTRACT

In this study, the effect of in vitro gastrointestinal digestion of phenolic compounds, the total phenolic content, and the antioxidant potential of stingless bee honey were investigated. Among the 33 phenolic compounds investigated, 25 were quantified, and only eight were not bioaccessible (p-aminobenzoic acid, sinapic acid, pinobanksin, isorhamnetin, quercetin-3-glucoside, syringaldehyde, coumarin, and coniferaldehyde). Benzoic acid was predominant in most undigested samples (21.3 to 2414 µg 100 g-1), but its bioaccessibility varied widely (2.5 to 534%). Rutin, a glycosylated flavonoid, was quantified in all samples and might have been deglycosylated during digestion, increasing the bioaccessibility of quercetin in a few samples. Overall, the concentration of phenolic compounds prior digestion and their bioaccessibility varied greatly among samples. Nevertheless, higher concentrations before digestion were not correlated to greater bioaccessibility. This study is the first to assess the in vitro bioaccessibility of phenolic compounds in SBH, providing novel insights into SBH research.


Subject(s)
Digestion , Honey , Phenols , Honey/analysis , Bees/metabolism , Bees/chemistry , Phenols/metabolism , Phenols/chemistry , Animals , Brazil , Antioxidants/chemistry , Antioxidants/metabolism , Models, Biological , Humans
13.
Molecules ; 29(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39202999

ABSTRACT

Colorectal cancer (CRC) is the third most common type of cancer worldwide. Its treatment options have had a limited impact on cancer remission prognosis. Therefore, there is an ongoing need to discover novel anti-cancer agents. Medicinal plants have gained recognition as a source of anti-cancer bioactive compounds. Recently, ethanolic extract of L. virginicum stems ameliorated dinitrobenzene sulfonic acid (DNBS)-induced colitis by modulating the intestinal immune response. However, no scientific study has demonstrated this potential cytotoxic impact on colon cancer cells. The objective of this study was to evaluate the cytotoxic effect of the methanolic extract of L. virginicum (ELv) on a human colorectal adenocarcinoma cell line (Caco-2) and to identify and quantify the phenolic compounds present in ELv extracts by liquid chromatography-mass spectrometry analysis. The cytotoxic activity was assessed using cell viability assays by reduction in the compound 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH). MTT and LDH assays revealed that the ELv decreases cell viability in the Caco-2 cell line in a concentration-dependent manner. Cell death was a result of DNA fragmentation and p53-mediated apoptosis. Eight phenolic acids and five flavonoids were identified and quantified in the stems. In conclusion, our findings demonstrate that the extract of L. virginicum possesses cytotoxic properties on Caco-2 cell line, suggesting that it could be a potential source of new drugs against CRC.


Subject(s)
Apoptosis , Cell Survival , Lepidium , Methanol , Plant Extracts , Tumor Suppressor Protein p53 , Humans , Caco-2 Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Apoptosis/drug effects , Tumor Suppressor Protein p53/metabolism , Cell Survival/drug effects , Methanol/chemistry , Lepidium/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Phenols/pharmacology , Phenols/chemistry
14.
Molecules ; 29(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39124982

ABSTRACT

Fabiana punensis S. C. Arroyo is a subshrub or shrub that is indigenous to the arid and semiarid region of northern Argentina and is known to possess several medicinal properties. The objective of this study was to optimize the extraction conditions so as to maximize the yield of bioactive total phenolic compound (TPC) and flavonoids (F) of F. punensis' aerial parts by using non-conventional extraction methods, namely ultrasound-assisted extraction, UAE, and microwave-assisted extraction, MAE, and to compare the biological activities and toxicity of optimized extracts vs. conventional extracts, i.e., those gained by maceration. Response Surface Methodology (RSM) was used to apply factorial designs to optimize the parameters of extraction: solid-to-liquid ratio, extraction time, ultrasound amplitude, and microwave power. The experimental values for TPC and F and antioxidant activity under the optimal extraction conditions were not significantly different from the predicted values, demonstrating the accuracy of the mathematical models. Similar HPLC-DAD patterns were found between conventional and UAE- and MAE-optimized extracts. The main constituents of the extracts correspond to phenolic compounds (flavonoids and phenolic acids) and apigenin was identified. All extracts showed high scavenger capacity on ABTS•+, O2•- and H2O2, enabling the inhibition of the pro-inflammatory enzymes xanthine oxidase (XO) and lipoxygenase (LOX). They also showed an antimutagenic effect in Salmonella Typhimurium assay and cytotoxic/anti-proliferative activity on human melanoma cells (SKMEL-28). Toxicological evaluation indicates its safety. The results of this work are important in the development of efficient and sustainable methods for obtaining bioactive compounds from F. punensis for the prevention of chronic degenerative diseases associated with oxidative stress, inflammation, and DNA damage.


Subject(s)
Antioxidants , Microwaves , Phenols , Plant Components, Aerial , Plant Extracts , Phenols/chemistry , Phenols/pharmacology , Phenols/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Components, Aerial/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Humans , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Chromatography, High Pressure Liquid , Ultrasonic Waves , Chemical Fractionation/methods , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism
15.
Sci Prog ; 107(3): 368504241272454, 2024.
Article in English | MEDLINE | ID: mdl-39119690

ABSTRACT

UV filters in current sunscreen formulations can have negative effects on human health, such as endocrine disruption and allergic reactions, as well as on the environment, including bioaccumulation and coral health toxicity. As a result, there is a need to find alternative compounds that serve as safer and more ecofriendly active ingredients. This study successfully isolated actinomycetes from the octocoral Eunicea fusca and assessed their potential as producers of photoprotective compounds. The use of bio-based chemical agents, particularly natural products, has been a highly effective strategy for discovering bioactive compounds, especially in marine invertebrates and their associated microbiota. Eighteen bacterial isolates were obtained and subsequently employed to prepare raw methanolic extracts from seven-day submerged cultures in Zobell marine broth. The resulting extracts were screened for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity and characterized by total phenolic and flavonoid content measurements. After screening, the Gordonia hongkongensis EUFUS-Z928-derived raw extract exhibited the best antioxidant profile, i.e. DPPH and ABTS radical scavenging of 4.93 and 6.00 µmol Trolox per gram of extract, respectively, and selected for further photoprotection-related analysis. Thus, this extract demonstrated a UV-absorbing capacity of 46.33% of the in vitro sun protection factor calculated for 30 µg/mL oxybenzone but did not exhibit any cytotoxicity on human dermal fibroblasts (HDFa cell line) at concentrations up to 500 µg/mL. The liquid chromatography-mass spectrometry chemical characterization of this extract showed compounds with structural features associated with free radical scavenging and UV absorption (i.e. photoprotection-related activities). These findings highlighted the potential of the microbiota associated with E. fusca and confirmed the feasibility of exploiting its metabolites for photoprotection-related purposes.


Subject(s)
Anthozoa , Sunscreening Agents , Sunscreening Agents/pharmacology , Sunscreening Agents/chemistry , Anthozoa/microbiology , Animals , Actinobacteria/metabolism , Actinobacteria/chemistry , Humans , Ultraviolet Rays , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/chemistry , Phenols/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology
16.
Molecules ; 29(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39202824

ABSTRACT

Ayocote beans (Phaseolus coccineus L.) are a rich source of some bioactive molecules, such as phenolic compounds that exhibit antioxidant capacity that promote health benefits. Ayocote is mainly consumed after cooking, which can impact the antioxidant characteristics of the phenolic compounds responsible for some of its health benefits. Therefore, this study investigated the effects of boiling on the phenolic composition and bioactivities of ayocote beans before and after boiling. Boiling decreased the total phenolic content (70.2, 60.3, and 58.2%), total anthocyanin (74.3, 80.6, and 85.7%), and antioxidant activity (DPPH: 41.2, 46.9, and 59.1%; ORAC: 48.23, 53.6 and 65.7%) of brown, black, and purple ayocote beans, respectively. All the extracts also inhibited the activity of α-glucosidase with efficacy values from 29.7 to 87.6% and α-amylase from 25.31 to 56.2%, with moderate antiglycation potential (15.2 to 73.2%). Phenolic acids, anthocyanins, and flavonoid decreases were detected in boiled samples by HPLC-MS analysis. Although boiling reduced the phenolic compounds, bioactive compounds remained in a considerable content in boiled ayocote.


Subject(s)
Antioxidants , Phaseolus , Phenols , Plant Extracts , Phaseolus/chemistry , Phenols/analysis , Phenols/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , alpha-Amylases/antagonists & inhibitors , Anthocyanins/analysis , Anthocyanins/chemistry , Anthocyanins/pharmacology , Flavonoids/analysis , Flavonoids/chemistry , Cooking , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Chromatography, High Pressure Liquid
17.
J Sci Food Agric ; 104(14): 9035-9045, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38989963

ABSTRACT

BACKGROUND: Extrusion cooking of cereal-legume flour mixture is an innovative strategy to introduce nutrient-enriched ready-to-eat snacks to the market. However, this thermal process triggers the formation of compounds that could impact safety aspects of these products. Maillard reaction markers and the end products known as melanoidins were evaluated to assess the toxicological and bioactive profiles of extruded snacks from corn-plus-common-bean-flour combinations. Different molecular weight fractions were isolated and purified to analyze their antioxidant activity and to investigate the role of melanoidins. RESULTS: The snack formulated with an 84:16 ratio of corn:common bean flours exhibited an enhanced toxicological profile. It displayed the lowest levels of acrylamide and furanic compounds, along with reduced blockage of lysine residues in the protein. Extrusion increased the antioxidant activity of uncooked flours (30 to 64%) and total phenolic compounds (26 to 50%), and decreased the available lysine (-72.7 to -79.5%). During the fractionation process, it was established that compounds within the range of 3-10 kDa made the greatest contribution to antioxidant activity. The fraction greater than 10 kDa, which included melanoidins, displayed 7 to 33% lower antioxidant activity. The purification of the fraction greater than 10 kDa revealed that pure melanoidins represented approximately one-third of the antioxidant activity in that fraction. Non-covalent adducts linked to the melanoidin core therefore had a relevant role in the antioxidant action of formulated snacks. CONCLUSION: This investigation illustrates the importance of considering both potential risks and associated benefits of compounds formed during the Maillard reaction while developing new extruded snacks. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Antioxidants , Flour , Maillard Reaction , Polymers , Snacks , Zea mays , Antioxidants/chemistry , Antioxidants/analysis , Zea mays/chemistry , Flour/analysis , Polymers/chemistry , Cooking , Fabaceae/chemistry , Phenols/chemistry , Phenols/analysis , Acrylamide/chemistry
18.
Chem Biodivers ; 21(9): e202401331, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39031675

ABSTRACT

The flowers of Yucca aloifolia ("flor de izote") are considered a millenary food in the Northeastern Highlands of Puebla, Mexico. The present investigation reports on the chemical and biological activities of the hydroalcoholic extract (YAHF) obtained from this edible source. HPLC-MS profiling revealed twenty bioactive phenolic compounds with chlorogenic acid (16.5 mg g-1 DW), quercetin (9.5 mg g-1 FW), and their glycosides (rutin and quercitrin), as well as caffeic acid (8.4 mg g-1 DW) and ferulic acid (7.9 mg g-1 DW) as major compounds dissolved in YAHF. Six metabolites had potent anti-lipase (IC50<100 µg mL-1) and anti-ornithine decarboxylase activity (IC50<100 µg mL-1), whereas thirteen exerted strong anti-alpha-glucosidase properties (IC50<100 µg mL-1). The evaluation of YAHF in mice subjected to standard oral glucose tolerance tests and prolonged administration of hypercaloric/atherogenic diet (30 days), unraveled their ability to improve glucose and lipid profiles. YAHF and six phenolic compounds significantly reduced DLD-1 cell viability (IC50, 117.9 µg mL-1) and avoided polyamine accumulation linked to anti-ornithine decarboxylase activity. YAHF and its twenty constituents exerted low toxicity in probiotics (>1000 µg mL-1) and 3T3 fibroblasts (>2.5 mg-mL-1), sustaining their safeness for human consumption.


Subject(s)
Cell Survival , Flowers , Phenols , Plant Extracts , Phenols/pharmacology , Phenols/chemistry , Phenols/isolation & purification , Animals , Flowers/chemistry , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Humans , Cell Survival/drug effects , Dietary Supplements/analysis , Male
19.
Chem Biodivers ; 21(9): e202400971, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38965059

ABSTRACT

This study aimed to evaluate the chemical composition and antioxidant activity of phenolic extracts from monofloral and polyfloral honey samples obtained from different Brazilian regions. The chemical composition (total content of phenolic compounds and flavonoids) of extracts were measured by using colorimetric assays and analyzed by high performance liquid chromatographic (HPLC-DAD). The antioxidant activity was evaluated by chemical and biochemical assays (reducing power assay, 1,1-diphenyl-2-picrylhydrazyl (DPPH⋅) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS⋅+) scavenger assays. It was also investigated the ability of extracts in attenuate lipid peroxidation induced by Fe2+ in phospholipids. The obtained results clearly demonstrated that the botanical origin and geographical region of honey collection influenced the chemical composition and antioxidant activity of extracts. Furthermore, the samples were constituted by phenolic acids and flavonoids, which p-coumaric acid was predominant among the compounds identified. All samples were able to scavenge free radicals and inhibit lipid peroxidation, and good correlations were obtained between the flavonoid content and honey color. In conclusion, the obtained extracts were constituted by antioxidant compounds, which reinforce the usage of honey in human diets, and demonstrated that the region of honey collection strong influenced in the chemical composition and, consequently, its biological effect.


Subject(s)
Antioxidants , Honey , Lipid Peroxidation , Phenols , Honey/analysis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Phenols/pharmacology , Phenols/chemistry , Phenols/isolation & purification , Phenols/analysis , Brazil , Lipid Peroxidation/drug effects , Chromatography, High Pressure Liquid , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/analysis , Flavonoids/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Picrates/antagonists & inhibitors , Flowers/chemistry , Benzothiazoles/antagonists & inhibitors , Sulfonic Acids/antagonists & inhibitors
20.
Food Chem ; 460(Pt 1): 140478, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39032302

ABSTRACT

Southern Chile native potatoes are an interesting raw material to produce novel snacks like colored potato chips. These novel products should be comprehensively evaluated for the presence of undesirable compounds such as acrylamide, 5-hydroxymethylfurfural and furan, the main neoformed contaminants in starchy rich fried foods. This study evaluated the neoformed contaminant levels and oil content on chips made from eleven Chilean potato accessions and compared them with commercial samples. The neoformed contaminant contents were related to Maillard reaction precursor levels (reducing sugars and asparagine) and secondary metabolites (phenolic compounds and carotenoids). Neoformed contaminants correlated well among them and were weakly correlated with reducing sugars and asparagine. Acrylamide level in native potato chips ranged from 738.2 to 1998.6 µg kg-1 while from 592.6 to 2390.5 µg kg-1 in commercial samples. Thus, there is need to implement neoformed contaminant mitigation strategies at different steps of the production chain of colored potato chips.


Subject(s)
Acrylamide , Cooking , Food Contamination , Maillard Reaction , Solanum tuberosum , Solanum tuberosum/chemistry , Solanum tuberosum/metabolism , Food Contamination/analysis , Acrylamide/analysis , Acrylamide/metabolism , Chile , Hot Temperature , Secondary Metabolism , Phenols/metabolism , Phenols/analysis , Phenols/chemistry , Plant Tubers/chemistry , Plant Tubers/metabolism , Carotenoids/analysis , Carotenoids/metabolism , Carotenoids/chemistry , Furaldehyde/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL