Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892187

ABSTRACT

Thaumatin-like proteins (TLPs) in plants are involved in diverse biotic and abiotic stresses, including antifungal activity, low temperature, drought, and high salinity. However, the roles of the TLP genes are rarely reported in early flowering. Here, the TLP gene family was identified in P. trichocarpa. The 49 PtTLP genes were classified into 10 clusters, and gene structures, conserved motifs, and expression patterns were analyzed in these PtTLP genes. Among 49 PtTLP genes, the PtTLP6 transcription level is preferentially high in stems, and GUS staining signals were mainly detected in the phloem tissues of the PtTLP6pro::GUS transgenic poplars. We generated transgenic Arabidopsis plants overexpressing the PtTLP6 gene, and its overexpression lines showed early flowering phenotypes. However, the expression levels of main flowering regulating genes were not significantly altered in these PtTLP6-overexpressing plants. Our data further showed that overexpression of the PtTLP6 gene led to a reactive oxygen species (ROS) burst in Arabidopsis, which might advance the development process of transgenic plants. In addition, subcellular localization of PtTLP6-fused green fluorescent protein (GFP) was in peroxisome, as suggested by tobacco leaf transient transformation. Overall, this work provides a comprehensive analysis of the TLP gene family in Populus and an insight into the role of TLPs in woody plants.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Multigene Family , Phloem , Plant Proteins , Plants, Genetically Modified , Populus , Populus/genetics , Populus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phloem/metabolism , Phloem/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Phylogeny , Reactive Oxygen Species/metabolism , Flowers/genetics , Flowers/metabolism , Genome, Plant
2.
Plant Sci ; 344: 112083, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38588982

ABSTRACT

Due to the extended generation cycle of trees, the breeding process for forest trees tends to be time-consuming. Genetic engineering has emerged as a viable approach to expedite the genetic breeding of forest trees. However, current genetic engineering techniques employed in forest trees often utilize continuous expression promoters such as CaMV 35S, which may result in unintended consequences by introducing genes into non-target tissues. Therefore, it is imperative to develop specific promoters for forest trees to facilitate targeted and precise design and breeding. In this study, we utilized single-cell RNA-Seq data and co-expression network analysis during wood formation to identify three vascular tissue-specific genes in poplar, PP2-A10, PXY, and VNS07, which are expressed in the phloem, cambium/expanding xylem, and mature xylem, respectively. Subsequently, we cloned the promoters of these three genes from '84K' poplar and constructed them into a vector containing the eyGFPuv visual selection marker, along with the 35S mini enhancer to drive GUS gene expression. Transgenic poplars expressing the ProPagPP2-A10::GUS, ProPagPXY::GUS, and ProPagVNS07::GUS constructs were obtained. To further elucidate the tissue specificity of these promoters, we employed qPCR, histochemical staining, and GUS enzyme activity. Our findings not only establish a solid foundation for the future utilization of these promoters to precisely express of specific functional genes in stems but also provide a novel perspective for the modular breeding of forest trees.


Subject(s)
Populus , Promoter Regions, Genetic , Populus/genetics , Populus/metabolism , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Xylem/genetics , Xylem/metabolism , Phloem/genetics , Phloem/metabolism , Genes, Plant
3.
Plant J ; 118(3): 905-919, 2024 May.
Article in English | MEDLINE | ID: mdl-38251949

ABSTRACT

Phosphate (Pi) is essential for plant growth and development. One strategy to improve Pi use efficiency is to enhance Pi remobilization among leaves. Using transcriptome analysis with first (top) and fourth (down) leaf blades from rice (Oryza sativa) in Pi-sufficient and deficient conditions, we identified 1384 genes differentially expressed among these leaf blades. These genes were involved in physiological processes, metabolism, transport, and photosynthesis. Moreover, we identified the Pi efflux transporter gene, OsPHO1;3, responding to Pi-supplied conditions among these leaf blades. OsPHO1;3 is highly expressed in companion cells of phloem, but not xylem, in leaf blades and induced by Pi starvation. Mutation of OsPHO1;3 led to Pi accumulation in second to fourth leaves under Pi-sufficient conditions, but enhanced Pi levels in first leaves under Pi-deficient conditions. These Pi accumulations in leaves of Ospho1;3 mutants resulted from induction of OsPHT1;2 and OsPHT1;8 in root and reduction of Pi remobilization in leaf blades, revealed by the decreased Pi in phloem of leaves. Importantly, lack of OsPHO1;3 caused growth defects under a range of Pi-supplied conditions. These results demonstrate that Pi remobilization is essential for Pi homeostasis and plant growth irrespective of Pi-supplied conditions, and OsPHO1;3 plays an essential role in Pi remobilization for normal plant growth.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Homeostasis , Oryza , Phloem , Phosphate Transport Proteins , Phosphates , Plant Leaves , Plant Proteins , Oryza/genetics , Oryza/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Phosphates/metabolism , Phloem/metabolism , Phloem/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Mutation , Transcriptome
4.
Trends Cell Biol ; 34(1): 48-57, 2024 01.
Article in English | MEDLINE | ID: mdl-37380581

ABSTRACT

Messenger RNAs (mRNAs) in multicellular organisms can act as signals transported cell-to-cell and over long distances. In plants, mRNAs traffic cell-to-cell via plasmodesmata (PDs) and over long distances via the phloem vascular system to control diverse biological processes - such as cell fate and tissue patterning - in destination organs. Research on long-distance transport of mRNAs in plants has made remarkable progress, including the cataloguing of many mobile mRNAs, characterization of mRNA features important for transport, identification of mRNA-binding proteins involved in their transport, and understanding of the physiological roles of mRNA transport. However, information on short-range mRNA cell-to-cell transport is still limited. This review discusses the regulatory mechanisms and physiological functions of mRNA transport at the cellular and whole plant levels.


Subject(s)
Plants , RNA Transport , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Plants/genetics , Plants/metabolism , Cell Communication , Phloem/genetics , Phloem/metabolism
5.
Plant Physiol ; 194(3): 1563-1576, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-37956407

ABSTRACT

Photoperiodic plants coordinate the timing of flowering with seasonal light cues, thereby optimizing their sexual reproductive success. The WD40-repeat protein REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) functions as a potent repressor of UV RESISTANCE LOCUS 8 (UVR8) photoreceptor-mediated UV-B induction of flowering under noninductive, short-day conditions in Arabidopsis (Arabidopsis thaliana); however, in contrast, the closely related RUP1 seems to play no major role. Here, analysis of chimeric ProRUP1:RUP2 and ProRUP2:RUP1 expression lines suggested that the distinct functions of RUP1 and RUP2 in repressing flowering are due to differences in both their coding and regulatory DNA sequences. Artificial altered expression using tissue-specific promoters indicated that RUP2 functions in repressing flowering when expressed in mesophyll and phloem companion cells, whereas RUP1 functions only when expressed in phloem companion cells. Endogenous RUP1 expression in vascular tissue was quantified as lower than that of RUP2, likely underlying the functional difference between RUP1 and RUP2 in repressing flowering. Taken together, our findings highlight the importance of phloem vasculature expression of RUP2 in repressing flowering under short days and identify a basis for the functional divergence of Arabidopsis RUP1 and RUP2 in regulating flowering time.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Reproduction , Cues , Phloem/genetics , Promoter Regions, Genetic/genetics
7.
Commun Biol ; 6(1): 588, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280369

ABSTRACT

Plant meristems require a constant supply of photoassimilates and hormones to the dividing meristematic cells. In the growing root, such supply is delivered by protophloem sieve elements. Due to its preeminent function for the root apical meristem, protophloem is the first tissue to differentiate. This process is regulated by a genetic circuit involving in one side the positive regulators DOF transcription factors, OCTOPUS (OPS) and BREVIX RADIX (BRX), and in the other side the negative regulators CLAVATA3/EMBRYO SURROUNDING REGION RELATED (CLE) peptides and their cognate receptors BARELY ANY MERISTEM (BAM) receptor-like kinases. brx and ops mutants harbor a discontinuous protophloem that can be fully rescued by mutation in BAM3, but is only partially rescued when all three known phloem-specific CLE genes, CLE25/26/45 are simultaneously mutated. Here we identify a CLE gene closely related to CLE45, named CLE33. We show that double mutant cle33cle45 fully suppresses brx and ops protophloem phenotype. CLE33 orthologs are found in basal angiosperms, monocots, and eudicots, and the gene duplication which gave rise to CLE45 in Arabidopsis and other Brassicaceae appears to be a recent event. We thus discovered previously unidentified Arabidopsis CLE gene that is an essential player in protophloem formation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Phloem/genetics , Paracrine Communication , Membrane Proteins/genetics , Plant Roots/genetics , Peptides , Cell Differentiation/genetics
8.
Plant Sci ; 332: 111705, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37059127

ABSTRACT

Grafting is the main asexual propagation method for horticultural crops and can enhance their resistance to biotic or abiotic stress. Many mRNAs can be transported over long distances through the graft union, however, the function of mobile mRNAs remains poorly understood. Here, we exploited lists of candidate mobile mRNAs harboring potential 5-methylcytosine (m5C) modification in pear (Pyrus betulaefolia). dCAPS RT-PCR and RT-PCR were employed to demonstrate the mobility of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase1 (PbHMGR1) mRNA in grafted plants of both pear and tobacco (Nicotiana tabacum). Overexpressing PbHMGR1 in tobacco plants enhanced salt tolerance during seed germination. In addition, both histochemical staining and GUS expression analysis showed that PbHMGR1 could directly respond to salt stress. Furthermore, it was found that the relative abundance of PbHMGR1 increased in heterografted scion, which avoided serious damage under salt stress. Collectively, these findings established that PbHMGR1 mRNA could act as a salt-responsive signal and move through the graft union to enhance salt tolerance of scion, which might be used as a new plant breeding technique to improve resistance of scion through a stress-tolerant rootstock.


Subject(s)
Pyrus , Pyrus/genetics , Pyrus/metabolism , Salt Tolerance/genetics , Phloem/genetics , Phloem/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Plant Breeding
9.
Plant Physiol ; 192(2): 1359-1377, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36913519

ABSTRACT

Companion cells and sieve elements play an essential role in vascular plants, and yet the details of the metabolism that underpins their function remain largely unknown. Here, we construct a tissue-scale flux balance analysis (FBA) model to describe the metabolism of phloem loading in a mature Arabidopsis (Arabidopsis thaliana) leaf. We explore the potential metabolic interactions between mesophyll cells, companion cells, and sieve elements based on the current understanding of the physiology of phloem tissue and through the use of cell type-specific transcriptome data as a weighting in our model. We find that companion cell chloroplasts likely play a very different role to mesophyll chloroplasts. Our model suggests that, rather than carbon capture, the most crucial function of companion cell chloroplasts is to provide photosynthetically generated ATP to the cytosol. Additionally, our model predicts that the metabolites imported into the companion cell are not necessarily the same metabolites that are exported in phloem sap; phloem loading is more efficient if certain amino acids are synthesized in the phloem tissue. Surprisingly, in our model predictions, the proton-pumping pyrophosphatase (H+-PPiase) is a more efficient contributor to the energization of the companion cell plasma membrane than the H+-ATPase.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Phloem/genetics , Phloem/metabolism , Transcriptome/genetics , Arabidopsis Proteins/metabolism , Biological Transport , Proton-Translocating ATPases/metabolism
10.
Plant Cell ; 35(6): 2157-2185, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36814393

ABSTRACT

Copper (Cu) and iron (Fe) are essential micronutrients that are toxic when accumulating in excess in cells. Thus, their uptake by roots is tightly regulated. While plants sense and respond to local Cu availability, the systemic regulation of Cu uptake has not been documented in contrast to local and systemic control of Fe uptake. Fe abundance in the phloem has been suggested to act systemically, regulating the expression of Fe uptake genes in roots. Consistently, shoot-to-root Fe signaling is disrupted in Arabidopsis thaliana mutants lacking the phloem companion cell-localized Fe transporter, OLIGOPEPTIDE TRANSPORTER 3 (AtOPT3). We report that AtOPT3 also transports Cu in heterologous systems and contributes to its delivery from sources to sinks in planta. The opt3 mutant contained less Cu in the phloem, was sensitive to Cu deficiency and mounted a transcriptional Cu deficiency response in roots and young leaves. Feeding the opt3 mutant and Cu- or Fe-deficient wild-type seedlings with Cu or Fe via the phloem in leaves downregulated the expression of both Cu- and Fe-deficiency marker genes in roots. These data suggest the existence of shoot-to-root Cu signaling, highlight the complexity of Cu/Fe interactions, and the role of AtOPT3 in fine-tuning root transcriptional responses to the plant Cu and Fe needs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Copper , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phloem/genetics , Phloem/metabolism , Homeostasis , Iron/metabolism , Plants/metabolism , Membrane Transport Proteins/metabolism
11.
Plant Physiol ; 191(1): 317-334, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36179092

ABSTRACT

In rice (Oryza sativa L.), vascular bundle phloem tissue in the panicle neck is vital for the transport of photosynthetic products from leaf to panicle and is positively associated with grain yield. However, genetic regulation of the single large vascular bundle phloem area (LVPA) in rice panicle neck tissue remains poorly understood. In this study, we carried out genome-wide association analysis of LVPA in the panicle neck using 386 rice accessions and isolated and characterized the gene LVPA4, which is allelic to NARROW LEAF1 (NAL1). Phenotypic analyses were carried out on the near-isogenic line (NIL) NIL-LVPA4LT in the high-yielding indica (xian) cultivar Teqing and on overexpression lines transformed with a vector carrying the Lemont alleles of LVPA4. Both NIL-LVPA4LT and LVPA4 overexpression lines exhibited significantly increased LVPA, enlarged flag leaf size, and improved panicle type. NIL-LVPA4LT had a 7.6%-9.6% yield increase, mainly due to the significantly higher filled grain number per panicle, larger vascular system for transporting photoassimilates to spikelets, and more sufficient source supply that could service the increased sink capacity. Moreover, NIL-LVPA4LT had improved grain quality compared with Teqing, which was mainly attributed to substantial improvement in grain filling, especially for inferior spikelets in NIL-LVPA4LT. The single-nucleotide variation in the third exon of LVPA4 was associated with LVPA, spikelet number, and leaf size throughout sequencing analysis in 386 panels. The results demonstrate that LVPA4 has synergistic effects on source capacity, sink size, and flow transport and plays crucial roles in rice productivity and grain quality, thus revealing the value of LVPA4 in rice breeding programs for improved varieties.


Subject(s)
Oryza , Oryza/genetics , Genome-Wide Association Study , Phloem/genetics , Plant Breeding , Plant Vascular Bundle/genetics , Edible Grain/genetics
12.
BMC Plant Biol ; 22(1): 606, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36550422

ABSTRACT

BACKGROUND: Small RNAs (sRNA) are potent regulators of gene expression that can diffuse short distances between cells and move long distances through plant vasculature. However, the degree to which sRNA silencing signals can move from the phloem to the shoot apical meristem (SAM) remains unclear. RESULTS: Two independent transgenic approaches were used to examine whether phloem sRNA silencing can reach different domains of the SAM and silence SAM-expressed genes. First, the phloem companion-cell specific SUCROSE-PROTON SYMPORTER2 (SUC2) promoter was used to drive expression of an inverted repeat to target the FD gene, an exclusively SAM-localized floral regulator. Second, the SUC2 promoter was used to express an artificial microRNA (aMiR) designed to target a synthetic CLAVATA3 (CLV3) transgene in SAM stem cells. Both phloem silencing signals phenocopied the loss of function of their targets and altered target gene expression suggesting that a phloem-to-SAM silencing communication axis exists, connecting distal regions of the plant to SAM stem cells. CONCLUSIONS: Demonstration of phloem-to-SAM silencing reveals a regulatory link between somatic sRNA expressed in distal regions of the plant and the growing shoot. Since the SAM stem cells ultimately produce the gametes, we discuss the intriguing possibility that phloem-to-SAM sRNA trafficking could allow transient somatic sRNA expression to manifest stable, transgenerational epigenetic changes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA, Small Untranslated , Meristem/genetics , Meristem/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Phloem/genetics , Phloem/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Gene Silencing , Gene Expression , Gene Expression Regulation, Plant
13.
PLoS Pathog ; 18(12): e1011062, 2022 12.
Article in English | MEDLINE | ID: mdl-36574436

ABSTRACT

Tobacco mosaic virus movement protein (TMV MP) is essential for virus spread between cells. To accomplish its task, TMV MP binds viral RNA, interacts with components of the cytoskeleton, and increases the size exclusion limit (SEL) of plasmodesmata. Plasmodesmata are gated intercellular channels that allow passage of small molecules and macromolecules, including RNA and protein, between plant cells. Moreover, plasmodesmata are diverse and those connecting different cell types appear to have unique mechanisms to regulate macromolecular trafficking, which likely contributes to the establishment of distinct cell boundaries. Consequently, TMV MP might be competent to mediate RNA transport through some but not all plasmodesmal gates. Due to a lack of viral mutants defective for movement between specific cell types, the ability of TMV MP in this regard is incompletely understood. In contrast, a number of trafficking impaired Potato spindle tuber viroid (PSTVd) mutants have been identified. PSTVd is a systemically infectious non-coding RNA that nevertheless can perform all functions required for replication as well as cell-to-cell and systemic spread. Previous studies have shown that PSTVd employs different structure and sequence elements to move between diverse cell types in host plants, and mutants defective for transport between specific cell types have been identified. Therefore, PSTVd may serve as a tool to analyze the functions of MPs of viral and cellular origin. To probe the RNA transport activity of TMV MP, transgenic plants expressing the protein were inoculated with PSTVd mutants. Remarkably, TMV MP complemented a PSTVd mutant defective for mesophyll entry but could not support two mutants impaired for phloem entry, suggesting it fails to productively interface with plasmodesmata at the phloem boundary and that additional viral and host factors may be required. Consistent with this idea, TMV co-infection, but not the combination of MP and coat protein (CP) expression, was able to complement one of the phloem entry mutants. These observations suggest that phloem loading is a critical impediment to establishing systemic infection that could involve the entire ensemble of TMV proteins. They also demonstrate a novel strategy for analysis of MPs.


Subject(s)
Solanum tuberosum , Tobacco Mosaic Virus , Viroids , Tobacco Mosaic Virus/metabolism , Viroids/genetics , Solanum tuberosum/metabolism , Phloem/genetics , Phloem/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Plant Viral Movement Proteins/genetics , Plant Viral Movement Proteins/metabolism , Nicotiana
14.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682639

ABSTRACT

LncRNAs impart crucial effects on various biological processes, including biotic stress responses, abiotic stress responses, fertility and development. The apple tree is one of the four major fruit trees in the world. However, lncRNAs's roles in different tissues of apple are unknown. We identified the lncRNAs in five tissues of apples including the roots, phloem, leaves, flowers, and fruit, and predicted the intricate regulatory networks. A total of 9440 lncRNAs were obtained. LncRNA target prediction revealed 10,628 potential lncRNA-messenger RNA (mRNA) pairs, 9410 pairs functioning in a cis-acting fashion, and 1218 acting in a trans-acting fashion. Functional enrichment analysis showed that the targets were significantly enriched in molecular functions related to photosynthesis-antenna proteins, single-organism metabolic process and glutathione metabolism. Additionally, a total of 88 lncRNAs have various functions related to microRNAs (miRNAs) as miRNA precursors. Interactions between lncRNAs and miRNAs were predicted, 1341 possible interrelations between 187 mdm-miRNAs and 174 lncRNAs (1.84%) were identified. MSTRG.121644.5, MSTRG.121644.8, MSTRG.2929.2, MSTRG.3953.2, MSTRG.63448.2, MSTRG.9870.2, and MSTRG.9870.3 could participate in the functions in roots as competing endogenous RNAs (ceRNAs). MSTRG.11457.2, MSTRG.138614.2, and MSTRG.60895.2 could adopt special functions in the fruit by working with miRNAs. A further analysis showed that different tissues formed special lncRNA-miRNA-mRNA networks. MSTRG.60895.2-mdm-miR393-MD17G1009000 may participate in the anthocyanin metabolism in the fruit. These findings provide a comprehensive view of potential functions for lncRNAs, corresponding target genes, and related lncRNA-miRNA-mRNA networks, which will increase our knowledge of the underlying development mechanism in apple.


Subject(s)
Malus , MicroRNAs , RNA, Long Noncoding , Flowers/genetics , Flowers/metabolism , Fruit/genetics , Fruit/metabolism , Gene Regulatory Networks , Malus/genetics , Malus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phloem/genetics , Phloem/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics
15.
Int J Mol Sci ; 23(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35562928

ABSTRACT

Lignin and cellulose are the most abundant natural organic polymers in nature. MiRNAs are a class of regulatory RNAs discovered in mammals, plants, viruses, and bacteria. Studies have shown that miRNAs play a role in lignin and cellulose biosynthesis by targeting key enzymes. However, the specific miRNAs functioning in the phloem and developing xylem of Populus deltoides are still unknown. In this study, a total of 134 miRNAs were identified via high-throughput small RNA sequencing, including 132 known and two novel miRNAs, six of which were only expressed in the phloem. A total of 58 differentially expressed miRNAs (DEmiRNAs) were identified between the developing xylem and the phloem. Among these miRNAs, 21 were significantly upregulated in the developing xylem in contrast to the phloem and 37 were significantly downregulated. A total of 2431 target genes of 134 miRNAs were obtained via high-throughput degradome sequencing. Most target genes of these miRNAs were transcription factors, including AP2, ARF, bHLH, bZIP, GRAS, GRF, MYB, NAC, TCP, and WRKY genes. Furthermore, 13 and nine miRNAs were involved in lignin and cellulose biosynthesis, respectively, and we validated the miRNAs via qRT-PCR. Our study explores these miRNAs and their regulatory networks in the phloem and developing xylem of P.deltoides and provides new insight into wood formation.


Subject(s)
MicroRNAs , Populus , Cellulose/metabolism , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Lignin/genetics , Lignin/metabolism , MicroRNAs/genetics , Phloem/genetics , Phloem/metabolism , Populus/genetics , Populus/metabolism , RNA, Messenger , Xylem/genetics , Xylem/metabolism
16.
Int J Mol Sci ; 23(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35562980

ABSTRACT

Sucrose phloem unloading plays a vital role in photoassimilate distribution and storage in sink organs such as fruits and seeds. In most plants, the phloem unloading route was reported to shift between an apoplasmic and a symplasmic pattern with fruit development. However, the molecular transition mechanisms of the phloem unloading pathway still remain largely unknown. In this study, we applied RNA sequencing to profile the specific gene expression patterns for sucrose unloading in C. oleifera fruits in the apo- and symplasmic pathways that were discerned by CF fluoresce labelling. Several key structural genes were identified that participate in phloem unloading, such as PDBG11, PDBG14, SUT8, CWIN4, and CALS10. In particular, the key genes controlling the process were involved in callose metabolism, which was confirmed by callose staining. Based on the co-expression network analysis with key structural genes, a number of transcription factors belonging to the MYB, C2C2, NAC, WRKY, and AP2/ERF families were identified to be candidate regulators for the operation and transition of phloem unloading. KEGG enrichment analysis showed that some important metabolism pathways such as plant hormone metabolism, starch, and sucrose metabolism altered with the change of the sugar unloading pattern. Our study provides innovative insights into the different mechanisms responsible for apo- and symplasmic phloem unloading in oil tea fruit and represents an important step towards the omics delineation of sucrose phloem unloading transition in crops.


Subject(s)
Camellia , Phloem , Camellia/genetics , Camellia/metabolism , Fruit/metabolism , Humans , Phloem/genetics , Phloem/metabolism , Plants/metabolism , Sucrose/metabolism , Sugars/metabolism , Transcriptome
17.
Genes (Basel) ; 13(4)2022 04 18.
Article in English | MEDLINE | ID: mdl-35456518

ABSTRACT

Circular RNAs (circRNAs) are covalently closed non-coding RNAs that play pivotal roles in various biological processes. However, circRNAs' roles in different tissues of apple are currently unknown. A total of 6495 unique circRNAs were identified from roots, phloem, leaves, flowers and fruits; 65.99% of them were intergenic circRNAs. Similar to other plants, tissue-specific expression was also observed for apple circRNAs; only 175 (2.69%) circRNAs were prevalently expressed in all five different tissues, while 1256, 1064, 912, 904 and 1080 circRNAs were expressed only in roots, phloem, leaves, flowers and fruit, respectively. The hosting-genes of circRNAs showed significant differences enriched in COG, GO terms or KEGG pathways in five tissues, suggesting the special functions of circRNAs in different tissues. Potential binding interactions between circRNAs and miRNAs were investigated using TargetFinder; 2989 interactions between 647 circRNAs and 192 miRNA were predicated in the present study. It also predicted that Chr00:18744403|18744580-mdm-miR160 might play an important role in the formation of flowers or in regulating the coloration of flowers, Chr10:6857496|6858910-mdm-miR168 might be involved in response to drought stress in roots, and Chr03:1226434|1277176 may absorb mdm-miR482a-3p and play a major role in disease resistance. Two circRNAs were experimentally analyzed by qRT-PCR with divergent primers, the expression levels were consistent with RNA-seq, which indicates that the RNA-seq datasets were reliable.


Subject(s)
Malus , MicroRNAs , Flowers/genetics , Flowers/metabolism , Fruit/genetics , Fruit/metabolism , Malus/genetics , MicroRNAs/genetics , Phloem/genetics , Phloem/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , RNA, Circular/genetics
18.
Plant Cell Rep ; 41(6): 1357-1373, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35316376

ABSTRACT

KEY MESSAGE: Most of the upregulated genes contributed to the accumulation of soluble sugars and ABA in the phloem of 'Vitis amurensis' compared to 'Merlot' during cold acclimation. Extreme cold is one of the dominant abiotic factors affecting grape yield and quality. However, the changes in sugars, phytohormones, and gene expression in the branch phloem of different tolerant grape varieties during cold acclimation remain elusive. The data supported that with decreasing temperature, the contents of fructose, sucrose, and ABA in the phloem of Vitis amurensis (cold-tolerant, T) and 'Merlot' (cold-sensitive, S) increased during cold acclimation, and these indicators were higher in T than in S. Furthermore, the activities of sucrose synthetase, sucrose phosphate synthetase, and acid invertase peaked in the early phase of cold acclimation (approximately 5 °C) compared to other phases (approximately 28 °C, 0 °C, - 5 °C and - 10 °C). Moreover, the RNA sequencing results helped identify a total of 11,343 differentially expressed genes in the phloem of T and S, among which 4912 were upregulated and 6431 were downregulated. In the abscisic acid pathway, CRTISO, PSPY1-1, CYCP707A4-2, PYL4-1, PYL4-2, P2C08, SAPK2, TARAB1, and DBF3 were more highly expressed in T than in S. In the starch and sucrose metabolism pathway, HXK1, PGMP, GLGL1, SUS6, VCINV, BGL11, SSY1, GPS, BAM1 and BAM3 were also more highly expressed in T than in S. Moreover, the genes related to oxidative phosphorylation, such as NDHF, ND4, ND1, NAD7, NAD2, ATPB, YMF19, ATP9, PMA1 and AHA8, were upregulated in T. These results will be beneficial for understanding the potential differences in tolerance across two different cold-tolerant grapes with respect to sugar metabolism and gene expression.


Subject(s)
Vitis , Acclimatization/genetics , Cold Temperature , Gene Expression Regulation, Plant , Hormones/metabolism , Phloem/genetics , Phloem/metabolism , Sucrose/metabolism , Sugars/metabolism , Temperature , Transcriptome/genetics , Vitis/genetics , Vitis/metabolism
19.
Planta ; 255(5): 96, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35348893

ABSTRACT

MAIN CONCLUSION: The present review addresses the advances of the identification methods, functions, and transportation mechanism of long-distance transport RNAs between rootstock and scion. In addition, we highlight the cognitive processes and potential mechanisms of graft hybridization. Phloem, the main transport channel of higher plants, plays an important role in the growth and development of plants. Numerous studies have identified a large number of RNAs, including mRNAs, miRNAs, siRNAs, and lncRNAs, in the plant phloem. They can not only be transported to long distances across the grafting junction in the phloem, but also act as signal molecules to regulate the growth, development, and stress resistance of remote cells or tissues, resulting in changes in the traits of rootstocks and scions. Many mobile RNAs have been discovered, but their detection methods, functions, and long-distance transport mechanisms remain to be elucidated. In addition, grafting hybridization, a phenomenon that has been questioned before, and which has an important role in selecting for superior traits, is gradually being recognized with the emergence of new evidence and the prevalence of horizontal gene transfer between parasitic plants. In this review, we outline the species, functions, identification methods, and potential mechanisms of long-distance transport RNAs between rootstocks and scions after grafting. In addition, we summarize the process of recognition and the potential mechanisms of graft hybridization. This study aimed to emphasize the role of grafting in the study of long-distance signals and selection for superior traits and to provide ideas and clues for further research on long-distance transport RNAs and graft hybridization.


Subject(s)
Hybridization, Genetic , Phloem , Phloem/genetics , Plants/genetics , RNA, Messenger/genetics , RNA, Small Interfering
20.
Curr Opin Plant Biol ; 67: 102198, 2022 06.
Article in English | MEDLINE | ID: mdl-35286861

ABSTRACT

Gelatinous fibers (G-fibers) are specialized contractile cells found in a diversity of vascular plant tissues, where they provide mechanical support and/or facilitate plant mobility. G-fibers are distinct from typical fibers by the presence of an innermost thickened G-layer, comprised mainly of axially oriented cellulose microfibrils. Despite the disparate developmental origins-tension wood fibers from the vascular cambium or primary phloem fibers from the procambium-G-fiber development, composition, and molecular signatures are remarkably similar; however, important distinctions do exist. Here, we synthesize current knowledge of the phylogenetic diversity, compositional makeup, and the molecular profiles that characterize G-fiber development and highlight open questions for future investigation.


Subject(s)
Gelatin , Phloem , Cell Wall , Phloem/genetics , Phylogeny , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...