Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.582
Filter
1.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726826

ABSTRACT

Lung cancer (LC) is the leading cause of cancer-associated deaths worldwide, among which non-small-cell lung cancer (NSCLC) accounts for 80%. Stromal cell-derived factor-1 (SDF-1) inhibition results in a significant depletion of NSCLC metastasis. Additionally, SDF-1 is the only natural chemokine known to bind and activate the receptor CXCR4. Thus, we attempted to clarify the molecular mechanism of SDF-1 underlying NSCLC progression. Transwell migration, adhesion, and G-LISA assays were used to assess megakaryocytic chemotaxis in vitro and in vivo in terms of megakaryocytic migration, adherence, and RhoA activation, respectively. Western blotting was used to assess PI3K/Akt-associated protein abundances in MEG-01 cells and primary megakaryocytes under the indicated treatment. A hematology analyzer and flow cytometry were used to assess platelet counts in peripheral blood and newly formed platelet counts in Lewis LC mice under different treatments. Immunochemistry and flow cytometry were used to measure CD41+ megakaryocyte numbers in Lewis LC mouse tissue under different treatments. ELISA was used to measure serum TPO levels, and H&E staining was used to detect NSCLC metastasis.SDF-1 receptor knockdown suppressed megakaryocytic chemotaxis in Lewis LC mice. SDF-1 receptor inhibition suppressed megakaryocytic chemotaxis via the PI3K/Akt pathway. SDF-1 receptor knockdown suppressed CD41+ megakaryocyte numbers in vivo through PI3K/Akt signaling. SDF-1 receptor inhibition suppressed CD41+ megakaryocytes to hinder NSCLC metastasis. SDF-1 facilitates NSCLC metastasis by enhancing the chemoattraction of megakaryocytes via the PI3K/Akt signaling pathway, which may provide a potential new direction for seeking therapeutic plans for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Chemokine CXCL12 , Chemotaxis , Lung Neoplasms , Megakaryocytes , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptors, CXCR4 , Signal Transduction , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Animals , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Mice , Humans , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Cell Line, Tumor , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Neoplasm Metastasis , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
2.
Pak J Pharm Sci ; 37(1): 123-128, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741408

ABSTRACT

The study aimed to investigate the effects of aspirin on patients with metastatic colorectal cancer, focusing on circulating tumor DNA levels and bone tissue. Two groups (A and B) of ten patients with osteoporosis were selected for the study. Bone tissue samples were obtained from the patients and cultured under sterile conditions. The aspirin group showed a significant decrease in circulating tumor DNA levels and an increase in bone tissue density compared to the control group. Additionally, osteoblast apoptosis was reduced, while proliferation was enhanced in the aspirin group. The protein pAkt related to the PI3K/Akt signaling pathway was upregulated in the aspirin group. These results indicate that aspirin can effectively lower circulating tumor DNA levels, promote bone tissue proliferation, inhibit apoptosis, and activate the PI3K/Akt signaling pathway, thereby influencing bone cell function. These findings provide a basis for aspirin's potential application in treating metastatic colorectal cancer and encourage further research on its mechanism and clinical use.


Subject(s)
Apoptosis , Aspirin , Circulating Tumor DNA , Colorectal Neoplasms , Humans , Aspirin/pharmacology , Aspirin/therapeutic use , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Male , Female , Middle Aged , Apoptosis/drug effects , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Cell Proliferation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Aged , Signal Transduction/drug effects , Osteoblasts/drug effects , Osteoblasts/pathology , Osteoblasts/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Bone Density/drug effects , Osteoporosis/drug therapy
3.
Arch Microbiol ; 206(6): 249, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713385

ABSTRACT

Escherichia coli (E. coli) can induce severe clinical bovine mastitis, which is to blame for large losses experienced by dairy farms. Macrophage polarization into various states is in response to pathogen infections. Lycopene, a naturally occurring hydrocarbon carotenoid, relieved inflammation by controlling M1/M2 status of macrophages. Thus, we wanted to explore the effect of lycopene on polarization states of macrophages in E. coli-induced mastitis. Macrophages were cultivated with lycopene for 24, before E. coli inoculation for 6 h. Lycopene (0.5 µmol/L) significantly enhanced cell viabilities and significantly reduced lactic dehydrogenase (LDH) levels in macrophages, whereas 2 and 3 µmol/L lycopene significantly enhanced LDH activities. Lycopene treatment significantly reduced the increase in LDH release, iNOS, CD86, TNF-α, IL-1ß and phosphatase and tensin homolog (PTEN) expressions in E. coli group. 0.5 µmol/L lycopene significantly increased E. coli-induced downregulation of CD206, arginase I (ARG1), indoleamine 2,3-dioxygenase (IDO), chitinase 3-like 3 (YM1), PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR), p-mTOR, jumonji domain-containing protein-3 (JMJD3) and interferon regulatory factor 4 (IRF4) levels. Moreover, Ginkgolic acid C17:1 (a specific PTEN inhibitor), 740YPDGFR (a specific PI3K activator), SC79 (a specific AKT activator) or CHPG sodium salt (a specific NF-κB activator) significantly decreased CD206, AGR1, IDO and YM1 expressions in lycopene and E. coli-treated macrophages. Therefore, lycopene increased M2 macrophages via inhibiting NOTCH1-PI3K-mTOR-NF-κB-JMJD3-IRF4 pathway in response to E. coli infection in macrophages. These results contribute to revealing the pathogenesis of E. coli-caused bovine mastitis, providing the new angle of the prevention and management of mastitis.


Subject(s)
Escherichia coli Infections , Escherichia coli , Interferon Regulatory Factors , Lycopene , Macrophages , NF-kappa B , Phosphatidylinositol 3-Kinases , Receptor, Notch1 , Signal Transduction , TOR Serine-Threonine Kinases , Lycopene/pharmacology , Animals , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , NF-kappa B/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Macrophages/drug effects , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Signal Transduction/drug effects , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Mice , Cattle , Cell Line , Female , Mastitis, Bovine/microbiology
5.
Pathol Res Pract ; 257: 155316, 2024 May.
Article in English | MEDLINE | ID: mdl-38692125

ABSTRACT

Non-small cell lung cancer (NSCLC), accounting for more than 80% of all cases, is the predominant form of lung cancer and the leading cause of cancer-related deaths worldwide. Significant progress has been made in diagnostic techniques, surgical interventions, chemotherapy protocols, and targeted therapies at the molecular level, leading to enhanced treatment outcomes in patients with NSCLC. Extensive evidence supports the use of circular RNAs (circRNAs), a specific category of naturally occurring non-coding small RNAs (ncRNAs), for the diagnosis, monitoring of treatment efficacy, and assessment of survival in NSCLC. CircRNAs have been identified to play significant roles in various aspects of cancer formation, either as tumor suppressors or tumor promoters, contributing to cancer development through several signaling pathways, including the phosphoinositide 3-kinases (PI3Ks) pathway. This pathway is well-established because of its regulatory role in essential cellular processes. CircRNAs regulate the PI3K/AKT pathway by targeting diverse cellular elements. This review aims to provide insight into the involvement of several circRNAs linked to the PI3K/AKT pathway in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Phosphatidylinositol 3-Kinases , RNA, Circular , Signal Transduction , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , RNA, Circular/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Signal Transduction/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Regulation, Neoplastic
6.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747293

ABSTRACT

Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Vascular Malformations , Humans , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Animals , Vascular Malformations/genetics , Vascular Malformations/pathology , Vascular Malformations/physiopathology , Vascular Malformations/metabolism , Vascular Malformations/enzymology , Endothelial Cells/enzymology , Endothelial Cells/pathology , Endothelial Cells/metabolism , Stress, Mechanical , Gain of Function Mutation , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/physiopathology , Hemangioma, Cavernous, Central Nervous System/pathology
7.
Biomed Environ Sci ; 37(4): 354-366, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727158

ABSTRACT

Objective: This study investigated the impact of occupational mercury (Hg) exposure on human gene transcription and expression, and its potential biological mechanisms. Methods: Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN low-expression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA. Results: Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model (25 and 10 µmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression. Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels. Conclusion: This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.


Subject(s)
Down-Regulation , Inflammation , Mercury , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Inflammation/chemically induced , Inflammation/metabolism , Mercury/toxicity , Signal Transduction/drug effects , Occupational Exposure/adverse effects , HEK293 Cells , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/blood
8.
Proc Natl Acad Sci U S A ; 121(21): e2403685121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743625

ABSTRACT

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.


Subject(s)
AMP-Activated Protein Kinase Kinases , Phosphatidylinositol 3-Kinases , Protein Serine-Threonine Kinases , Spheroids, Cellular , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinase Kinases/metabolism , AMP-Activated Protein Kinase Kinases/genetics , Spheroids, Cellular/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Proliferation , Cell Line, Tumor , CRISPR-Cas Systems , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
9.
PeerJ ; 12: e17028, 2024.
Article in English | MEDLINE | ID: mdl-38590708

ABSTRACT

Background: Autophagy, a crucial cellular mechanism, facilitates the degradation and removal of misfolded proteins and impaired organelles. Recent research has increasingly highlighted the intimate connection between autophagy and heat shock proteins (HSPs) in the context of tumor development. However, the specific role and underlying mechanisms of heat shock protein 90 beta family member 1 (HSP90B1) in modulating autophagy within head and neck squamous cell carcinoma (HNSCC) remain elusive. Methods: Quantitative real-time PCR (qRT-PCR), Western blot (WB), immunohistochemistry (IHC) were used to detect the expression in HNSC cell lines and tissues. The relationship between HSP90B1 and clinicopathologic features was explored based on TCGA (The Cancer Genome Atlas) data and IHC results. The biological functions of HSP90B1 were analyzed through in vitro and in vivo models to evaluate proliferation, migration, invasion, and autophagy. The mechanisms of HSP90B1 were studied using bioinformatics and WB. Results: HSP90B1 was upregulated in HNSC cells and tissues. High HSP90B1 levels were associated with T-stage, M-stage, clinical stage, and poor prognosis in HNSC patients. Functionally, HSP90B1 promotes HNSC cell proliferation, migration, invasion and inhibits apoptosis. We discovered that HSP90B1 obstructs autophagy and advances HNSC progression through the PI3K/Akt/mTOR pathway. Conclusion: Our study demonstrates that HSP90B1 is highly expressed in HNSC. Furthermore, HSP90B1 may regulate autophagy through the PI3K/Akt/mTOR pathway, mediating HNSC cell biological behaviors. These provide new insights into potential biomarkers and targets for HNSC therapy.


Subject(s)
Head and Neck Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Cell Line, Tumor , TOR Serine-Threonine Kinases/genetics , Autophagy/genetics
10.
J Agric Food Chem ; 72(14): 8214-8224, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557103

ABSTRACT

The emerging mycotoxins enniatins (ENNs) and the traditional mycotoxin deoxynivalenol (DON) often co-contaminate various grain raw materials and foods. While the liver is their common target organ, the mechanism of their combined effect remains unclear. In this study, the combined cytotoxic effects of four ENNs (ENA, ENA1, ENB, and ENB1) with DON and their mechanisms were investigated using the HepG2 cell line. Additionally, a population exposure risk assessment of these mycotoxins was performed by using in vitro experiments and computer simulations. The results showed that only ENA at 1/4 IC50 and ENB1 at 1/8 IC50 coexposed with DON showed an additive effect, while ENB showed the strongest antagonism at IC50 (CI = 3.890). Co-incubation of ENNs regulated the signaling molecule levels which were disrupted by DON. Transcriptome analysis showed that ENB (IC50) up-regulated the PI3K/Akt/FoxO signaling pathway and inhibited the expression of apoptotic genes (Bax, P53, Caspase 3, etc.) via phosphorylation of FoxO, thereby reducing the cytotoxic effects caused by DON. Both types of mycotoxins posed serious health risks, and the cumulative risk of coexposure was particularly important for emerging mycotoxins.


Subject(s)
Depsipeptides , Mycotoxins , Phosphatidylinositol 3-Kinases , Trichothecenes , Humans , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Hep G2 Cells , Mycotoxins/toxicity , Mycotoxins/analysis
11.
J Clin Invest ; 134(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618952

ABSTRACT

N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A-regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.


Subject(s)
Adenine , Carcinoma, Renal Cell , Kidney Neoplasms , Adult , Humans , Carcinogenesis/genetics , Carcinoma, Renal Cell/genetics , Cell Transformation, Neoplastic , Gene Expression , Kidney Neoplasms/genetics , Methyltransferases/genetics , Phosphatidylinositol 3-Kinases/genetics
12.
PLoS One ; 19(4): e0297043, 2024.
Article in English | MEDLINE | ID: mdl-38564578

ABSTRACT

The aberrant activation of HER2 has a pivotal role in bone metastasis implantation and progression in several tumor types, including prostate cancer (PC). Trastuzumab and other anti-HER2 therapies, such as lapatinib, have been used in human breast cancer HER2 positive. Although HER2 overexpression has been reported in PC, anti-HER2 therapy response has revealed conflicting results. We investigated the potential of lapatinib in inhibiting cell migration and inducing apoptosis in two human (LNCaP and PC3) and two canine PC cell lines (PC1 and PC2). Cell migration and apoptosis were evaluated by Annexin V/PI analysis after lapatinib treatment. The transcriptome analysis of all cell lines before and after treatment with lapatinib was also performed. We found increased apoptosis and migration inhibition in LNCaP cells (androgen-sensitive cell line), while PC1, PC2, and PC3 cells showed no alterations after the treatment. The transcriptome analysis of LNCaP and PC3 cell lines showed 158 dysregulated transcripts in common, while PC1 and PC2 cell lines presented 82. At the doses of lapatinib used, we observed transcriptional modifications in all cell lines. PI3K/AKT/mTOR pathway were enriched in human PC cells, while canine PC cells showed enrichment of tyrosine kinase antitumor response and HER2-related pathways. In canine PC cells, the apoptosis failed after lapatinib treatment, possibly due to the downregulation of MAPK genes. Prostate cancer cells insensitive to androgens may be resistant to lapatinib through PI3K gene dysregulation. The association of lapatinib with PI3K inhibitors may provide a more effective antitumor response and clinical benefits to PC patients.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Prostatic Neoplasms , Male , Humans , Animals , Dogs , Lapatinib/pharmacology , Lapatinib/therapeutic use , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Receptor, ErbB-2/metabolism , Quinazolines/pharmacology , Quinazolines/therapeutic use , Breast Neoplasms/pathology , Apoptosis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm
13.
BMC Cancer ; 24(1): 408, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566039

ABSTRACT

BACKGROUND: Accumulating evidence indicates that aberrant non-SMC condensin II complex subunit D3 (NCAPD3) is associated with carcinogenesis of various cancers. Nevertheless, the biological role of NCAPD3 in the pathogenesis of non-small cell lung cancer (NSCLC) remains unclear. METHODS: Immunohistochemistry and Western blot were performed to assess NCAPD3 expression in NSCLC tissues and cell lines. The ability of cell proliferation, invasion, and migration was evaluated by CCK-8 assays, EdU assays, Transwell assays, and scratch wound healing assays. Flow cytometry was performed to verify the cell cycle and apoptosis. RNA-sequence and rescue experiment were performed to reveal the underlying mechanisms. RESULTS: The results showed that the expression of NCAPD3 was significantly elevated in NSCLC tissues. High NCAPD3 expression in NSCLC patients was substantially associated with a worse prognosis. Functionally, knockdown of NCAPD3 resulted in cell apoptosis and cell cycle arrest in NSCLC cells as well as a significant inhibition of proliferation, invasion, and migration. Furthermore, RNA-sequencing analysis suggested that NCAPD3 contributes to NSCLC carcinogenesis by regulating PI3K/Akt/FOXO4 pathway. Insulin-like growth factors-1 (IGF-1), an activator of PI3K/Akt signaling pathway, could reverse NCAPD3 silence-mediated proliferation inhibition and apoptosis in NSCLC cells. CONCLUSION: NCAPD3 suppresses apoptosis and promotes cell proliferation via the PI3K/Akt/FOXO4 signaling pathway, suggesting a potential use for NCAPD3 inhibitors as NSCLC therapeutics.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic , Lung Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA
14.
Oncol Res ; 32(4): 659-678, 2024.
Article in English | MEDLINE | ID: mdl-38560572

ABSTRACT

Background: IQGAP3 plays a crucial role in regulating cell proliferation, division, and cytoskeletal organization. Abnormal expression of IQGAP3 has been linked to various tumors, but its function in glioma is not well understood. Methods: Various methods, including genetic differential analysis, single-cell analysis, ROC curve analysis, Cox regression, Kaplan-Meier analysis, and enrichment analysis, were employed to analyze the expression patterns, diagnostic potential, prognostic implications, and biological processes involving IQGAP3 in normal and tumor tissues. The impact of IQGAP3 on immune infiltration and the immune microenvironment in gliomas was evaluated using immunofluorescence. Additionally, the cBioPortal database was used to analyze copy number variations and mutation sites of IQGAP3. Experimental validation was also performed to assess the effects of IQGAP3 on glioma cells and explore underlying mechanisms. Results: High IQGAP3 expression in gliomas is associated with an unfavorable prognosis, particularly in wild-type IDH and 1p/19q non-codeleted gliomas. Enrichment analysis revealed that IQGAP3 is involved in regulating the cell cycle, PI3K/AKT signaling, p53 signaling, and PLK1-related pathways. Furthermore, IQGAP3 expression may be closely related to the immunosuppressive microenvironment of glioblastoma. BRD-K88742110 and LY-303511 are potential drugs for targeting IQGAP3 in anti-glioma therapy. In vitro experiments showed that downregulation of IQGAP3 inhibits the proliferation and migration of glioma cells, with the PLK1/PI3K/AKT pathway potentially playing a crucial role in IQGAP3-mediated glioma progression. Conclusion: IQGAP3 shows promise as a valuable biomarker for diagnosis, prognosis, and immunotherapeutic strategies in gliomas.


Subject(s)
Brain Neoplasms , Glioma , Humans , Prognosis , Brain Neoplasms/pathology , DNA Copy Number Variations , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Glioma/pathology , Tumor Microenvironment/genetics , GTPase-Activating Proteins
15.
Medicine (Baltimore) ; 103(15): e37740, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608086

ABSTRACT

Explore Acori Tatarinowii Rhizoma (ATR) and Polygalae Radix (PR) mechanisms in Alzheimer's disease (AD) treatment through network pharmacology. ATR-PR was investigated in the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, Batman, and Traditional Chinese Medicines Integrated Database (TCMID) to gather information on its chemical components and target proteins. Target genes associated with AD were retrieved from the GeneCards and National Center for Biotechnology Information (NCBI) databases. The integration of these datasets with potential targets facilitated the construction of an AD and ATR-PR protein-protein interaction (PPI) network using the STRING database. The resulting network identified the core active ingredients and main targets of ATR-PR in AD treatment. Cluster analysis of the PPI network was performed using Cytoscape 3.7.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the Metascape database. Molecular docking simulations revealed potential interactions between the main active ingredients and core targets. Our analysis identified 8 putative components and 455 targets of ATR-PR. We systematically searched for 1306 genes associated with AD, conducted Venn diagram analysis resulting in 156 common targets, and constructed a PPI network with 57 key targets. GO functional analysis highlighted the primary biological processes associated with oxidative stress. KEGG pathway enrichment analysis revealed the involvement of 64 signaling pathways, with the PI3K/Akt signaling pathway playing a key role. Molecular docking analysis indicated a high affinity between the potential targets of ATR-PR and the main compounds of AD. This study sheds light on the complex network of interactions involving ATR-PR in the context of AD. The identified targets, pathways, and interactions provide a foundation for understanding the potential therapeutic mechanisms. The involvement of oxidative stress-related processes and the crucial role of the PI3K/Akt signaling pathway suggest avenues for targeted therapeutic interventions in Alzheimer's disease treatment. Our proposition of the combined use of ATR-PR has emerged as a potential treatment strategy for AD, supported by a network pharmacology approach. This framework provides a robust foundation for future clinical applications and experimental research in the pursuit of effective Alzheimer's disease treatments.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt
16.
Epigenetics ; 19(1): 2341578, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38615330

ABSTRACT

Long non-coding RNAs (lncRNAs) have been shown to be involved in the regulation of skeletal muscle development through multiple mechanisms. The present study revealed that the lncRNA SOX6 AU (SRY-box transcription factor 6 antisense upstream) is reverse transcribed from upstream of the bovine sex-determining region Y (SRY)-related high-mobility-group box 6 (SOX6) gene. SOX6 AU was significantly differentially expressed in muscle tissue among different developmental stages in Xianan cattle. Subsequently, knockdown and overexpression experiments discovered that SOX6 AU promoted primary skeletal muscle cells proliferation, apoptosis, and differentiation in bovine. The overexpression of SOX6 AU in bovine primary skeletal muscle cells resulted in 483 differentially expressed genes (DEGs), including 224 upregulated DEGs and 259 downregulated DEGs. GO functional annotation analysis showed that muscle development-related biological processes such as muscle structure development and muscle cell proliferation were significantly enriched. KEGG pathway analysis revealed that the PI3K/AKT and MAPK signaling pathways were important pathways for DEG enrichment. Notably, we found that SOX6 AU inhibited the mRNA and protein expression levels of the SOX6 gene. Moreover, knockdown of the SOX6 gene promoted the proliferation and apoptosis of bovine primary skeletal muscle cells. Finally, we showed that SOX6 AU promoted the proliferation and apoptosis of bovine primary skeletal muscle cells by cis-modulation of SOX6 in cattle. This work illustrates our discovery of the molecular mechanisms underlying the regulation of SOX6 AU in the development of beef.


Subject(s)
Phosphatidylinositol 3-Kinases , RNA, Long Noncoding , Cattle , Animals , Phosphatidylinositol 3-Kinases/genetics , DNA Methylation , Muscle Development/genetics , Apoptosis , Cell Differentiation
17.
J Clin Invest ; 134(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618953

ABSTRACT

N6-Methyladenosine (m6A), a prevalent posttranscriptional modification, plays an important role in cancer progression. Clear cell renal cell carcinoma (ccRCC) is chiefly associated with the loss of the von Hippel-Lindau (VHL) gene, encoding a component of the E3 ubiquitin ligase complex. In this issue of the JCI, Zhang and colleagues unveiled a function of VHL beyond its canonical role as an E3 ubiquitin ligase in regulating hypoxia-inducible factors (HIFs). It also governed m6A modification by orchestrating the assembly of m6A writer proteins METTL3 and METTL14, thereby stabilizing PIK3R3 mRNA. Mechanistically, PIK3R3 contributed to p85 ubiquitination, which restrained PI3K/AKT signaling and consequently impeded ccRCC growth in cell and mouse models. This discovery provides potential treatment targets in VHL-deficient ccRCCs.


Subject(s)
Adenine , Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Mice , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , RNA Stability , Ubiquitin-Protein Ligases , Humans
18.
J Orthop Surg Res ; 19(1): 241, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622668

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) play an important role in osteoarthritis (OA). However, the role of circRNA in OA is still unclear. Here, we explored the role and mechanism of circ_0044235 in OA. METHODS: CHON-001 cells were treated with IL-1ß to establish OA model in vitro. The levels of circ_0044235, miR-375 and phosphoinositide 3-kinase (PI3K) regulatory subunit 3 (PIK3R3) were detected by quantitative real-time PCR. Cell count kit-8 assay and flow cytometry assay were used to detect cell viability and apoptosis. The concentrations of inflammation factors were determined by enzyme-linked immunosorbent assay. Western blot was used to detect protein levels. The interaction between miR-375 and circ_0044235 or PIK3R3 was analyzed by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS: Circ_0044235 was significantly decreased in OA cartilage tissue and IL-1ß-treated CHON-001 cells. Overexpression of circ_0044235 promoted IL-1ß-stimulated CHON-001 cell viability and inhibited apoptosis, inflammation, and extracellular matrix (ECM) degradation. In mechanism analysis, circ_0044235 could act as a sponge for miR-375 and positively regulate PIK3R3 expression. In addition, miR-375 ameliorated the effect of circ_0044235 overexpression on IL-1ß-mediated CHON-001 cells injury. In addition, miR-375 inhibition mitigated IL-1ß-induced CHON-001 cell injury, while PIK3R3 silencing restored the effect. CONCLUSION: Circ_0044235 knockdown alleviated IL-1ß-induced chondrocytes injury by regulating miR-375/PIK3R3 axis, confirming that circ_0044235 might be a potential target for OA treatment.


Subject(s)
MicroRNAs , Osteoarthritis , Humans , Phosphatidylinositol 3-Kinases/genetics , Osteoarthritis/genetics , Inflammation , Apoptosis/genetics , Chondrocytes , Interleukin-1beta/genetics , MicroRNAs/genetics
19.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 212-218, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650131

ABSTRACT

Many cancers, including prostate cancer, have miRNAs with altered expression levels. These miRNAs play a pivotal role in regulating cancer initiation, invasion, and metastasis. miRNAs are an important component in cancer diagnosis and therapy and can play a key role as biomarkers or chemotherapeutic agents.  This investigation aimed to show the effects of miR-375 on PCa. In this project, target prediction tools and the KEGG pathway were performed to determine the potential targets of miR-375. Transfection was performed using miR-375 mimic and inhibitor. The actions of miRNAs on cell viability and migration were examined in PCa cells. In addition, qRT-PCR was executed to evaluate changes in gene expression in the PI3K-mTOR pathway. The analyses exposed that the upregulation of miR-375 repressed the viability at 48 h. While stimulation of miR-375 did not repress the migration, suppression of miR-375 reduced the migration at 24 and 48 hours. The predicted target TSC1 gene is not directly targeted by miR-375. Interestingly, in response to PIK3CA increase, mTOR expression was suppressed in all cells except LNCAP cells. In conclusion, miR-375 has anti-proliferative and cell migration inhibitory effects in prostate cancer. However, studies demonstrate that miR-375 may have tumor suppressor and oncogenic effects when considering cell molecular differences.


Subject(s)
Cell Movement , Cell Proliferation , Cell Survival , Gene Expression Regulation, Neoplastic , MicroRNAs , Prostatic Neoplasms , TOR Serine-Threonine Kinases , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Male , Cell Movement/genetics , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Cell Survival/genetics , Cell Proliferation/genetics , Signal Transduction/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics
20.
Funct Integr Genomics ; 24(2): 71, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568332

ABSTRACT

The incidence rate of developing ovarian cancer decreases over the years; however, mortality ranks top among malignancies of women, mainly metastasis through local invasion. Matrilin-2 (MATN2) is a member of the matrilin family that plays an important role in many cancers. However, its relationship with ovarian cancer remains unknown. Our study aimed to explore the function and possible mechanism of MATN2 in ovarian cancer. Human ovarian cancer tissue microarrays were used to detect the MATN2 expression in different types of ovarian cancer using immunohistochemistry (IHC). CCK-8, wound scratch healing assay, transwell assay, and flow cytometry were used to detect cell mobility. Gene and protein expression were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. MATN2 interacts with phosphatase, and the tensin homolog (PTEN) deleted on chromosome 10 was analyzed using TCGA database and co-immunoprecipitation (Co-IP). In vivo experiments were conducted using BALB/c nude mice, and tumor volume and weight were recorded. Tumor growth was determined using hematoxylin and eosin (H&E) and IHC staining. MATN2 was significantly downregulated in ovarian cancer cells. The SKOV3 and A2780 cell mobility was significantly inhibited by MATN2 overexpression, while the cell apoptosis rate was significantly increased. MATN2 overexpression decreased transplanted tumor size in vivo. These results were reversed by inhibiting MATN2. Furthermore, we found that PTEN closely interacted with MATN2 using bioinformatics and Co-IP. MATN2 overexpression significantly inhibited the PI3K/AKT pathway, however, PTEN suppression reversed this effect of MATN2 overexpression. These results indicated that MATN2 may play a critical role in ovarian cancer development by inhibiting cells proliferation and migration. The mechanism was related to interacting with PTEN, thus inhibiting downstream effectors in the PI3K/AKT pathway, which may be a novel target for treating ovarian cancer.


Subject(s)
Ovarian Neoplasms , Animals , Mice , Female , Humans , Ovarian Neoplasms/genetics , Matrilin Proteins , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Cell Line, Tumor , Mice, Nude , PTEN Phosphohydrolase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...