Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
1.
J Environ Pathol Toxicol Oncol ; 43(4): 53-64, 2024.
Article in English | MEDLINE | ID: mdl-39016141

ABSTRACT

Ovarian cancer is one of the most common malignant tumors in female reproductive organs. Its incidence rate is second only to uterine body cancer and cervical cancer, posing a serious threat to women's health. Herein, we explored that PFKFB3 in cancer progression of ovarian cancer and its underlying mechanism. All the serum samples from ovarian cancer were collected by our hospital. PFKFB3 mRNA expressions in patients with ovarian cancer and ovarian cancer cell lines were up-regulated. PFKFB3 protein expressions in ovarian cancer cells were induced. ovarian cancer patients with high PFKFB3expression had lower survival rate. The PFKFB3gene promoted cell proliferation and EDU cells, and increased cell metastasis of ovarian cancer. Si-PFKFB3 reduced cell proliferation and EDU cells, and decreased cell metastasis of ovarian cancer. PFKFB3 gene up-regulation reduced caspase-3/9 activity levels of ovarian cancer. Si-PFKFB3 also promoted caspase-3/9 activity levels of ovarian cancer. PFKFB3 gene promoted Warburg effect progression of ovarian cancer. PFKFB3 gene reduced NLRP3-induced pyroptosis of ovarian cancer. PFKFB3 suppressed NLRP3 expression. NLRP3 was one target spot for PFKFB3 on pyroptosis of ovarian cancer. Taken together, we conclude that PFKFB3 suppressed NLRP3 axis to reduce pyroptosis and increase Warburg effect progression of ovarian cancer, and provide molecular insight into the mechanisms by which the PFKFB3 regulates pyroptosis of ovarian cancer.


Subject(s)
Cell Movement , Ovarian Neoplasms , Phosphofructokinase-2 , Pyroptosis , Female , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Warburg Effect, Oncologic
2.
J Cell Mol Med ; 28(12): e18469, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899809

ABSTRACT

The alterations in DNA methylation and transcriptome in trophoblast cells under conditions of low oxygen and oxidative stress have major implications for pregnancy-related disorders. However, the exact mechanism is still not fully understood. In this study, we established models of hypoxia (H group) and oxidative stress (HR group) using HTR-8/SVneo trophoblast cells and performed combined analysis of genome-wide DNA methylation changes using reduced representation bisulphite sequencing and transcriptome expression changes using RNA sequencing. Our findings revealed that the H group exhibited a higher number of differentially methylated genes and differentially expressed genes than the HR group. In the H group, only 0.90% of all differentially expressed genes displayed simultaneous changes in DNA methylation and transcriptome expression. After the threshold was expanded, this number increased to 6.29% in the HR group. Notably, both the H group and HR group exhibited concurrent alterations in DNA methylation and transcriptome expression within Axon guidance and MAPK signalling pathway. Among the top 25 differentially methylated KEGG pathways in the promoter region, 11 pathways were commonly enriched in H group and HR group, accounting for 44.00%. Among the top 25 KEGG pathways in transcriptome with significant differences between the H group and HR group, 10 pathways were consistent, accounting for 40.00%. By integrating our previous data on DNA methylation from preeclamptic placental tissues, we identified that the ANKRD37 and PFKFB3 genes may contribute to the pathogenesis of preeclampsia through DNA methylation-mediated transcriptome expression under hypoxic conditions.


Subject(s)
Cell Hypoxia , DNA Methylation , Oxidative Stress , Transcriptome , Trophoblasts , Humans , Trophoblasts/metabolism , Oxidative Stress/genetics , Transcriptome/genetics , Cell Hypoxia/genetics , Cell Line , Female , Pregnancy , Gene Expression Profiling , Gene Expression Regulation , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism
3.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 78-84, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836678

ABSTRACT

Macrophages in the tumor microenvironment can polarize into M1 or M2 forms, with M2 macrophages (M2φ) promoting tumor growth and metastasis in cervical squamous cell carcinoma (CESC). This study explored the effects of M2φ on CESC metabolic reprogramming both in vitro and in vivo. Results showed that M2φ secreted CXCL1, which significantly increased CESC migration and metabolic regulation. Further experiments revealed that CXCL1 upregulated KDM6B to enhance PFKFB2 transcriptional activity, thus regulating CESC glucose metabolism. Transcriptome sequencing screened 5 upregulated genes related to glycolysis, with PFKFB2 showing the most significant increase in cells treated with rCXCL1. Dual-luciferase reporter assay confirmed that rCXCL1 enhances PFKFB2 transcriptional activity. Bioinformatics analysis revealed a high correlation between expressions of KDM6B and PFKFB2 in CESC. Mechanistic experiments demonstrated that KDM6B inhibited H3K27me3 modification to activate PFKFB2 transcriptional expression. In conclusion, M2φ secreted CXCL1 to promote CESC cell migration and invasion, and CXCL1 activated KDM6B expression in CESC cells, inhibiting H3K27 protein methylation modification, and enhanced PFKFB2 transcriptional activity to regulate CESC glucose metabolism. These results provided new insights into the complex interplay between the immune system and cancer metabolism, which may have broader implications for understanding and treating other types of cancer.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Chemokine CXCL1 , Gene Expression Regulation, Neoplastic , Jumonji Domain-Containing Histone Demethylases , Macrophages , Phosphofructokinase-2 , Uterine Cervical Neoplasms , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Humans , Female , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Macrophages/metabolism , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Cell Movement/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Animals , Cell Line, Tumor , Mice , Tumor Microenvironment/genetics , Glucose/metabolism , Mice, Nude , Glycolysis/genetics , Metabolic Reprogramming
4.
J Biol Chem ; 300(6): 107334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705396

ABSTRACT

The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3) is a critical regulator of glycolysis and plays a key role in modulating the inflammatory response, thereby contributing to the development of inflammatory diseases such as sepsis. Despite its importance, the development of strategies to target PFKFB3 in the context of sepsis remains challenging. In this study, we employed a miRNA-based approach to decrease PFKFB3 expression. Through multiple meta-analyses, we observed a downregulation of miR-106a-5p expression and an upregulation of PFKFB3 expression in clinical sepsis samples. These changes were also confirmed in blood monocytes from patients with early sepsis and from a mouse model of lipopolysaccharide (LPS)-induced sepsis. Overexpression of miR-106a-5p significantly decreased the LPS-induced increase in glycolytic capacity, inflammatory response, and pyroptosis in macrophages. Mechanistically, we identified PFKFB3 as a direct target protein of miR-106a-5p and demonstrated its essential role in LPS-induced pyroptosis and inflammatory response in macrophages. Furthermore, treatment with agomir-miR-106a-5p conferred a protective effect in an LPS mouse model of sepsis, but this effect was attenuated in myeloid-specific Pfkfb3 KO mice. These findings indicate that miR-106a-5p inhibits macrophage pyroptosis and inflammatory response in sepsis by regulating PFKFB3-mediated glucose metabolism, representing a potential therapeutic option for the treatment of sepsis.


Subject(s)
Inflammation , Lipopolysaccharides , Macrophages , MicroRNAs , Phosphofructokinase-2 , Pyroptosis , Sepsis , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Animals , Sepsis/metabolism , Sepsis/genetics , Sepsis/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Mice , Macrophages/metabolism , Inflammation/metabolism , Inflammation/genetics , Glycolysis , Male , Mice, Inbred C57BL
5.
JCI Insight ; 9(13)2024 May 23.
Article in English | MEDLINE | ID: mdl-38781030

ABSTRACT

Acute pancreatitis (AP) is among the most common hospital gastrointestinal diagnoses; understanding the mechanisms underlying the severity of AP is critical for development of new treatment options for this disease. Here, we evaluate the biological function of phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in AP pathogenesis in 2 independent genetically engineered mouse models of AP. PFKFB3 was elevated in AP and severe AP (SAP), and KO of Pfkfb3 abrogated the severity of alcoholic SAP (FAEE-SAP). Using a combination of genetic, pharmacological, and molecular studies, we defined the interaction of PFKFB3 with inositol 1,4,5-trisphosphate receptor (IP3R) as a key event mediating this phenomenon. Further analysis demonstrated that the interaction between PFKFB3 and IP3R promotes FAEE-SAP severity by altering intracellular calcium homeostasis in acinar cells. Together, our results support a PFKFB3-driven mechanism controlling AP pathobiology and define this enzyme as a therapeutic target to ameliorate the severity of this condition.


Subject(s)
Acinar Cells , Calcium , Inositol 1,4,5-Trisphosphate Receptors , Pancreatitis , Phosphofructokinase-2 , Animals , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Mice , Pancreatitis/metabolism , Pancreatitis/genetics , Pancreatitis/pathology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Calcium/metabolism , Acinar Cells/metabolism , Acinar Cells/pathology , Mice, Knockout , Disease Models, Animal , Severity of Illness Index , Male , Humans , Calcium Signaling/genetics
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167248, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38777100

ABSTRACT

Recent studies in Diffuse Midline Gliomas (DMG) demonstrated a strong connection between epigenome dysregulation and metabolic rewiring. Here, we evaluated the value of targeting a glycolytic protein named Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase 3 (PFKFB3) in H3.3K27M DMG. We observed that the viability of H3.3K27M cells is dramatically reduced by PFK15, a potent inhibitor of PFKFB3. Furthermore, PFKFB3 inhibition induced apoptosis and G2/M arrest. Interestingly, CRISPR-Knockout of the K27M mutant allele has a synergistic effect on the observed phenotype. Altogether, we identified PFKFB3 as a new target for H3.3K27M DMG, making PFK15 a potential candidate for future animal studies and clinical trials.


Subject(s)
Glioma , Histones , Phosphofructokinase-2 , Humans , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Histones/metabolism , Histones/genetics , Cell Line, Tumor , Child , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Apoptosis , Mutation , Glycolysis/drug effects
7.
Cell Mol Life Sci ; 81(1): 228, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777955

ABSTRACT

Diabetic cardiomyopathy (DCM) is a prevalent complication of type 2 diabetes (T2D). 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) is a glycolysis regulator. However, the potential effects of PFKFB3 in the DCM remain unclear. In comparison to db/m mice, PFKFB3 levels decreased in the hearts of db/db mice. Cardiac-specific PFKFB3 overexpression inhibited myocardial oxidative stress and cardiomyocyte apoptosis, suppressed mitochondrial fragmentation, and partly restored mitochondrial function in db/db mice. Moreover, PFKFB3 overexpression stimulated glycolysis. Interestingly, based on the inhibition of glycolysis, PFKFB3 overexpression still suppressed oxidative stress and apoptosis of cardiomyocytes in vitro, which indicated that PFKFB3 overexpression could alleviate DCM independent of glycolysis. Using mass spectrometry combined with co-immunoprecipitation, we identified optic atrophy 1 (OPA1) interacting with PFKFB3. In db/db mice, the knockdown of OPA1 receded the effects of PFKFB3 overexpression in alleviating cardiac remodeling and dysfunction. Mechanistically, PFKFB3 stabilized OPA1 expression by promoting E3 ligase NEDD4L-mediated atypical K6-linked polyubiquitination and thus prevented the degradation of OPA1 by the proteasomal pathway. Our study indicates that PFKFB3/OPA1 could be potential therapeutic targets for DCM.


Subject(s)
Diabetic Cardiomyopathies , GTP Phosphohydrolases , Myocytes, Cardiac , Phosphofructokinase-2 , Ubiquitination , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Mice , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Oxidative Stress , Apoptosis/genetics , Myocardium/metabolism , Myocardium/pathology , Mice, Inbred C57BL , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Glycolysis , Humans , Protein Stability
8.
Cardiovasc Res ; 120(8): 883-898, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38626254

ABSTRACT

AIMS: The activation of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in endothelial cells (ECs) contributes to vascular inflammation in atherosclerosis. Considering the high glycolytic rate of ECs, we delineated whether and how glycolysis determines endothelial NLRP3 inflammasome activation in atherosclerosis. METHODS AND RESULTS: Our results demonstrated a significant up-regulation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a key regulator of glycolysis, in human and mouse atherosclerotic endothelium, which positively correlated with NLRP3 levels. Atherosclerotic stimuli up-regulated endothelial PFKFB3 expression via sterol regulatory element-binding protein 2 (SREBP2) transactivation. EC-selective haplodeficiency of Pfkfb3 in Apoe-/- mice resulted in reduced endothelial NLRP3 inflammasome activation and attenuation of atherogenesis. Mechanistic investigations revealed that PFKFB3-driven glycolysis increased the NADH content and induced oligomerization of C-terminal binding protein 1 (CtBP1), an NADH-sensitive transcriptional co-repressor. The monomer form, but not the oligomer form, of CtBP1 was found to associate with the transcriptional repressor Forkhead box P1 (FOXP1) and acted as a transrepressor of inflammasome components, including NLRP3, caspase-1, and interleukin-1ß (IL-1ß). Interfering with NADH-induced CtBP1 oligomerization restored its binding to FOXP1 and inhibited the glycolysis-dependent up-regulation of NLRP3, Caspase-1, and IL-1ß. Additionally, EC-specific overexpression of NADH-insensitive CtBP1 alleviates atherosclerosis. CONCLUSION: Our findings highlight the existence of a glycolysis-dependent NADH/CtBP/FOXP1-transrepression pathway that regulates endothelial NLRP3 inflammasome activation in atherogenesis. This pathway represents a potential target for selective PFKFB3 inhibitors or strategies aimed at disrupting CtBP1 oligomerization to modulate atherosclerosis.


Subject(s)
Atherosclerosis , Disease Models, Animal , Endothelial Cells , Glycolysis , Inflammasomes , Mice, Knockout, ApoE , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphofructokinase-2 , Animals , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Humans , Inflammasomes/metabolism , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , NAD/metabolism , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics , Mice, Inbred C57BL , Signal Transduction , Male , Cells, Cultured , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Plaque, Atherosclerotic , Alcohol Oxidoreductases , Sterol Regulatory Element Binding Protein 2
9.
Cell Signal ; 119: 111184, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640982

ABSTRACT

Estrogen receptor alpha (ERα) is expressed in approximately 70% of breast cancer cases and determines the sensitivity and effectiveness of endocrine therapy. 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase3 (PFKFB3) is a glycolytic enzyme that is highly expressed in a great many human tumors, and recent studies have shown that it plays a significant role in improving drug sensitivity. However, the role of PFKFB3 in regulating ERα expression and the underlying mechanism remains unclear. Here, we find by using immunohistochemistry (IHC) that PFKFB3 is elevated in ER-positive breast cancer and high expression of PFKFB3 resulted in a worse prognosis. In vitro and in vivo experiments verify that PFKFB3 promotes ER-positive breast cancer cell proliferation. The overexpression of PFKFB3 promotes the estrogen-independent ER-positive breast cancer growth. In an estrogen-free condition, RNA-sequencing data from MCF7 cells treated with siPFKFB3 showed enrichment of the estrogen signaling pathway, and a luciferase assay demonstrated that knockdown of PFKFB3 inhibited the ERα transcriptional activity. Mechanistically, down-regulation of PFKFB3 promotes STUB1 binding to ERα, which accelerates ERα degradation by K48-based ubiquitin linkage. Finally, growth of ER-positive breast cancer cells in vivo was more potently inhibited by fulvestrant combined with the PFKFB3 inhibitor PFK158 than for each drug alone. In conclusion, these data suggest that PFKFB3 is identified as an adverse prognosis factor for ER-positive breast cancer and plays a previously unrecognized role in the regulation of ERα stability and activity. Our results further explores an effective approach to improve fulvestrant sensitivity through the early combination with a PFKFB3 inhibitor.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha , Fulvestrant , Phosphofructokinase-2 , Humans , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Estrogen Receptor alpha/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Fulvestrant/pharmacology , Animals , Protein Stability/drug effects , Mice , MCF-7 Cells , Cell Proliferation/drug effects , Mice, Nude , Carcinogenesis/metabolism , Carcinogenesis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents, Hormonal/pharmacology , Cell Line, Tumor
10.
Elife ; 122024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573813

ABSTRACT

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Subject(s)
Glycolysis , Phosphofructokinase-2 , Animals , Mice , Adenosine Triphosphate/metabolism , Anaerobiosis , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Oxidative Phosphorylation , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Phosphoric Monoester Hydrolases/metabolism
11.
Eur J Med Res ; 29(1): 236, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622715

ABSTRACT

Glycolysis-related metabolic reprogramming is a central hallmark of human cancers, especially in renal cell carcinoma. However, the regulatory function of glycolytic signature in papillary RCC has not been well elucidated. In the present study, the glycolysis-immune predictive signature was constructed and validated using WGCNA, glycolysis-immune clustering analysis. PPI network of DEGs was constructed and visualized. Functional enrichments and patients' overall survival were analyzed. QRT-PCR experiments were performed to detect hub genes' expression and distribution, siRNA technology was used to silence targeted genes; cell proliferation and migration assays were applied to evaluate the biological function. Glucose concentration, lactate secretion, and ATP production were measured. Glycolysis-Immune Related Prognostic Index (GIRPI) was constructed and combined analyzed with single-cell RNA-seq. High-GIRPI signature predicted significantly poorer outcomes and relevant clinical features of pRCC patients. Moreover, GIRPI also participated in several pathways, which affected tumor immune microenvironment and provided potential therapeutic strategy. As a key glycolysis regulator, PFKFB3 could promote renal cancer cell proliferation and migration in vitro. Blocking of PFKFB3 by selective inhibitor PFK-015 or glycolytic inhibitor 2-DG significantly restrained renal cancer cells' neoplastic potential. PFK-015 and sunitinib could synergistically inhibit pRCC cells proliferation. Glycolysis-Immune Risk Signature is closely associated with pRCC prognosis, progression, immune infiltration, and therapeutic response. PFKFB3 may serve as a pivotal glycolysis regulator and mediates Sunitinib resistance in pRCC patients.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Sunitinib/pharmacology , Sunitinib/therapeutic use , Multiomics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Prognosis , Tumor Microenvironment , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism
12.
Biochem Biophys Res Commun ; 712-713: 149958, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38640731

ABSTRACT

Hepatic stellate cells (HSCs) perform a significant function in liver regeneration (LR) by becoming active. We propose to investigate if activated HSCs enhance glycolysis via PFKFB3, an essential glycolytic regulator, and whether targeting this pathway could be beneficial for LR. The liver and isolated HSCs of mice subjected to 2/3 partial hepatectomy (PHx) exhibited a significant rise in PFKFB3 expression, as indicated by quantitative RT-PCR analyses and Western blotting. Also, the primary HSCs of mice subjected to PHx have a significant elevation of the glycolysis level. Knocking down PFKFB3 significantly diminished the enhancement of glycolysis by PDGF in human LX2 cells. The hepatocyte proliferation in mice treated with PHx was almost completely prevented when the PFKFB3 inhibitor 3PO was administered, emerging that PFKFB3 is essential in LR. Furthermore, there was a decline in mRNA expression of immediate early genes and proinflammatory cytokines. In terms of mechanism, both the p38 MAP kinase and ERK1/2 phosphorylation in LO2 cells and LO2 proliferation were significantly reduced by the conditioned medium (CM) obtained from LX2 cells with either PFKFB3 knockdown or inhibition. Compared to the control group, isolated hepatocytes from 3PO-treated mice showed decreased p38 MAP kinase and ERK1/2 phosphorylation and proliferation. Thus, LR after PHx involves the activation of PFKFB3 in HSCs, which enhances glycolysis and promotes lactate production, thereby facilitating hepatocyte proliferation via the p38/ERK MAPK signaling pathway.


Subject(s)
Cell Proliferation , Glycolysis , Hepatic Stellate Cells , Liver Regeneration , Mice, Inbred C57BL , Phosphofructokinase-2 , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Animals , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/cytology , Humans , Mice , Male , Cell Line , Hepatectomy , Cells, Cultured , Liver/metabolism
13.
J Am Heart Assoc ; 13(7): e033676, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38533937

ABSTRACT

BACKGROUND: Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. METHODS AND RESULTS: To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control mice, we characterized the impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. cKO mice have a shortened life span of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to control animals. Metabolomic, proteomic, and Western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular dilation, represented by reduced fractional shortening and increased left ventricular internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. CONCLUSIONS: Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart.


Subject(s)
Myocytes, Cardiac , Phosphofructokinase-2 , Animals , Mice , Glucose/metabolism , Insulin/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Proteomics , Pyruvates/metabolism
14.
Crit Rev Eukaryot Gene Expr ; 34(3): 73-82, 2024.
Article in English | MEDLINE | ID: mdl-38305290

ABSTRACT

Gestational diabetes mellitus (GDM) complicated with preeclampsia can lead to polyhydramnios, ketosis. Herein, we explored that CPEB4 in cancer progression of preeclampsia and its underlying mechanism. All the serum samples were collected from patients with preeclampsia. These was the induction of CPEB4 in patients with preeclampsia. The serum of CPEB4 mRNA expression was positive correlation with Proteinuria, systolic blood pressure and diastolic blood pressure in patients. The serum of CPEB4 mRNA expression was also negative correlation with body weight of infant in patients. The serum of CPEB4 mRNA expression also was negative correlation with GPX4 level and GSH activity level in patients. The serum of CPEB4 mRNA expression was positive correlation with iron content in patients. CPEB4 gene inhibited trophoblast cell proliferation. CPEB4 gene promoted trophoblast cell ferroptosis by mitochondrial damage. CPEB4 gene induced PFKFB3 expression by the inhibition of PFKFB3 Ubiquitination. PFKFB3 inhibitor reduced the effects of CPEB4 on cell proliferation and ferroptosis of trophoblast cell. Taken together, the CPEB4 promoted trophoblast cell ferroptosis through mitochondrial damage by the induction of PFKFB3 expression, CPEB4 as an represents a potential therapeutic strategy for the treatment of preeclampsia or various types of GDM.


Subject(s)
Diabetes, Gestational , Ferroptosis , Pre-Eclampsia , Pregnancy , Female , Humans , Down-Regulation , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Ferroptosis/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA, Messenger , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism
15.
PLoS One ; 19(1): e0296266, 2024.
Article in English | MEDLINE | ID: mdl-38227599

ABSTRACT

BACKGROUND: Sepsis, described as an inflammatory reaction to an infection, is a very social health problem with high mortality. This study aims to explore the new mechanism in the progression of sepsis. METHODS: We downloaded the GSE69528 dataset to screen differentially expressed genes (DEGs) for WGCNA, in which the key module was identified and analyzed by DMNC algorithm, expression verification and ROC curve analysis to identify the hub gene. Furthermore, the hub gene was analyzed by immunoassay, and the potential mechanism of hub gene in neutrophils was investigated by in vitro experiments. RESULTS: The turquoise module was the key module for sepsis in WGCNA on 94 DEGs. The top 20 genes of DMNC network were verified in GSE69528 and GSE9960, and 10 significant genes were obtained for ROC analysis. Based on the ROC curves, HP was considered the hub gene in sepsis, and its expression difference in sepsis and control groups was substantially significant. Further, it was demonstrated the knockdown of HP and PFKFB3 could suppress glycolysis and inflammatory cytokine levels in dHL-60 cell treated with LPS. CONCLUSION: In conclusion, HP is identified as a potential diagnostic indicator for sepsis patients, and HP promotes neutrophil inflammatory activation by regulating PFKFB2 in the glycolytic metabolism of sepsis confirmed by in vitro experiments. These will help us deepen the molecular mechanism of sepsis.


Subject(s)
Neutrophils , Sepsis , Humans , Sepsis/genetics , Algorithms , Control Groups , Glycolysis/genetics , Gene Regulatory Networks , Gene Expression Profiling , Computational Biology , Phosphofructokinase-2/genetics
16.
Chem Biol Drug Des ; 103(1): e14450, 2024 01.
Article in English | MEDLINE | ID: mdl-38230789

ABSTRACT

Triptolide (TP) has been found to have anti-tumor effects. However, more potential molecular mechanisms of TP in the progression of non-small cell lung cancer (NSCLC) deserve further investigation. Cell proliferation, apoptosis, invasion, and stemness were detected by cell counting kit 8 assay, EdU assay, flow cytometry, transwell assay, and sphere formation assay. Cell glycolysis was evaluated by corresponding assay kits. 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2) expression was measured by western blot (WB), qRT-PCR and immunohistochemical staining. PI3K/AKT pathway-related markers were determined by WB. Besides, xenograft tumor model was conducted to evaluate the anti-tumor effect of TP in NSCLC. Our results revealed that TP treatment suppressed NSCLC cell proliferation, invasion, stemness, glycolysis, and enhanced apoptosis. PFKFB2 was upregulated in NSCLC tissues and cells, and its expression was decreased by TP. PFKFB2 knockdown restrained NSCLC cell functions, and its overexpression also eliminated TP-mediated NSCLC cell functions inhibition. TP decreased PFKFB2 expression to inactivate PI3K/AKT pathway. Moreover, PI3K/AKT pathway inhibitor LY294002 also could reverse the promoting effect of PFKFB2 on NSCLC cell functions. In addition, TP suppressed NSCLC tumorigenesis by inhibiting PFKFB2/PI3K/AKT pathway. In conclusion, TP exerted anti-tumor role in NSCLC, which was achieved by reducing PFKFB2 expression to inactivate PI3K/AKT pathway.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Diterpenes , Lung Neoplasms , Phenanthrenes , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Proto-Oncogene Proteins c-akt/metabolism , Lung Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Cell Line, Tumor , Cell Proliferation , Glycolysis , Cell Movement , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/pharmacology , Epoxy Compounds
17.
Phytomedicine ; 123: 155185, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134863

ABSTRACT

BACKGROUND: Elemene, an active anticancer extract derived from Curcuma wenyujin, has well-documented anticarcinogenic properties. Nevertheless, the role of elemene in prostate cancer (PCa) and its underlying molecular mechanism remain elusive. PURPOSE: This study focuses on investigating the anti-PCa effects of elemene and its underlying mechanisms. METHODS: Cell-based assays, including CCK-8, scratch, colony formation, cell cycle, and apoptosis experiments, to comprehensively assess the impact of elemene on PCa cells (LNCaP and PC3) in vitro. Additionally, we used a xenograft model with PC3 cells in nude mice to evaluate elemene in vivo efficacy. Targeted metabolomics analysis via HILIC-MS/MS was performed to investigate elemene potential target pathways, validated through molecular biology experiments, including western blotting and gene manipulation studies. RESULTS: In this study, we discovered that elemene has remarkable anti-PCa activity in both in vitro and in vivo settings, comparable to clinical chemotherapeutic drugs but with fewer side effects. Using our established targeted metabolomics approach, we demonstrated that ß-elemene, elemene's primary component, effectively inhibits glycolysis in PCa cells by downregulating 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression. Furthermore, we found that ß-elemene accomplishes this downregulation by upregulating p53 and FZR1. Knockdown and overexpression experiments conclusively confirmed the pivotal role of PFKFB3 in mediating ß-elemene's anti-PCa activity. CONCLUSION: This finding presents compelling evidence that elemene exerts its anti-PCa effect by suppressing glycolysis through the downregulation of PFKFB3. This study not only improves our understanding of elemene in PCa treatment but also provides valuable insights for developing more effective and safer therapies for PCa.


Subject(s)
Prostatic Neoplasms , Sesquiterpenes , Tandem Mass Spectrometry , Male , Animals , Mice , Humans , Mice, Nude , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Glycolysis , Cell Proliferation , Phosphofructokinase-2/genetics , Phosphofructokinase-2/pharmacology
18.
Mol Cell Endocrinol ; 579: 112083, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37820851

ABSTRACT

Endometriosis is a common inflammatory disease in women of reproductive age and is highly associated with infertility. However, the molecular mechanism of endometriosis remains unclear. 6-Phosphofructose-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) is a key enzyme in glycolysis and plays an important regulatory role in the development of cancer. Here we found that PFKFB3 is highly expressed in endometriotic tissues. PFKFB3 promotes the proliferation and growth of endometriosis cells. Meanwhile, PFKFB3 promotes glycolysis in endometriosis cells. Furthermore, PFKFB3 promotes migration and invasion of endometriosis cells. On this basis, we found that PFKFB3 promotes epithelial-mesenchymal transition (EMT) in endometriosis cells. PFKFB3 interacts with the essential factor of EMT, ß-catenin, and promotes the protein stability of ß-catenin. In addition, the PFKFB3 inhibitor PFK-015 inhibites the growth of endometriosis cells and the development of endometrial tissue. In conclusion, our study shows that PFKFB3 plays an important role in the development of endometriosis and provides new ideas for the clinical diagnosis or treatment of endometriosis.


Subject(s)
Endometriosis , Female , Humans , beta Catenin/metabolism , Cell Proliferation , Cells, Cultured , Endometriosis/genetics , Endometriosis/metabolism , Epithelial-Mesenchymal Transition , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Protein Stability
19.
Front Biosci (Landmark Ed) ; 28(11): 277, 2023 11 03.
Article in English | MEDLINE | ID: mdl-38062830

ABSTRACT

BACKGROUND: The dilation of lymphatic vessels plays a critical role in maintaining heart function, while a lack thereof could contribute to heart failure (HF), and subsequently to an acute myocardial infarction (AMI). Macrophages participate in the induction of lymphangiogenesis by secreting vascular endothelial cell growth factor C (VEGF-C), although the precise mechanism remains unclear. METHODS: Intramyocardial injections of adeno-associated viruses (AAV9) to inhibit the expression of VEGFR3 (VEGFR3 shRNA) or promote the expression of VEGFR3 (VEGFR3 ORF) in the heart; Myh6-mCherry B6 D2-tg mice and flow cytometry were used to evaluate the number of myocellular debris in the mediastinal lymph nodes; fluorescence staining and qPCR were used to evaluate fluorescence analysis; seahorse experiment was used to evaluate the level of glycolysis of macrophages; Lyz2𝐶𝑟𝑒, VEGFCfl/fl, and PFKFB3fl/fl mice were used as a model to knock out the expression of VEGF-C and PFKFB3 in macrophages. RESULTS: The escalation of VEGFR3 in cardiac tissue can facilitate the drainage of myocardial debris to the mediastinal lymph nodes, thereby improving cardiac function and reducing fibrosis after reperfusion injury. Conversely, myeloid VEGF-C deficiency displayed an increase in macrophage counts and inflammation levels following reperfusion injury. The inhibition of the critical enzyme PFKFB3 in macrophage glycolysis can stimulate the manifestation of VEGF-C in macrophages. A deficiency in myeloid PFKFB3 is associated with induced lymphangiogenesis following reperfusion injury. CONCLUSIONS: Our initial investigations suggest that the suppression of PFKFB3 expression in macrophages could potentially stimulate the production of VEGF-C in these immune cells, which in turn may facilitate lymphangiogenesis and mitigate the inflammatory effects of I/R injury.


Subject(s)
Lymphangiogenesis , Myocardial Infarction , Phosphofructokinase-2 , Reperfusion Injury , Animals , Mice , Lymphangiogenesis/genetics , Lymphangiogenesis/physiology , Macrophages/metabolism , Myocardial Infarction/genetics , Reperfusion Injury/metabolism , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor C/pharmacology , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism
20.
Genes (Basel) ; 14(12)2023 12 13.
Article in English | MEDLINE | ID: mdl-38137029

ABSTRACT

Diabetes is characterized by persistently high blood glucose levels and severe complications and affects millions of people worldwide. In this study, we explored the epigenetic landscape of diabetes using data from the Korean Genome and Epidemiology Study (KoGES), specifically the Ansung-Ansan (AS-AS) cohort. Using epigenome-wide association studies, we investigated DNA methylation patterns in patients with type 2 diabetes mellitus (T2DM) and those with normal glucose regulation. Differential methylation analysis revealed 106 differentially methylated probes (DMPs), with the 10 top DMPs prominently associated with TXNIP, PDK4, NBPF20, ARRDC4, UFM1, PFKFB2, C7orf50, and ABCG1, indicating significant changes in methylation. Correlation analysis highlighted the association between the leading DMPs (e.g., cg19693031 and cg26974062 for TXNIP and cg26823705 for NBPF20) and key glycemic markers (fasting plasma glucose and hemoglobin A1c), confirming their relevance in T2DM. Moreover, we identified 62 significantly differentially methylated regions (DMRs) spanning 61 genes. A DMR associated with PDE1C showed hypermethylation, whereas DMRs associated with DIP2C, FLJ90757, PRSS50, and TDRD9 showed hypomethylation. PDE1C and TDRD9 showed a strong positive correlation between the CpG sites included in each DMR, which have previously been implicated in T2DM-related processes. This study contributes to the understanding of epigenetic modifications in T2DM. These valuable insights can be utilized in identifying potential biomarkers and therapeutic targets for effective management and prevention of diabetes.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 2 , Humans , DNA Methylation/genetics , Epigenome , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Epigenesis, Genetic/genetics , Republic of Korea/epidemiology , Phosphofructokinase-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...