Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Biochemistry ; 63(11): 1423-1433, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38743592

ABSTRACT

PGM1-linked congenital disorder of glycosylation (PGM1-CDG) is an autosomal recessive disease characterized by several phenotypes, some of which are life-threatening. Research focusing on the disease-related variants of the α-D-phosphoglucomutase 1 (PGM1) protein has shown that several are insoluble in vitro and expressed at low levels in patient fibroblasts. Due to these observations, we hypothesized that some disease-linked PGM1 protein variants are structurally destabilized and subject to protein quality control (PQC) and rapid intracellular degradation. Employing yeast-based assays, we show that a disease-associated human variant, PGM1 L516P, is insoluble, inactive, and highly susceptible to ubiquitylation and rapid degradation by the proteasome. In addition, we show that PGM1 L516P forms aggregates in S. cerevisiae and that both the aggregation pattern and the abundance of PGM1 L516P are chaperone-dependent. Finally, using computational methods, we perform saturation mutagenesis to assess the impact of all possible single residue substitutions in the PGM1 protein. These analyses identify numerous missense variants with predicted detrimental effects on protein function and stability. We suggest that many disease-linked PGM1 variants are subject to PQC-linked degradation and that our in silico site-saturated data set may assist in the mechanistic interpretation of PGM1 variants.


Subject(s)
Phosphoglucomutase , Saccharomyces cerevisiae , Humans , Phosphoglucomutase/metabolism , Phosphoglucomutase/genetics , Phosphoglucomutase/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Proteolysis , Mutation, Missense , Ubiquitination , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Protein Stability , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics
2.
Protein Sci ; 33(4): e4943, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501428

ABSTRACT

Mycobacterium tuberculosis (Mtb) adapt to various host environments and utilize a variety of sugars and lipids as carbon sources. Among these sugars, maltose and trehalose, also play crucial role in bacterial physiology and virulence. However, some key enzymes involved in trehalose and maltose metabolism in Mtb are not yet known. Here we structurally and functionally characterized a conserved hypothetical gene Rv3400. We determined the crystal structure of Rv3400 at 1.7 Å resolution. The crystal structure revealed that Rv3400 adopts Rossmann fold and shares high structural similarity with haloacid dehalogenase family of proteins. Our comparative structural analysis suggested that Rv3400 could perform either phosphatase or pyrophosphatase or ß-phosphoglucomutase (ß-PGM) activity. Using biochemical studies, we further confirmed that Rv3400 performs ß-PGM activity and hence, Rv3400 encodes for ß-PGM in Mtb. Our data also confirm that Mtb ß-PGM is a metal dependent enzyme having broad specificity for divalent metal ions. ß-PGM converts ß-D-glucose-1-phosphate to ß-D-glucose-6-phosphate which is required for the generation of ATP and NADPH through glycolysis and pentose phosphate pathway, respectively. Using site directed mutagenesis followed by biochemical studies, we show that two Asp residues in the highly conserved DxD motif, D29 and D31, are crucial for enzyme activity. While D29A, D31A, D29E, D31E and D29N mutants lost complete activity, D31N mutant retained about 30% activity. This study further helps in understanding the role of ß-PGM in the physiology of Mtb.


Subject(s)
Glucose , Mycobacterium tuberculosis , Phosphoglucomutase , Phosphoglucomutase/genetics , Phosphoglucomutase/chemistry , Phosphoglucomutase/metabolism , Maltose/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Trehalose , Phosphates
3.
Carbohydr Res ; 534: 108979, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37931349

ABSTRACT

ß-phosphoglucomutase (ßPGM) catalyzes the conversion of ß-glucose 1-phosphate (ßG1P) to glucose-6-phosphate (G6P), a universal source of cellular energy, in a two-step process. Transition state analogue (TSA) complexes formed from substrate analogues and a metal fluoride (MgF3- and AlF4-) enable analysis of each of these enzymatic steps independently. Novel substrate analogues incorporating fluorine offer opportunities to interrogate the enzyme mechanism using 19F NMR spectroscopy. Herein, the synthesis of a novel fluorinated phosphonyl C-glycoside (3-deoxy-3-fluoro-ß-d-glucopyranosyl)methylphosphonate (1), in 12 steps (0.85 % overall yield) is disclosed. A four-stage synthetic strategy was employed, involving: 1) fluorine addition to the monosaccharide, 2) selective anomeric deprotection, 3) phosphonylation of the anomeric centre, and 4) global deprotection. Analysis of ßPGM and 1 will be reported in due course.


Subject(s)
Fluorine , Phosphoglucomutase , Phosphoglucomutase/chemistry , Fluorine/chemistry , Glucose-6-Phosphate
4.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558064

ABSTRACT

An anti-biofilm that can inhibit the matrix of biofilm formation is necessary to prevent recurrent and chronic Pseudomonas aeruginosa infection. This study aimed to design compounds with a new mechanism through competitive inhibitory activity against phosphomannomutase/phosphoglucomutase (PMM/PGM), using in vitro assessment and a computational (in silico) approach. The active site of PMM/PGM was assessed through molecular redocking using L-tartaric acid as the native ligand and other small molecules, such as glucaric acid, D-sorbitol, and ascorbic acid. The docking program set the small molecules to the active site, showing a stable complex formation. Analysis of structural similarity, bioavailability, absorption, distribution, metabolism, excretion, and toxicity properties proved the potential application of ligands as an anti-biofilm. In vitro assessment with crystal violet showed that the ligands could reach up to 95.87% inhibition at different concentrations. The nitrocellulose membrane and scanning electron microscopic visualization showed that the untreated P. aeruginosa biofilm was denser than the ligand-treated biofilm.


Subject(s)
Phosphoglucomutase , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Ligands , Phosphoglucomutase/chemistry , Phosphoglucomutase/metabolism , Catalytic Domain , Biofilms , Anti-Bacterial Agents/pharmacology
5.
mBio ; 13(4): e0146922, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35856562

ABSTRACT

The reactions of α-d-phosphohexomutases (αPHM) are ubiquitous, key to primary metabolism, and essential for several processes in all domains of life. The functionality of these enzymes relies on an initial phosphorylation step which requires the presence of α-d-glucose-1,6-bisphosphate (Glc-1,6-BP). While well investigated in vertebrates, the origin of this activator compound in bacteria is unknown. Here we show that the Slr1334 protein from the unicellular cyanobacterium Synechocysitis sp. PCC 6803 is a Glc-1,6-BP-synthase. Biochemical analysis revealed that Slr1334 efficiently converts fructose-1,6-bisphosphate (Frc-1,6-BP) and α-d-glucose-1-phosphate/α-d-glucose-6-phosphate into Glc-1,6-BP and also catalyzes the reverse reaction. As inferred from phylogenetic analysis, the slr1334 product belongs to a primordial subfamily of αPHMs that is present especially in deeply branching bacteria and also includes human commensals and pathogens. Remarkably, the homologue of Slr1334 in the human gut bacterium Bacteroides salyersiae catalyzes the same reaction, suggesting a conserved and essential role for the members of this αPHM subfamily. IMPORTANCE Glc-1,6-BP is known as an essential activator of phosphoglucomutase (PGM) and other members of the αPHM superfamily, making it a central regulator in glycogen metabolism, glycolysis, amino sugar formation as well as bacterial cell wall and capsule formation. Despite this essential role in carbon metabolism, its origin in prokaryotes has so far remained elusive. In this study we identify a member of a specific αPHM subfamily as the first bacterial Glc-1,6-BP synthase, forming free Glc-1,6-BP by using Frc-1,6-BP as phosphoryl-donor. PGMs of this subfamily are widely distributed among prokaryotes including human commensals and pathogens. By showing that a distinct subfamily member can also form Glc-1,6-BP, we provide evidence that Glc-1,6-BP synthase activity is a general feature of this group.


Subject(s)
Glucose-6-Phosphate , Phosphoglucomutase , Animals , Glucose , Glucose-6-Phosphate/analogs & derivatives , Glucose-6-Phosphate/metabolism , Humans , Phosphoglucomutase/chemistry , Phosphoglucomutase/genetics , Phosphoglucomutase/metabolism , Phylogeny
6.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 5): 200-209, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35506765

ABSTRACT

Phosphoglucomutase 1 (PGM1) plays a central role in glucose homeostasis in human cells. Missense variants of this enzyme cause an inborn error of metabolism, which is categorized as a congenital disorder of glycosylation. Here, two disease-related variants of PGM1, T337M and G391V, which are both located in domain 3 of the four-domain protein, were characterized via X-ray crystallography and biochemical assays. The studies show multiple impacts resulting from these dysfunctional variants, including both short- and long-range structural perturbations. In the T337M variant these are limited to a small shift in an active-site loop, consistent with reduced enzyme activity. In contrast, the G391V variant produces a cascade of structural perturbations, including displacement of both the catalytic phosphoserine and metal-binding loops. This work reinforces several themes that were found in prior studies of dysfunctional PGM1 variants, including increased structural flexibility and the outsized impacts of mutations affecting interdomain interfaces. The molecular mechanisms of PGM1 variants have implications for newly described inherited disorders of related enzymes.


Subject(s)
Glycogen Storage Disease , Phosphoglucomutase , Catalytic Domain , Crystallography, X-Ray , Glycogen Storage Disease/genetics , Glycogen Storage Disease/metabolism , Humans , Mutation, Missense , Phosphoglucomutase/chemistry , Phosphoglucomutase/genetics , Phosphoglucomutase/metabolism
7.
J Biol Chem ; 297(5): 101317, 2021 11.
Article in English | MEDLINE | ID: mdl-34678313

ABSTRACT

Cyclic-di-adenosine monophosphate (c-di-AMP) is an important nucleotide signaling molecule that plays a key role in osmotic regulation in bacteria. c-di-AMP is produced from two molecules of ATP by proteins containing a diadenylate cyclase (DAC) domain. In Bacillus subtilis, the main c-di-AMP cyclase, CdaA, is a membrane-linked cyclase with an N-terminal transmembrane domain followed by the cytoplasmic DAC domain. As both high and low levels of c-di-AMP have a negative impact on bacterial growth, the cellular levels of this signaling nucleotide are tightly regulated. Here we investigated how the activity of the B. subtilis CdaA is regulated by the phosphoglucomutase GlmM, which has been shown to interact with the c-di-AMP cyclase. Using the soluble B. subtilis CdaACD catalytic domain and purified full-length GlmM or the GlmMF369 variant lacking the C-terminal flexible domain 4, we show that the cyclase and phosphoglucomutase form a stable complex in vitro and that GlmM is a potent cyclase inhibitor. We determined the crystal structure of the individual B. subtilis CdaACD and GlmM homodimers and of the CdaACD:GlmMF369 complex. In the complex structure, a CdaACD dimer is bound to a GlmMF369 dimer in such a manner that GlmM blocks the oligomerization of CdaACD and formation of active head-to-head cyclase oligomers, thus suggesting a mechanism by which GlmM acts as a cyclase inhibitor. As the amino acids at the CdaACD:GlmM interphase are conserved, we propose that the observed mechanism of inhibition of CdaA by GlmM may also be conserved among Firmicutes.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Multienzyme Complexes/chemistry , Phosphoglucomutase/chemistry , Phosphorus-Oxygen Lyases/chemistry , Protein Multimerization , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Crystallography, X-Ray , Multienzyme Complexes/genetics , Phosphoglucomutase/genetics , Phosphorus-Oxygen Lyases/genetics , Protein Domains , Protein Structure, Quaternary
8.
Biochimie ; 183: 44-48, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32898648

ABSTRACT

Once experimentally prohibitive, structural studies of individual missense variants in proteins are increasingly feasible, and can provide a new level of insight into human genetic disease. One example of this is the recently identified inborn error of metabolism known as phosphoglucomutase-1 (PGM1) deficiency. Just as different variants of a protein can produce different patient phenotypes, they may also produce distinct biochemical phenotypes, affecting properties such as catalytic activity, protein stability, or 3D structure/dynamics. Experimental studies of missense variants, and particularly structural characterization, can reveal details of the underlying biochemical pathomechanisms of missense variants. Here, we review four examples of enzyme dysfunction observed in disease-related variants of PGM1. These studies are based on 11 crystal structures of wild-type (WT) and mutant enzymes, and multiple biochemical assays. Lessons learned include the value of comparing mutant and WT structures, synergy between structural and biochemical studies, and the rich understanding of molecular pathomechanism provided by experimental characterization relative to the use of predictive algorithms. We further note functional insights into the WT enzyme that can be gained from the study of pathogenic variants.


Subject(s)
Glycogen Storage Disease , Phosphoglucomutase , Crystallography, X-Ray , Glycogen Storage Disease/enzymology , Glycogen Storage Disease/genetics , Humans , Mutation , Phosphoglucomutase/chemistry , Phosphoglucomutase/genetics , Phosphoglucomutase/metabolism , Protein Domains
9.
Biotechnol Lett ; 43(1): 177-192, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32757151

ABSTRACT

The purification and characterization of PGM (Phosphoglucomutase) from Cordyceps militaris (C. militaris) was investigated. PGM was purified using a combination of ultrafiltration, salting-out and ion exchange chromatography resulting in 4.23-fold enhancement of activity with a recovery of 20.01%. Molecular mass was 50.01 kDa by SDS-PAGE. The optimal activity was achieved at pH 7.5 and 30 °C with NADPH as substrate. The results showed that SDS, DTT Li+, Cu2+, Na+, Mn2+ and Al3+ were effective PGM inhibitors; whereas glycerol, Zn2+, Mg2+, Ca2+, Fe2+ and Fe3+ could enhance the activity of PGM, and the Km and Vmax values were 11.62 mmol/L and 416.67 U/mL, respectively. At the same time, qRT-PCR was used to test the changes of mRNA transcription level of PGM gene encoding under two fermentation conditions: basic medium and optimized medium. The relative quantitative results of PGM target genes resulting in 2.60-fold enhancement than the control group.


Subject(s)
Cordyceps , Fungal Proteins , Phosphoglucomutase , Chromatography, Ion Exchange , Cordyceps/enzymology , Cordyceps/genetics , Cordyceps/metabolism , Filtration , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Gene Expression , Phosphoglucomutase/chemistry , Phosphoglucomutase/genetics , Phosphoglucomutase/isolation & purification , Phosphoglucomutase/metabolism
10.
Biomolecules ; 10(12)2020 12 03.
Article in English | MEDLINE | ID: mdl-33287293

ABSTRACT

Phosphoglucomutase 5 (PGM5) in humans is known as a structural muscle protein without enzymatic activity, but detailed understanding of its function is lacking. PGM5 belongs to the alpha-D-phosphohexomutase family and is closely related to the enzymatically active metabolic enzyme PGM1. In the Atlantic herring, Clupea harengus, PGM5 is one of the genes strongly associated with ecological adaptation to the brackish Baltic Sea. We here present the first crystal structures of PGM5, from the Atlantic and Baltic herring, differing by a single substitution Ala330Val. The structure of PGM5 is overall highly similar to structures of PGM1. The structure of the Baltic herring PGM5 in complex with the substrate glucose-1-phosphate shows conserved substrate binding and active site compared to human PGM1, but both PGM5 variants lack phosphoglucomutase activity under the tested conditions. Structure comparison and sequence analysis of PGM5 and PGM1 from fish and mammals suggest that the lacking enzymatic activity of PGM5 is related to differences in active-site loops that are important for flipping of the reaction intermediate. The Ala330Val substitution does not alter structure or biophysical properties of PGM5 but, due to its surface-exposed location, could affect interactions with protein-binding partners.


Subject(s)
Fishes , Phosphoglucomutase/metabolism , Animals , Catalytic Domain , Glucosephosphates/metabolism , Phosphoglucomutase/chemistry , Protein Binding , Substrate Specificity
11.
J Inherit Metab Dis ; 43(4): 861-870, 2020 07.
Article in English | MEDLINE | ID: mdl-32057119

ABSTRACT

Missense variants of human phosphoglucomutase 1 (PGM1) cause the inherited metabolic disease known as PGM1 deficiency. This condition is categorised as both a glycogen storage disease and a congenital disorder of glycosylation. Approximately 20 missense variants of PGM1 are linked to PGM1 deficiency, and biochemical studies have suggested that they fall into two general categories: those affecting the active site and catalytic efficiency, and those that appear to impair protein folding and/or stability. In this study, we characterise a novel variant of Arg422, a residue distal from the active site of PGM1 and the site of a previously identified disease-related variant (Arg422Trp). In prior studies, the R422W variant was found to produce insoluble protein in a recombinant expression system, precluding further in vitro characterisation. Here we investigate an alternative variant of this residue, Arg422Gln, which is amenable to experimental characterisation presumably due to its more conservative physicochemical substitution. Biochemical, crystallographic, and computational studies of R422Q establish that this variant causes only minor changes in catalytic efficiency and 3D structure, but is nonetheless dramatically reduced in stability. Unexpectedly, binding of a substrate analog is found to further destabilise the protein, in contrast to its stabilising effect on wild-type PGM1 and several other missense variants. This work establishes Arg422 as a lynchpin residue for the stability of PGM1 and supports the impairment of protein stability as a pathomechanism for variants that cause PGM1 deficiency. SYNOPSIS: Biochemical and structural studies of a missense variant far from the active site of human PGM1 identify a residue with a key role in enzyme stability.


Subject(s)
Glucose/metabolism , Glycogen Storage Disease/genetics , Phosphoglucomutase/chemistry , Protein Conformation , Arginine/genetics , Binding Sites , Catalysis , Catalytic Domain , Crystallography, X-Ray , Glucose/chemistry , Glycogen Storage Disease/metabolism , Humans , Mutation, Missense , Phosphoglucomutase/genetics , Protein Folding
12.
Biomol NMR Assign ; 13(2): 349-356, 2019 10.
Article in English | MEDLINE | ID: mdl-31396843

ABSTRACT

ß-Phosphoglucomutase (ßPGM) is a magnesium-dependent phosphoryl transfer enzyme that catalyses the reversible isomerisation of ß-glucose 1-phosphate and glucose 6-phosphate, via two phosphoryl transfer steps and a ß-glucose 1,6-bisphosphate intermediate. Substrate-free ßPGM is an essential component of the catalytic cycle and an understanding of its dynamics would present significant insights into ßPGM functionality, and enzyme catalysed phosphoryl transfer in general. Previously, 30 residues around the active site of substrate-free ßPGMWT were identified as undergoing extensive millisecond dynamics and were unassignable. Here we report 1H, 15N and 13C backbone resonance assignments of the P146A variant (ßPGMP146A) in its substrate-free form, where the K145-A146 peptide bond adopts a trans conformation in contrast to all crystal structures of ßPGMWT, where the K145-P146 peptide bond is cis. In ßPGMP146A millisecond dynamics are suppressed for all but 17 residues, allowing 92% of backbone resonances to be assigned. Secondary structure predictions using TALOS-N reflect ßPGM crystal structures, and a chemical shift comparison between substrate-free ßPGMP146A and ßPGMWT confirms that the solution conformations are very similar, except for the D137-A147 loop. Hence, the isomerisation state of the 145-146 peptide bond has little effect on structure but the cis conformation triggers millisecond dynamics in the hinge (V12-T16), the nucleophile (D8) and residues that coordinate the transferring phosphate group (D8 and S114-S116), and the D137-A147 loop (V141-A142 and K145). These millisecond dynamics occur in addition to those for residues involved in coordinating the catalytic MgII ion and the L44-L53 loop responsible for substrate discrimination.


Subject(s)
Lactococcus lactis/enzymology , Mutant Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Phosphoglucomutase/chemistry , Mutant Proteins/genetics , Phosphoglucomutase/genetics
13.
Structure ; 26(10): 1337-1345.e3, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30122451

ABSTRACT

Human phosphoglucomutase 1 (PGM1) plays a central role in cellular glucose homeostasis, catalyzing the conversion of glucose 1-phosphate and glucose 6-phosphate. Recently, missense variants of this enzyme were identified as causing an inborn error of metabolism, PGM1 deficiency, with features of a glycogen storage disease and a congenital disorder of glycosylation. Previous studies of selected PGM1 variants have revealed various mechanisms for enzyme dysfunction, including regions of structural disorder and side-chain rearrangements within the active site. Here, we examine variants within a substrate-binding loop in domain 4 (D4) of PGM1 that cause extreme impairment of activity. Biochemical, structural, and computational studies demonstrate multiple detrimental impacts resulting from these variants, including loss of conserved ligand-binding interactions and reduced mobility of the D4 loop, due to perturbation of its conformational ensemble. These potentially synergistic effects make this conserved ligand-binding loop a hotspot for disease-related variants in PGM1 and related enzymes.


Subject(s)
Mutation, Missense , Phosphoglucomutase/chemistry , Phosphoglucomutase/metabolism , Catalytic Domain , Humans , Ligands , Models, Molecular , Molecular Dynamics Simulation , Phosphoglucomutase/genetics , Protein Binding , Protein Conformation , Protein Domains
14.
Methods Enzymol ; 607: 241-267, 2018.
Article in English | MEDLINE | ID: mdl-30149860

ABSTRACT

Enzymes in the α-d-phosphohexomutase (PHM) superfamily catalyze a multistep reaction, entailing two successive phosphoryl transfers. Key to this reaction is a conserved phosphoserine in the active site, which serves alternately as a phosphoryl donor and acceptor during the catalytic cycle. In addition to its role in the enzyme mechanism, the phosphorylation state of the catalytic phosphoserine has recently been found to have widespread effects on the structural flexibility of enzymes in this superfamily. These effects must be carefully accounted for when assessing other perturbations to these enzymes, such as mutations or ligand binding. In this chapter, we focus on methods for assessing and modulating the phosphorylation state of the catalytic serine, as well as straightforward ways to probe the impacts of this modification on protein structure/flexibility. This knowledge is essential for producing homogeneous and stable samples of these proteins for biophysical studies. The methods described herein should be widely applicable to enzymes across the PHM superfamily and may also be useful in characterizing the effects of posttranslational modifications on other proteins.


Subject(s)
Enzyme Assays/methods , Phosphoglucomutase/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence , Catalytic Domain/genetics , Crystallography, X-Ray , Enzyme Assays/instrumentation , Fluorescent Dyes/chemistry , Models, Molecular , Phosphoglucomutase/chemistry , Phosphoglucomutase/genetics , Phosphoglucomutase/isolation & purification , Phosphorylation , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization/instrumentation , Spectrometry, Mass, Electrospray Ionization/methods
15.
Biochem J ; 475(15): 2547-2557, 2018 08 16.
Article in English | MEDLINE | ID: mdl-29967067

ABSTRACT

N-acetylphosphoglucosamine mutase (AGM1) is a key component of the hexosamine biosynthetic pathway that produces UDP-GlcNAc, an essential precursor for a wide range of glycans in eukaryotes. AGM belongs to the α-d-phosphohexomutase metalloenzyme superfamily and catalyzes the interconversion of N-acetylglucosamine-6-phosphate (GlcNAc-6P) to N-acetylglucosamine-1-phosphate (GlcNAc-1P) through N-acetylglucosamine-1,6-bisphosphate (GlcNAc-1,6-bisP) as the catalytic intermediate. Although there is an understanding of the phosphoserine-dependent catalytic mechanism at enzymatic and structural level, the identity of the requisite catalytic base in AGM1/phosphoglucomutases is as yet unknown. Here, we present crystal structures of a Michaelis complex of AGM1 with GlcNAc-6P and Mg2+, and a complex of the inactive Ser69Ala mutant together with glucose-1,6-bisphosphate (Glc-1,6-bisP) that represents key snapshots along the reaction co-ordinate. Together with mutagenesis, these structures reveal that the phosphate group of the hexose-1,6-bisP intermediate may act as the catalytic base.


Subject(s)
Acetylglucosamine/analogs & derivatives , Aspergillus fumigatus/enzymology , Fungal Proteins/chemistry , Glucose-6-Phosphate/analogs & derivatives , Phosphoglucomutase/chemistry , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Catalysis , Fungal Proteins/metabolism , Glucose-6-Phosphate/chemistry , Glucose-6-Phosphate/metabolism , Phosphoglucomutase/metabolism
16.
Biochemistry ; 57(30): 4504-4517, 2018 07 31.
Article in English | MEDLINE | ID: mdl-29952545

ABSTRACT

α-Phosphoglucomutase (αPGM), in its phosphorylated state, catalyzes the interconversion of α-d-glucose 1-phosphate and α-d-glucose 6-phosphate. The αPGM of Lactococcus lactis is a type C2B member of the haloalkanoic acid dehalogenase (HAD) enzyme family and is comprised of a Rossmann-fold catalytic domain and inserted α/ß-fold cap domain. The active site is formed at the domain-domain interface. Herein, we report the results from a kinetic-based study of L. lactis αPGM catalysis, which demonstrate enzyme activation by autocatalyzed phosphorylation of Asp8 with αG1P, the intermediacy of αG1,6bisP in the phospho Ll-αPGM-catalyzed conversion of αG1P to G6P, and the reorientation of the αG1,6bisP intermediate via dissociation to solvent and rebinding. In order to provide insight into the structural determinants of L. lactis αPGM substrate recognition and catalysis, metal cofactor and substrate specificities were determined as were the contributions made by active-site residues toward catalytic efficiency. Lastly, the structure and catalytic mechanism of L. lactis αPGM are compared with those of HAD family phosphomutases L. lactis ß-phosphoglucomutase and eukayotic α-phosphomannomutase to provide insight into the evolution of phosphohexomutases from HAD family phosphatases.


Subject(s)
Lactococcus lactis/enzymology , Phosphoglucomutase/metabolism , Catalytic Domain , Crystallography, X-Ray , Enzyme Activation , Glucose-6-Phosphate/metabolism , Glucosephosphates/metabolism , Kinetics , Lactococcus lactis/chemistry , Lactococcus lactis/metabolism , Models, Molecular , Phosphoglucomutase/chemistry , Phosphorylation , Protein Conformation , Substrate Specificity
17.
Chem Commun (Camb) ; 53(73): 10148-10151, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28848970

ABSTRACT

Cells are sophisticated biocatalytic systems driving a complex network of biochemical reactions. A bioinspired strategy to create advanced functional systems is to design confined spaces for complex enzymatic reactions by using a combination of synthetic polymer assemblies and natural cell components. Here, we developed bio-catalytic nanocompartments that contain phosphoglucomutase protected by a biomimetic polymer membrane, which was permeabilized for reactants through insertion of an engineered α-hemolysin pore protein. These bio-catalytic nanocompartments serve for production of glucose-6-phosphate, and thus possess great potential for applications in an incomplete glycolysis, pentose phosphate pathway, or in plant biological reactions.


Subject(s)
Biocatalysis , Glucose-6-Phosphate/biosynthesis , Nanoparticles/metabolism , Phosphoglucomutase/metabolism , Glucose-6-Phosphate/chemistry , Nanoparticles/chemistry , Particle Size , Phosphoglucomutase/chemistry
18.
Sci Rep ; 7(1): 5343, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28706231

ABSTRACT

Enzymes sample multiple conformations during their catalytic cycles. Chemical shifts from Nuclear Magnetic Resonance (NMR) are hypersensitive to conformational changes and ensembles in solution. Phosphomannomutase/phosphoglucomutase (PMM/PGM) is a ubiquitous four-domain enzyme that catalyzes phosphoryl transfer across phosphohexose substrates. We compared states the enzyme visits during its catalytic cycle. Collective responses of Pseudomonas PMM/PGM to phosphosugar substrates and inhibitor were assessed using NMR-detected titrations. Affinities were estimated from binding isotherms obtained by principal component analysis (PCA). Relationships among phosphosugar-enzyme associations emerge from PCA comparisons of the titrations. COordiNated Chemical Shifts bEhavior (CONCISE) analysis provides novel discrimination of three ligand-bound states of PMM/PGM harboring a mutation that suppresses activity. Enzyme phosphorylation and phosphosugar binding appear to drive the open dephosphorylated enzyme to the free phosphorylated state, and on toward ligand-closed states. Domain 4 appears central to collective responses to substrate and inhibitor binding. Hydrogen exchange reveals that binding of a substrate analogue enhances folding stability of the domains to a uniform level, establishing a globally unified structure. CONCISE and PCA of NMR spectra have discovered novel states of a well-studied enzyme and appear ready to discriminate other enzyme and ligand binding states.


Subject(s)
Magnetic Resonance Spectroscopy , Phosphoglucomutase/chemistry , Phosphoglucomutase/metabolism , Pseudomonas/enzymology , Enzyme Inhibitors/metabolism , Models, Molecular , Principal Component Analysis , Protein Binding , Protein Conformation , Sugar Phosphates/metabolism
19.
Adv Protein Chem Struct Biol ; 109: 265-304, 2017.
Article in English | MEDLINE | ID: mdl-28683921

ABSTRACT

Enzymes in the α-d-phosphohexomutases superfamily catalyze the reversible conversion of phosphosugars, such as glucose 1-phosphate and glucose 6-phosphate. These reactions are fundamental to primary metabolism across the kingdoms of life and are required for a myriad of cellular processes, ranging from exopolysaccharide production to protein glycosylation. The subject of extensive mechanistic characterization during the latter half of the 20th century, these enzymes have recently benefitted from biophysical characterization, including X-ray crystallography, NMR, and hydrogen-deuterium exchange studies. This work has provided new insights into the unique catalytic mechanism of the superfamily, shed light on the molecular determinants of ligand recognition, and revealed the evolutionary conservation of conformational flexibility. Novel associations with inherited metabolic disease and the pathogenesis of bacterial infections have emerged, spurring renewed interest in the long-appreciated functional roles of these enzymes.


Subject(s)
Glucosephosphates/metabolism , Phosphoglucomutase/chemistry , Phosphoglucomutase/metabolism , Amino Acid Sequence , Animals , Bacteria/chemistry , Bacteria/enzymology , Bacteria/genetics , Bacteria/metabolism , Bacterial Infections/enzymology , Bacterial Infections/genetics , Bacterial Infections/metabolism , Catalytic Domain , Crystallography, X-Ray , Glucosephosphates/chemistry , Glucosephosphates/genetics , Humans , Metabolic Diseases/enzymology , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Mutation , Nuclear Magnetic Resonance, Biomolecular , Phosphoglucomutase/genetics , Protein Conformation , Sequence Alignment
20.
Mol Biosyst ; 13(7): 1370-1376, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28548163

ABSTRACT

The Aq1627 gene from Aquifex aeolicus, a hyperthermophilic bacterium has been cloned and overexpressed in Escherichia coli. The protein was purified to homogeneity and its X-ray crystal structure was determined to 1.3 Å resolution using multiple wavelength anomalous dispersion phasing. The structural and sequence analysis of Aq1627 is suggestive of a putative phosphoglucosamine mutase. The structural features of Aq1627 further indicate that it could belong to a new subclass of the phosphoglucosamine mutase family. Aq1627 structure contains a unique C-terminal end-to-end disulfide bond, which links two monomers and this structural information can be used in protein engineering to make proteins more stable in different applications.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Phosphoglucomutase/chemistry , Phosphoglucomutase/metabolism , Crystallography, X-Ray , Protein Conformation , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...