Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters











Publication year range
1.
J Mol Biol ; 434(5): 167422, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34954235

ABSTRACT

Mutations in PLCγ, a substrate of the tyrosine kinase BTK, are often found in patients who develop resistance to the BTK inhibitor Ibrutinib. However, the mechanisms by which these PLCγ mutations cause Ibrutinib resistance are unclear. Under normal signaling conditions, BTK mediated phosphorylation of Y783 within the PLCγ cSH2-linker promotes the intramolecular association of this site with the adjacent cSH2 domain resulting in active PLCγ. Thus, the cSH2-linker region in the center of the regulatory gamma specific array (γSA) of PLCγ is a key feature controlling PLCγ activity. Even in the unphosphorylated state this linker exists in a conformational equilibrium between free and bound to the cSH2 domain. The position of this equilibrium is optimized within the properly regulated PLCγ enzyme but may be altered in the context of mutations. We therefore assessed the conformational status of four resistance associated mutations within the PLCγ γSA and find that they each alter the conformational equilibrium of the γSA leading to a shift toward active PLCγ. Interestingly, two distinct modes of mutation induced activation are revealed by this panel of Ibrutinib resistance mutations. These findings, along with the recently determined structure of fully autoinhibited PLCγ, provide new insight into the nature of the conformational change that occurs within the γSA regulatory region to affect PLCγ activation. Improving our mechanistic understanding of how B cell signaling escapes Ibrutinib treatment via mutations in PLCγ will aid in the development of strategies to counter drug resistance.


Subject(s)
Drug Resistance, Neoplasm , Phospholipase C gamma , Piperidines , Protein Kinase Inhibitors , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Drug Resistance, Neoplasm/genetics , Humans , Phospholipase C gamma/chemistry , Phospholipase C gamma/genetics , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology
2.
Mol Neurodegener ; 16(1): 22, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33823896

ABSTRACT

The central role of the resident innate immune cells of the brain (microglia) in neurodegeneration has become clear over the past few years largely through genome-wide association studies (GWAS), and has rapidly become an active area of research. However, a mechanistic understanding (gene to function) has lagged behind. That is now beginning to change, as exemplified by a number of recent exciting and important reports that provide insight into the function of two key gene products - TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) and PLCγ2 (Phospholipase C gamma2) - in microglia, and their role in neurodegenerative disorders. In this review we explore and discuss these recent advances and the opportunities that they may provide for the development of new therapies.


Subject(s)
Alzheimer Disease/immunology , Connective Tissue Cells/metabolism , Lymphocytes/metabolism , Membrane Glycoproteins/physiology , Microglia/metabolism , Myeloid Cells/metabolism , Phospholipase C gamma/physiology , Receptors, Immunologic/physiology , Signal Transduction/physiology , Age of Onset , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/prevention & control , Humans , Lipid Metabolism , Membrane Glycoproteins/chemistry , Microglia/physiology , Models, Molecular , Mutation , Phospholipase C gamma/chemistry , Phospholipase C gamma/genetics , Protein Conformation , Protein Domains , Protein Interaction Mapping , Receptors, Immunologic/chemistry , Sequence Homology, Amino Acid , Structure-Activity Relationship
3.
Insect Sci ; 28(2): 430-444, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32108427

ABSTRACT

Apolygus lucorum is the dominant pathogenic insect attacking Bacillus thuringiensis (Bt) cotton in China. Additionally, 20-hydroxyecdysone (20E) has important functions in many biological processes, including insect reproduction. Phospholipase C (PLC), which is an essential enzyme for phosphoinositide metabolism, is involved in 20E signal transduction, but its function in 20E-mediated reproduction in A. lucorum remains unclear. In this study, 20E increased AlPLCγ transcription as well as the abundance and activity of the encoded protein during molting and metamorphosis. The 20E treatment also induced the considerable accumulation of two second messengers, inositol triphosphate and diacylglycerol. The expression levels of genes encoding vitellogenin (AlVg) and soluble trehalase (AlTre-1) were similar to those of AlPLCγ, and were upregulated in response to 20E. The silencing of AlPLCγ resulted in downregulated expression of AlTre-1 and AlVg. However, the silencing of AlTre-1 and AlVg did not affect AlPLCγ expression. Moreover, the silencing of AlVg did not alter AlTre-1 expression. Furthermore, an examination of the insect specimens indicated that AlPLCγ is required for female adult reproduction, and that downregulated expression of this gene is associated with decreases in fecundity, adult longevity, and egg hatching rate as well as delayed oocyte maturation. We propose that 20E regulates AlTre-1 expression via AlPLCγ and affects Vg expression as well as ovary development to facilitate the reproductive activities of A. lucorum females.


Subject(s)
Heteroptera/physiology , Insect Proteins/genetics , Phospholipase C gamma/genetics , Trehalase/metabolism , Amino Acid Sequence , Animals , Ecdysterone/administration & dosage , Female , Fertility/drug effects , Heteroptera/genetics , Heteroptera/growth & development , Insect Proteins/chemistry , Insect Proteins/metabolism , Nymph/growth & development , Nymph/physiology , Phospholipase C gamma/chemistry , Phospholipase C gamma/metabolism , Phylogeny
4.
Biochemistry ; 59(41): 4029-4038, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33028071

ABSTRACT

The two phospholipase C-γ (PLC-γ) isozymes are major signaling hubs and emerging therapeutic targets for various diseases, yet there are no selective inhibitors for these enzymes. We have developed a high-throughput, liposome-based assay that features XY-69, a fluorogenic, membrane-associated reporter for mammalian PLC isozymes. The assay was validated using a pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) in 384-well format; it is highly reproducible and has the potential to capture both orthosteric and allosteric inhibitors. Selected hit compounds were confirmed with secondary assays, and further profiling led to the interesting discovery that adenosine triphosphate potently inhibits the PLC-γ isozymes through noncompetitive inhibition, raising the intriguing possibility of endogenous, nucleotide-dependent regulation of these phospholipases. These results highlight the merit of the assay platform for large scale screening of chemical libraries to identify allosteric modulators of the PLC-γ isozymes as chemical probes and for drug discovery.


Subject(s)
Cell Membrane/enzymology , Isoenzymes/chemistry , Isoenzymes/metabolism , Phospholipase C gamma/chemistry , Phospholipase C gamma/metabolism , Animals , Humans , Signal Transduction/physiology
5.
J Clin Immunol ; 40(7): 987-1000, 2020 10.
Article in English | MEDLINE | ID: mdl-32671674

ABSTRACT

Autoinflammatory diseases (AIDs) were first described as clinical disorders characterized by recurrent episodes of seemingly unprovoked sterile inflammation. In the past few years, the identification of novel AIDs expanded their phenotypes toward more complex clinical pictures associating vasculopathy, autoimmunity, or immunodeficiency. Herein, we describe two unrelated patients suffering since the neonatal period from a complex disease mainly characterized by severe sterile inflammation, recurrent bacterial infections, and marked humoral immunodeficiency. Whole-exome sequencing detected a novel, de novo heterozygous PLCG2 variant in each patient (p.Ala708Pro and p.Leu845_Leu848del). A clear enhanced PLCγ2 activity for both variants was demonstrated by both ex vivo calcium responses of the patient's B cells to IgM stimulation and in vitro assessment of PLC activity. These data supported the autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) diagnosis in both patients. Immunological evaluation revealed a severe decrease of immunoglobulins and B cells, especially class-switched memory B cells, with normal T and NK cell counts. Analysis of bone marrow of one patient revealed a reduced immature B cell fraction compared with controls. Additional investigations showed that both PLCG2 variants activate the NLRP3-inflammasome through the alternative pathway instead of the canonical pathway. Collectively, the evidences here shown expand APLAID diversity toward more severe phenotypes than previously reported including dominantly inherited agammaglobulinemia, add novel data about its genetic basis, and implicate the alternative NLRP3-inflammasome activation pathway in the basis of sterile inflammation.


Subject(s)
Agammaglobulinemia/diagnosis , Agammaglobulinemia/genetics , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Mutation , Phospholipase C gamma/genetics , Adolescent , Agammaglobulinemia/therapy , Autoimmunity/genetics , Biomarkers , Caspase 1/metabolism , Child , Cytokines/metabolism , DNA Mutational Analysis , Female , Genetic Association Studies , Genetic Predisposition to Disease , Hereditary Autoinflammatory Diseases/therapy , Humans , Inflammasomes/metabolism , Male , Pedigree , Phenotype , Phospholipase C gamma/chemistry , Phospholipase C gamma/metabolism , Structure-Activity Relationship
6.
J Nat Prod ; 83(4): 1174-1182, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32237724

ABSTRACT

The increase of bone-resorbing osteoclast activity in bone remodeling is the major characteristic of various bone diseases. Thus, inhibiting osteoclastogenesis and bone-resorbing function may be an effective therapeutic target for bone diseases. Betulinic acid (BA), a natural plant-derived pentacyclic triterpenoid compound, is known to possess numerous pharmacological and biochemical properties including anti-inflammatory, anticancer, and antiadipogenic activity. However, the effect of BA on osteoclast differentiation and function in bone metabolism has not been demonstrated so far. In this study, we investigated whether BA could suppress RANKL-induced osteoclastogenesis and bone resorption. Interestingly, BA significantly suppressed osteoclastogenesis by decreasing the phosphorylation of Akt and IκB, as well as PLCγ2-Ca2+ signaling, in pathways involved in early osteoclastogenesis as well as through the subsequent suppression of c-Fos and NFATc1. The inhibition of these pathways by BA was once more confirmed by retrovirus infection of constitutively active (CA)-Akt and CA-Ikkß retrovirus and measurement of Ca2+ influx. BA also significantly inhibited the expression of osteoclastogenesis-specific marker genes. Moreover, we found that BA administration restored the bone loss induced through acute lipopolysaccharide injection in mice by a micro-CT and histological analysis. Our findings suggest that BA is a potential therapeutic candidate for bone diseases involving osteoclasts.


Subject(s)
Bone Marrow Cells/drug effects , Bone Resorption/metabolism , NF-kappa B/antagonists & inhibitors , Osteogenesis/drug effects , Pentacyclic Triterpenes/pharmacology , Phospholipase C gamma/pharmacology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/chemistry , Signal Transduction/drug effects , Animals , Lipopolysaccharides/chemistry , Lipopolysaccharides/pharmacology , Mice , Molecular Structure , Osteoclasts/drug effects , Pentacyclic Triterpenes/chemistry , Phospholipase C gamma/chemistry , Phospholipase C gamma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RANK Ligand/chemistry , RANK Ligand/metabolism , Betulinic Acid
7.
EBioMedicine ; 51: 102607, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31918402

ABSTRACT

BACKGROUND: PLCγ enzymes are key nodes in cellular signal transduction and their mutated and rare variants have been recently implicated in development of a range of diseases with unmet need including cancer, complex immune disorders, inflammation and neurodegenerative diseases. However, molecular nature of activation and the impact and dysregulation mechanisms by mutations, remain unclear; both are critically dependent on comprehensive characterization of the intact PLCγ enzymes. METHODS: For structural studies we applied cryo-EM, cross-linking mass spectrometry and hydrogen-deuterium exchange mass spectrometry. In parallel, we compiled mutations linked to main pathologies, established their distribution and assessed their impact in cells and in vitro. FINDINGS: We define structure of a complex containing an intact, autoinhibited PLCγ1 and the intracellular part of FGFR1 and show that the interaction is centred on the nSH2 domain of PLCγ1. We define the architecture of PLCγ1 where an autoinhibitory interface involves the cSH2, spPH, TIM-barrel and C2 domains; this relative orientation occludes PLCγ1 access to its substrate. Based on this framework and functional characterization, the mechanism leading to an increase in PLCγ1 activity for the largest group of mutations is consistent with the major, direct impact on the autoinhibitory interface. INTERPRETATION: We reveal features of PLCγ enzymes that are important for determining their activation status. Targeting such features, as an alternative to targeting the PLC active site that has so far not been achieved for any PLC, could provide new routes for clinical interventions related to various pathologies driven by PLCγ deregulation. FUND: CR UK, MRC and AstaZeneca.


Subject(s)
Mutation/genetics , Phospholipase C gamma/chemistry , Phospholipase C gamma/genetics , Humans , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Phospholipase C gamma/ultrastructure , Protein Binding , Receptor, Fibroblast Growth Factor, Type 1/metabolism
8.
Int J Mol Sci ; 20(19)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31548507

ABSTRACT

The enzyme phospholipase C gamma 1 (PLCγ1) has been identified as a potential drug target of interest for various pathological conditions such as immune disorders, systemic lupus erythematosus, and cancers. Targeting its SH3 domain has been recognized as an efficient pharmacological approach for drug discovery against PLCγ1. Therefore, for the first time, a combination of various biophysical methods has been employed to shed light on the atomistic interactions between PLCγ1 and its known binding partners. Indeed, molecular modeling of PLCγ1 with SLP76 peptide and with previously reported inhibitors (ritonavir, anethole, daunorubicin, diflunisal, and rosiglitazone) facilitated the identification of the common critical residues (Gln805, Arg806, Asp808, Glu809, Asp825, Gly827, and Trp828) as well as the quantification of their interaction through binding energies calculations. These features are in agreement with previous experimental data. Such an in depth biophysical analysis of each complex provides an opportunity to identify new inhibitors through pharmacophore mapping, molecular docking and MD simulations. From such a systematic procedure, a total of seven compounds emerged as promising inhibitors, all characterized by a strong binding with PLCγ1 and a comparable or higher binding affinity to ritonavir (∆Gbind < -25 kcal/mol), one of the most potent inhibitor reported till now.


Subject(s)
Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Peptides/chemistry , Phospholipase C gamma/antagonists & inhibitors , Phospholipase C gamma/chemistry , Enzyme Inhibitors/metabolism , Humans , Peptides/metabolism , Phospholipase C gamma/metabolism , Protein Binding , Protein Domains
9.
Bioorg Med Chem Lett ; 29(21): 126669, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31526605

ABSTRACT

Proceeding our effort to study protein-protein interaction between the death receptor CD95 and phospholipase PLCγ1, we present in the current work chameleon-like traits of peptidomimetic inhibitors. Minute analysis of the interaction suggests that most of the binding energy relies on van der Waals contacts rather than more specific features, such as hydrogen bonds or salt bridges. The two most important positions of the peptoid for its interaction with PLCγ1 (Arg184 and Arg187) were modified to test this hypothesis. While Arg184 proves to be exchangeable for Trp, with no alteration in affinity, the nature of the amino acid replacing Arg187 is more dependent on its positive charge. However, affinity can be partially recovered by increasing van der Waals interactions. Overall, this study shows that for both positions, a subtle balance exists between hydrophobicity, surface contacts and affinity for CD95/PLCγ1, and provides information for the generation of new therapeutic compounds toward this druggable target.


Subject(s)
Phospholipase C gamma/chemistry , fas Receptor/chemistry , Amino Acid Sequence , Arginine/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Binding , Protein Conformation , Static Electricity , Surface Properties , Thermodynamics
10.
J Mol Recognit ; 32(12): e2806, 2019 12.
Article in English | MEDLINE | ID: mdl-31397025

ABSTRACT

The phospholipase Cγ1 (PLCγ1) is essential for T-cell signaling and activation in hepatic cancer immune response, which has a regulatory Src homology 3 (SH3) domain that can specifically recognize and interact with the PXXP-containing decapeptide segment (185 QPPVPPQRPM194 , termed as SLP76185-194 peptide) of adaptor protein SLP76 following T-cell receptor ligation. The isolated peptide can only bind to the PLCγ1 SH3 domain with a moderate affinity due to lack of protein context support. Instead of the traditional natural residue mutagenesis that is limited by low structural diversity and shifted target specificity, we herein attempt to improve the peptide affinity by replacing the two key proline residues Pro187 and Pro190 of SLP76185-194 PXXP motif with nonnatural N-substituted amino acids, as the proline is the only endogenous N-substituted amino acid. The replacement would increase peptide flexibility but can restore peptide activity by establishing additional interactions with the domain. Structural analysis reveals that the domain pocket can be divided into a large amphipathic region and a small negatively charged region; they accommodate hydrophobic, aromatic, polar, and moderate-sized N-substituted amino acid types. A systematic replacement combination profile between the peptide residues Pro187 and Pro190 is created by structural modeling, dynamics simulation, and energetics analysis, from which six improved and two reduced N-substituted peptides as well as native SLP76185-194 peptide are identified and tested for their binding affinity to the recombinant protein of the human PLCγ1 SH3 domain using fluorescence-based assays. Two N-substituted peptides, SLP76185-194 (N-Leu187/N-Gln190) and SLP76185-194 (N-Thr187/N-Gln190), are designed to have high potency (Kd  = 0.67 ± 0.18 and 1.7 ± 0.3 µM, respectively), with affinity improvement by, respectively, 8.5-fold and 3.4-fold relative to native peptide (Kd  = 5.7 ± 1.2 µM).


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Drug Design , Liver Neoplasms/metabolism , Peptides/chemistry , Phospholipase C gamma/chemistry , Phosphoproteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Models, Molecular , Phospholipase C gamma/metabolism , Protein Binding , Thermodynamics , src Homology Domains
11.
Elife ; 82019 12 31.
Article in English | MEDLINE | ID: mdl-31889510

ABSTRACT

Direct activation of the human phospholipase C-γ isozymes (PLC-γ1, -γ2) by tyrosine phosphorylation is fundamental to the control of diverse biological processes, including chemotaxis, platelet aggregation, and adaptive immunity. In turn, aberrant activation of PLC-γ1 and PLC-γ2 is implicated in inflammation, autoimmunity, and cancer. Although structures of isolated domains from PLC-γ isozymes are available, these structures are insufficient to define how release of basal autoinhibition is coupled to phosphorylation-dependent enzyme activation. Here, we describe the first high-resolution structure of a full-length PLC-γ isozyme and use it to underpin a detailed model of their membrane-dependent regulation. Notably, an interlinked set of regulatory domains integrates basal autoinhibition, tyrosine kinase engagement, and additional scaffolding functions with the phosphorylation-dependent, allosteric control of phospholipase activation. The model also explains why mutant forms of the PLC-γ isozymes found in several cancers have a wide spectrum of activities, and highlights how these activities are tuned during disease.


Many enzymes are poised to receive signals from the surrounding environment and translate them into responses inside the cell. One such enzyme is phospholipase C-γ1 (PLC-γ1), which controls how cells grow, divide and migrate.When activating signals are absent, PLC-γ1 usually inhibits its own activity, a mechanism called autoinhibition. This prevents the enzyme from binding to its targets, which are fat molecules known as lipids. When activating signals are present, a phosphate group serves as a 'chemical tag' and is added onto PLC-γ1, allowing the enzyme to bind to lipids.Failure in the regulation of PLC-γ1 or other closely related enzymes may lead to conditions such as cancer, arthritis and Alzheimer's disease. However, it remains unclear how autoinhibition suppresses the activity of the enzyme, and how it is stopped by the addition of the phosphate group.Here, Hajicek et al. determine in great detail the three-dimensional structure of the autoinhibited form of the enzyme using a method known as X-ray crystallography. This reveals that PLC-γ1 has two major lobes: one contains the active site that modifies lipids, and the other sits on top of the active site to prevent lipids from reaching it. The findings suggest that when the phosphate group attaches to PLC-γ1, it triggers a large shape change that shifts the second lobe away from the active site to allow lipids to bind.The three-dimensional structure also helps to understand how mutations identified in certain cancers may activate PLC-γ1. In particular, these mutations disrupt the interactions between elements that usually hold the two lobes together, causing the enzyme to activate more easily.The work by Hajicek et al. provides a framework to understand how cells control PLC-γ1. It is a first step toward designing new drugs that alter the activity of this enzyme, which may ultimately be useful to treat cancer and other diseases.


Subject(s)
Enzyme Activation/genetics , Isoenzymes/ultrastructure , Phospholipase C gamma/ultrastructure , Protein Conformation , Crystallography, X-Ray , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Mutation/genetics , Neoplasms/genetics , Neoplasms/pathology , Phospholipase C gamma/chemistry , Phospholipase C gamma/genetics , Phosphorylation/genetics , Protein Domains/genetics , Tyrosine/genetics
12.
Biochemistry ; 57(35): 5257-5269, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30091902

ABSTRACT

Discerning the different interaction states during dynamic protein-ligand binding is difficult. Here we apply site-specific cysteine-α-chloroacetyl cross-linking to scrutinize the binding between the Src homology 2 (SH2) domain and phosphotyrosine (pY) peptides, a highly dynamic interaction that is a key to cellular signal transduction. From a model SH2 protein to a set of representative SH2 domains, we showed here that a proximity-induced cysteine-α-chloroacetyl reaction cross-linked two spatially adjacent chemical groups as a result of the binding interaction, and reciprocally, the information about the interaction states can be deduced from the cross-linked products. To our surprise, we found SH2 domains can adopt a reverse binding mode with "single-pronged", "two-pronged", and "half" pY peptides. This finding was further supported by a set of 500 ns molecular dynamics simulations. This serendipitous finding defies the canonical theory of SH2 binding, suggests a possible answer about the source of the versatility of SH2 signaling, and sets a model for other protein binding interactions.


Subject(s)
Phospholipase C gamma/metabolism , Phosphopeptides/metabolism , Phosphotyrosine/metabolism , src Homology Domains , Amino Acid Sequence , Binding Sites , Humans , Molecular Dynamics Simulation , Phospholipase C gamma/chemistry , Phosphopeptides/chemistry , Phosphotyrosine/chemistry , Protein Binding , Signal Transduction
13.
Biophys J ; 115(1): 31-45, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29972810

ABSTRACT

Phosphatidylinositol phospholipase Cγ (PLCγ) is an intracellular membrane-associated second-messenger signaling protein activated by tyrosine kinases such as fibroblast growth factor receptor 1. PLCγ contains the regulatory γ-specific array (γSA) comprising a tandem Src homology 2 (SH2) pair, an SH3 domain, and a split pleckstrin homology domain. Binding of an activated growth factor receptor to γSA leads to Tyr783 phosphorylation and consequent PLCγ activation. Several disease-relevant mutations in γSA have been identified; all lead to elevated phospholipase activity. In this work, we describe an allosteric mechanism that connects the Tyr783 phosphorylation site to the nSH2-cSH2 junction and involves dynamic interactions between the cSH2-SH3 linker and cSH2. Molecular dynamics simulations of the tandem SH2 protein suggest that Tyr783 phosphorylation is communicated to the nSH2-cSH2 junction by modulating cSH2 binding to sections of the cSH2-SH3 linker. NMR chemical shift perturbation analyses for designed tandem SH2 constructs reveal combined fast and slow dynamic processes that can be attributed to allosteric communication involving these regions of the protein, establishing an example in which complex N-site exchange can be directly inferred from 1H,15N-HSQC spectra. Furthermore, in tandem SH2 and γSA constructs, molecular dynamics and NMR results show that the Arg687Trp mutant in PLCγ1 (equivalent to the cancer mutation Arg665Trp in PLCγ2) perturbs the dynamic allosteric pathway. This combined experimental and computational study reveals a rare example of multistate kinetics involved in a dynamic allosteric process that is modulated in the context of a disease-relevant mutation. The allosteric influences and the weakened binding of the cSH2-SH3 linker to cSH2 should be taken into account in any more holistic investigation of PLCγ regulation.


Subject(s)
Molecular Dynamics Simulation , Mutation , Neoplasms/genetics , Nuclear Magnetic Resonance, Biomolecular , Phospholipase C gamma/chemistry , Phospholipase C gamma/metabolism , Allosteric Regulation , Phospholipase C gamma/genetics , Phosphorylation , src Homology Domains
14.
J Biomol NMR ; 71(1): 19-30, 2018 05.
Article in English | MEDLINE | ID: mdl-29796789

ABSTRACT

Exchange between conformational states is required for biomolecular catalysis, allostery, and folding. A variety of NMR experiments have been developed to quantify motional regimes ranging from nanoseconds to seconds. In this work, we describe an approach to speed up the acquisition of chemical exchange saturation transfer (CEST) experiments that are commonly used to probe millisecond to second conformational exchange in proteins and nucleic acids. The standard approach is to obtain CEST datasets through the acquisition of a series of 2D correlation spectra where each experiment utilizes a single saturation frequency to 1H, 15N or 13C. These pseudo 3D datasets are time consuming to collect and are further lengthened by reduced signal to noise stemming from the long saturation pulse. In this article, we show how usage of a multiple frequency saturation pulse (i.e., MF-CEST) changes the nature of data collection from series to parallel, and thus decreases the total acquisition time by an integer factor corresponding to the number of frequencies in the pulse. We demonstrate the applicability of MF-CEST on a Src homology 2 (SH2) domain from phospholipase Cγ and the secondary active transport protein EmrE as model systems by collecting 13C methyl and 15N backbone datasets. MF-CEST can also be extended to additional sites within proteins and nucleic acids. The only notable drawback of MF-CEST as applied to backbone 15N experiments occurs when a large chemical shift difference between the major and minor populations is present (typically greater than ~ 8 ppm). In these cases, ambiguity may arise between the chemical shift of the minor population and the multiple frequency saturation pulse. Nevertheless, this drawback does not occur for methyl group MF-CEST experiments or in cases where somewhat smaller chemical shift differences occur are present.


Subject(s)
Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Molecular Conformation , Motion , Phospholipase C gamma/chemistry , Time Factors , src Homology Domains
15.
Sci Rep ; 8(1): 5336, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29593227

ABSTRACT

Cish, participates within a multi-molecular E3 ubiquitin ligase complex, which ubiquitinates target proteins. It has an inhibitory effect on T cell activation mediated by PLC-γ1 regulation, and it functions as a potent checkpoint in CD8+ T cell tumor immunotherapy. To study the structural and functional relationships between Cish and PLC-γ1 during CD8+ T cell activation, we tested mutants of the Cish-SH2 (R107K) and D/BC (L222Q, C226Q) domains. We confirmed that Cish-SH2-specific binding was essential for PLC-γ1 ubiquitination and degradation. This domain was essential for the Cish-mediated inhibition of Ca2+ release upon TCR stimulation. No effect on inhibition of cytokine release was observed with SH2 or D/BC mutants, although the absence of Cish led to an increased release of IFN-γ and TNF-α. Using imaging we showed that Cish was expressed mostly in the cytoplasm and we did not see any Cish clustering at the plasma membrane upon stimulation. We conclude that the Cish-SH2 domain is essential for PLC-γ1 regulation in TCR-stimulated CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Phospholipase C gamma/metabolism , Receptors, Antigen, T-Cell/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , src Homology Domains , Animals , CD8-Positive T-Lymphocytes/immunology , Calcium/metabolism , Cell Line , Cytokines/metabolism , Gene Expression , Humans , Lymphocyte Activation , Mice , Mice, Knockout , Phospholipase C gamma/chemistry , Phospholipase C gamma/genetics , Protein Binding , Protein Interaction Domains and Motifs , Signal Transduction , Suppressor of Cytokine Signaling Proteins/chemistry , Suppressor of Cytokine Signaling Proteins/genetics
16.
Front Immunol ; 9: 2863, 2018.
Article in English | MEDLINE | ID: mdl-30619256

ABSTRACT

Background: The auto-inflammation and phospholipase Cγ2 (PLCγ2)-associated antibody deficiency and immune dysregulation (APLAID) syndrome is a rare primary immunodeficiency caused by a gain-of-function mutation S707Y in the PLCG2 gene previously described in two patients from one family. The APLAID patients presented with early-onset blistering skin lesions, posterior uveitis, inflammatory bowel disease (IBD) and recurrent sinopulmonary infections caused by a humoral defect, but lacked circulating autoantibodies and had no cold-induced urticaria, contrary to the patients with the related PLAID syndrome. Case: We describe a new APLAID patient who presented with vesiculopustular rash in the 1st weeks of life, followed by IBD, posterior uveitis, recurrent chest infections, interstitial pneumonitis, and also had sensorineural deafness and cutis laxa. Her disease has been refractory to most treatments, including IL1 blockers and a trial with ruxolitinib has been attempted. Results: In this patient, we found a unique de novo heterozygous missense L848P mutation in the PLCG2 gene, predicted to affect the PLCγ2 structure. Similarly to S707Y, the L848P mutation led to the increased basal and EGF-stimulated PLCγ2 activity in vitro. Whole blood assays showed reduced production of IFN-γ and IL-17 in response to polyclonal T-cell stimulation and reduced production of IL-10 and IL-1ß after LPS stimulation. Reduced IL-1ß levels and the lack of clinical response to treatment with IL-1 blockers argue against NLRP3 inflammasome hyperactivation being the main mechanism mediating the APLAID pathogenesis. Conclusion: Our findings indicate that L848P is novel a gain-of-function mutation that leads to PLCγ2 activation and suggest cutis laxa as a possible clinical manifestations of the APLAID syndrome.


Subject(s)
Cutis Laxa/genetics , Hereditary Autoinflammatory Diseases/genetics , Immunologic Deficiency Syndromes/genetics , Mutation, Missense , Phospholipase C gamma/genetics , Amino Acid Sequence , Base Sequence , Cutis Laxa/complications , Cutis Laxa/enzymology , DNA Mutational Analysis , Female , Hereditary Autoinflammatory Diseases/complications , Hereditary Autoinflammatory Diseases/enzymology , Humans , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/enzymology , Infant, Newborn , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/genetics , Male , Pedigree , Phospholipase C gamma/chemistry , Phospholipase C gamma/metabolism , Sequence Homology, Amino Acid
17.
Biochemistry ; 56(16): 2225-2237, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28376302

ABSTRACT

SH2 domains recognize phosphotyrosine (pY)-containing peptide ligands and play key roles in the regulation of receptor tyrosine kinase pathways. Each SH2 domain has individualized specificity, encoded in the amino acids neighboring the pY, for defined targets that convey their distinct functions. The C-terminal SH2 domain (PLCC) of the phospholipase C-γ1 full-length protein (PLCγ1) typically binds peptides containing small and hydrophobic amino acids adjacent to the pY, including a peptide derived from platelet-derived growth factor receptor B (PDGFRB) and an intraprotein recognition site (Y783 of PLCγ1) involved in the regulation of the protein's lipase activity. Remarkably, PLCC also recognizes unexpected peptides containing amino acids with polar or bulky side chains that deviate from this pattern. This versatility in recognition specificity may allow PLCγ1 to participate in diverse, previously unrecognized, signaling pathways in response to binding chemically dissimilar partners. We have used structural approaches, including nuclear magnetic resonance and X-ray crystallography, to elucidate the mechanisms of noncognate peptide binding to PLCC by ligands derived from receptor tyrosine kinase ErbB2 and from the insulin receptor. The high-resolution peptide-bound structures reveal that PLCC has a relatively static backbone but contains a chemically rich protein surface comprised of a combination of hydrophobic pockets and amino acids with charged side chains. We demonstrate that this expansive and chemically diverse PLCC interface, in addition to peptide conformational plasticity, permits PLCC to recognize specific noncognate peptide ligands with multimodal specificity.


Subject(s)
Peptides/metabolism , Phospholipase C gamma/metabolism , src Homology Domains , Binding Sites , Calorimetry , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Phospholipase C gamma/chemistry , Protein Conformation
18.
Adv Biol Regul ; 63: 92-97, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27707630

ABSTRACT

Among the phospholipase C (PLC) isoforms, PLCγ not only has unique structural characteristics in terms of harboring SH2 and SH3 domains but also mediates growth factor-induced signaling pathways. PLCγ isoforms are expressed in several innate immune cell types, including macrophages, natural killer cells, mast cells, and neutrophils. Stimulation of Fc receptor or integrin in innate immune cells induces PLCγ activation, which leads to phosphoinositide hydrolysis and calcium increase. The products of PLCγ activity mediate the innate immune response by regulating respiratory burst, phagocytosis, cell adhesion, and cell migration. PLCγ also regulates the inflammatory response by affecting Toll-like receptor-mediated signaling. Here, we briefly review the current understanding of the functional role of PLCγ in inflammation and innate immunity in some innate immune cell types.


Subject(s)
Immunity, Innate , Inflammation/enzymology , Killer Cells, Natural/enzymology , Macrophages/enzymology , Mast Cells/enzymology , Neutrophils/enzymology , Phospholipase C gamma/immunology , Animals , Cell Movement/immunology , Gene Expression Regulation , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Killer Cells, Natural/immunology , Macrophages/immunology , Mast Cells/immunology , Neutrophils/immunology , Phagocytosis/genetics , Phospholipase C gamma/chemistry , Phospholipase C gamma/genetics , Protein Domains , Receptors, Fc/genetics , Receptors, Fc/immunology , Respiratory Burst/immunology , Signal Transduction , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
19.
Fish Shellfish Immunol ; 63: 353-366, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27894895

ABSTRACT

Phospholipase C gamma 1 and gamma 2 (PLCG1 and PLCG2) are influential in modulating Ca2+ and diacylglycerol, second messengers involved in tyrosine kinase-dependent signaling, including growth factor activation. Here, we used RACE (rapid amplification of cDNA ends) to clone cDNA encoding PLCG1 (PoPLCG1) and PLCG2 (PoPLCG2) in the olive flounder (Paralichthys olivaceus). The respective 1313 and 1249 amino acid sequences share high identity with human PLCG1 and PLCG2, and contain the following domains: pleckstrin homology (PH), EF-hand, catalytic X and Y, Src homology 2 (SH2), Src homology 3 (SH3), and C2. Phylogenic analysis and sequence comparison of PoPLCG1 and PoPLCG2 with other PLC isozymes showed a close relationship between the two PLCGs, supported by structural analysis. In addition, tissue expression analysis showed that PoPLCG1 was expressed predominantly in the brain, eye, and heart, whereas PoPLCG2 was expressed principally in gills, esophagus, spleen, and kidney. Following stimulation with LPS and Poly I:C, PoPLCG expression was compared with the expression of inflammatory cytokines IL-1ß, IL-6, and TNF-α via reverse transcription-PCR and real-time quantitative PCR. Our results suggest that PoPLCG isozymes perform a critical immune function in olive flounder, being active in pathogen resistance and the inflammation process.


Subject(s)
Fish Proteins/genetics , Flatfishes/genetics , Flatfishes/immunology , Gene Expression Regulation , Immunity, Innate , Phospholipase C gamma/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Fish Proteins/chemistry , Fish Proteins/metabolism , Lipopolysaccharides/pharmacology , Organ Specificity , Phospholipase C gamma/chemistry , Phospholipase C gamma/metabolism , Phylogeny , Poly I-C/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment/veterinary
20.
Adv Biol Regul ; 60: 6-13, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26482290

ABSTRACT

In vitro and in vivo imaging of protein tyrosine kinase activity requires minimally invasive, molecularly precise optical probes to provide spatiotemporal mechanistic information of dimerization and complex formation with downstream effectors. We present here a construct with genetically encoded, site-specifically incorporated, bioorthogonal reporter that can be selectively labelled with exogenous fluorogenic probes to monitor the structure and function of fibroblast growth factor receptor (FGFR). GyrB.FGFR1KD.TC contains a coumermycin-induced artificial dimerizer (GyrB), FGFR1 kinase domain (KD) and a tetracysteine (TC) motif that enables fluorescent labelling with biarsenical dyes FlAsH-EDT2 and ReAsH-EDT2. We generated bimolecular system for time-resolved FRET (TR-FRET) studies, which pairs FlAsH-tagged GyrB.FGFR1KD.TC and N-terminal Src homology 2 (nSH2) domain of phospholipase Cγ (PLCγ), a downstream effector of FGFR1, fused to mTurquoise fluorescent protein (mTFP). We demonstrated phosphorylation-dependent TR-FRET readout of complex formation between mTFP.nSH2 and GyrB.FGFR1KD.TC. By further application of TR-FRET, we also demonstrated formation of the GyrB.FGFR1KD.TC homodimer by coumermycin-induced dimerization. Herein, we present a spectroscopic FRET approach to facilitate and propagate studies that would provide structural and functional insights for FGFR and other tyrosine kinases.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Phospholipase C gamma/chemistry , Phospholipase C gamma/metabolism , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Dimerization , Humans , Phospholipase C gamma/genetics , Protein Binding , Receptor, Fibroblast Growth Factor, Type 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL