Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.296
Filter
1.
Sci Transl Med ; 16(746): eadk8198, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718132

ABSTRACT

The phosphate modification of drugs is a common chemical strategy to increase solubility and allow for parenteral administration. Unfortunately, phosphate modifications often elicit treatment- or dose-limiting pruritus through an unknown mechanism. Using unbiased high-throughput drug screens, we identified the Mas-related G protein-coupled receptor X4 (MRGPRX4), a primate-specific, sensory neuron receptor previously implicated in itch, as a potential target for phosphate-modified compounds. Using both Gq-mediated calcium mobilization and G protein-independent GPCR assays, we found that phosphate-modified compounds potently activate MRGPRX4. Furthermore, a humanized mouse model expressing MRGPRX4 in sensory neurons exhibited robust phosphomonoester prodrug-evoked itch. To characterize and confirm this interaction, we further determined the structure of MRGPRX4 in complex with a phosphate-modified drug through single-particle cryo-electron microscopy (cryo-EM) and identified critical amino acid residues responsible for the binding of the phosphate group. Together, these findings explain how phosphorylated drugs can elicit treatment-limiting itch and identify MRGPRX4 as a potential therapeutic target to suppress itch and to guide future drug design.


Subject(s)
Disease Models, Animal , Pruritus , Receptors, G-Protein-Coupled , Animals , Pruritus/metabolism , Pruritus/chemically induced , Pruritus/pathology , Pruritus/drug therapy , Humans , Receptors, G-Protein-Coupled/metabolism , Mice , HEK293 Cells , Phosphorylation/drug effects , Phosphates/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Prodrugs/pharmacology , Cryoelectron Microscopy
2.
Nutrients ; 16(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732504

ABSTRACT

Prostate cancer, accounting for 375,304 deaths in 2020, is the second most prevalent cancer in men worldwide. While many treatments exist for prostate cancer, novel therapeutic agents with higher efficacy are needed to target aggressive and hormone-resistant forms of prostate cancer, while sparing healthy cells. Plant-derived chemotherapy drugs such as docetaxel and paclitaxel have been established to treat cancers including prostate cancer. Carnosic acid (CA), a phenolic diterpene found in the herb rosemary (Rosmarinus officinalis) has been shown to have anticancer properties but its effects in prostate cancer and its mechanisms of action have not been examined. CA dose-dependently inhibited PC-3 and LNCaP prostate cancer cell survival and proliferation (IC50: 64, 21 µM, respectively). Furthermore, CA decreased phosphorylation/activation of Akt, mTOR, and p70 S6K. A notable increase in phosphorylation/activation of AMP-activated kinase (AMPK), acetyl-CoA carboxylase (ACC) and its upstream regulator sestrin-2 was seen with CA treatment. Our data indicate that CA inhibits AKT-mTORC1-p70S6K and activates Sestrin-2-AMPK signaling leading to a decrease in survival and proliferation. The use of inhibitors and small RNA interference (siRNA) approaches should be employed, in future studies, to elucidate the mechanisms involved in carnosic acid's inhibitory effects of prostate cancer.


Subject(s)
AMP-Activated Protein Kinases , Abietanes , Cell Proliferation , Cell Survival , Prostatic Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Abietanes/pharmacology , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Cell Proliferation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , AMP-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Cell Survival/drug effects , Cell Line, Tumor , Phosphorylation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , TOR Serine-Threonine Kinases/metabolism , PC-3 Cells
3.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673925

ABSTRACT

The protective effects of hydrogen sulfide (H2S) against ischemic brain injury and its role in promoting angiogenesis have been established. However, the specific mechanism underlying these effects remains unclear. This study is designed to investigate the regulatory impact and mechanism of H2S on VEGFR2 phosphorylation. Following expression and purification, the recombinant His-VEGFR2 protein was subjected to LC-PRM/MS analysis to identify the phosphorylation sites of VEGFR2 upon NaHS treatment. Adenovirus infection was used to transfect primary rat brain artery endothelial cells (BAECs) with the Ad-VEGFR2WT, Ad-VEGFR2Y797F, and Ad-VEGFR2S799A plasmids. The expression of VEGFR2 and recombinant Flag-VEGFR2, along with Akt phosphorylation, cell proliferation, and LDH levels, was assessed. The migratory capacity and tube-forming potential of BAECs were assessed using wound healing, transwell, and tube formation assays. NaHS notably enhanced the phosphorylation of VEGFR2 at Tyr797 and Ser799 sites. These phosphorylation sites were identified as crucial for mediating the protective effects of NaHS against hypoxia-reoxygenation (H/R) injury. NaHS significantly enhanced the Akt phosphorylation, migratory capacity, and tube formation of BAECs and upregulated the expression of VEGFR2 and recombinant proteins. These findings suggest that Tyr797 and Ser799 sites of VEGFR2 serve as crucial mediators of H2S-induced pro-angiogenic effects and protection against H/R injury.


Subject(s)
Endothelial Cells , Hydrogen Sulfide , Vascular Endothelial Growth Factor Receptor-2 , Phosphorylation/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Animals , Rats , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects , Rats, Sprague-Dawley , Cell Hypoxia , Cell Proliferation/drug effects , Tyrosine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inducing Agents/metabolism , Serine/metabolism , Hypoxia/metabolism
4.
Nutrients ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674812

ABSTRACT

BACKGROUND: The prolonged activation of microglia and excessive production of pro-inflammatory cytokines can lead to chronic neuroinflammation, which is an important pathological feature of Parkinson's disease (PD). We have previously reported the protective effect of Vitamin C (Vit C) on a mouse model of PD. However, its effect on microglial functions in neuroinflammation remains to be clarified. Glycogen synthase kinase 3ß (GSK3ß) is a serine/threonine kinase having a role in driving inflammatory responses, making GSK3ß inhibitors a promising target for anti-inflammatory research. METHODS: In this study, we investigated the possible involvement of GSK3ß in Vit C neuroprotective effects by using a well-known 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of PD and a cellular model of neuroinflammation, represented by Lipopolysaccharide (LPS)-activated BV-2 microglial cells. RESULTS: We demonstrated the ability of Vit C to decrease the expression of different mediators involved in the inflammatory responses, such as TLR4, p-IKBα, and the phosphorylated forms of p38 and AKT. In addition, we demonstrated for the first time that Vit C promotes the GSK3ß inhibition by stimulating its phosphorylation at Ser9. CONCLUSION: This study evidenced that Vit C exerts an anti-inflammatory function in microglia, promoting the upregulation of the M2 phenotype through the activation of the Wnt/ß-catenin signaling pathway.


Subject(s)
Anti-Inflammatory Agents , Ascorbic Acid , Neuroinflammatory Diseases , Neuroprotective Agents , Animals , Male , Mice , Anti-Inflammatory Agents/pharmacology , Ascorbic Acid/pharmacology , Cell Line , Disease Models, Animal , Glycogen Synthase Kinase 3 beta/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Phosphorylation/drug effects , Serine/metabolism
5.
Molecules ; 29(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675622

ABSTRACT

IRAK4 is a critical mediator in NF-κB-regulated inflammatory signaling and has emerged as a promising therapeutic target for the treatment of autoimmune diseases; however, none of its inhibitors have received FDA approval. In this study, we identified a novel small-molecule IRAK4 kinase inhibitor, DW18134, with an IC50 value of 11.2 nM. DW18134 dose-dependently inhibited the phosphorylation of IRAK4 and IKK in primary peritoneal macrophages and RAW264.7 cells, inhibiting the secretion of TNF-α and IL-6 in both cell lines. The in vivo study demonstrated the efficacy of DW18134, significantly attenuating behavioral scores in an LPS-induced peritonitis model. Mechanistically, DW18134 reduced serum TNF-α and IL-6 levels and attenuated inflammatory tissue injury. By directly blocking IRAK4 activation, DW18134 diminished liver macrophage infiltration and the expression of related inflammatory cytokines in peritonitis mice. Additionally, in the DSS-induced colitis model, DW18134 significantly reduced the disease activity index (DAI) and normalized food and water intake and body weight. Furthermore, DW18134 restored intestinal damage and reduced inflammatory cytokine expression in mice by blocking the IRAK4 signaling pathway. Notably, DW18134 protected DSS-threatened intestinal barrier function by upregulating tight junction gene expression. In conclusion, our findings reported a novel IRAK4 inhibitor, DW18134, as a promising candidate for treating inflammatory diseases, including peritonitis and IBD.


Subject(s)
Inflammatory Bowel Diseases , Interleukin-1 Receptor-Associated Kinases , Peritonitis , Animals , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice , Peritonitis/drug therapy , Peritonitis/chemically induced , RAW 264.7 Cells , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Disease Models, Animal , Signal Transduction/drug effects , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Humans , Male , Phosphorylation/drug effects , Cytokines/metabolism , NF-kappa B/metabolism , Mice, Inbred C57BL
6.
Mol Biol Rep ; 51(1): 541, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642208

ABSTRACT

BACKGROUND AND PURPOSE: Liver fibrosis is a reversible liver injury that occurs as a result of many chronic inflammatory diseases and can lead to cirrhosis, which is irreversible and fatal. So, we studied the anti-fibrotic effects of saroglitazar on LX-2 cell lines, as a dual PPARα/γ agonist. METHODS: Cells, after 80% confluence, were treated with TGF-ß (2 ng/mL) for 24 h. Then cells were treated with saroglitazar at different doses (2.5, 5, 10 µM) for 24 h. After same incubation, the cells of control group, TGF-ß group, and TGF-ß + saroglitazar group were harvested for RNA and protein extraction to determine the effects of saroglitazar. RT-PCR and western blot methods were used to express genes related to fibrosis. RESULTS: Our results show that the relative expression of α-SMA, collagen1α, N-cadherin, NOX (1, 2, and 4), and phosphorylated Smad3 protein was significantly higher in TGF-ß-treated cells compared with the normal group, and E-cadherin expression was decreased in TGF-ß-treated cells. After TGF-ß-treated cells were exposed to saroglitazar, the expression of these genes was significantly reversed (P < 0.05). CONCLUSIONS: Our results clearly show the short-term inhibitory role of saroglitazar in the expression of fibrotic factors using the TGF-ß/Smad signaling pathway. These results suggest that saroglitazar can be considered as a suitable therapeutic strategy for fibrotic patients. Although more studies are needed.


Subject(s)
Liver Cirrhosis , Phenylpropionates , Pyrroles , Smad3 Protein , Transforming Growth Factor beta , Humans , Cell Line , Fibrosis/drug therapy , Fibrosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Phenylpropionates/pharmacology , Phosphorylation/drug effects , Pyrroles/pharmacology , Signal Transduction/drug effects , Smad3 Protein/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology
7.
Eur J Pharmacol ; 973: 176587, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642667

ABSTRACT

Agonist-induced phosphorylation is a crucial step in the activation/deactivation cycle of G protein-coupled receptors (GPCRs), but direct determination of individual phosphorylation events has remained a major challenge. We have recently developed a bead-based immunoassay for the quantitative assessment of agonist-induced GPCR phosphorylation that can be performed entirely in 96-well plates, thus eliminating the need for western blot analysis. In the present study, we adapted this assay to three novel phosphosite-specific antibodies directed against the neurokinin 1 (NK1) receptor, namely pS338/pT339-NK1, pT344/pS347-NK1, and pT356/pT357-NK1. We found that substance P (SP) stimulated concentration-dependent phosphorylation of all three sites, which could be completely blocked in the presence of the NK1 receptor antagonist aprepitant. The other two endogenous ligands of the tachykinin family, neurokinin A (NKA) and neurokinin B (NKB), were also able to induce NK1 receptor phosphorylation, but to a much lesser extent than substance P. Interestingly, substance P promoted phosphorylation of the two distal sites more efficiently than that of the proximal site. The proximal site was identified as a substrate for phosphorylation by protein kinase C. Analysis of GPCR kinase (GRK)-knockout cells revealed that phosphorylation was mediated by all four GRK isoforms to similar extents at the T344/S347 and the T356/T357 cluster. Knockout of all GRKs resulted in abolition of all phosphorylation signals highlighting the importance of these kinases in agonist-mediated receptor phosphorylation. Thus, the 7TM phosphorylation assay technology allows for rapid and detailed analyses of GPCR phosphorylation.


Subject(s)
Receptors, Neurokinin-1 , Substance P , Receptors, Neurokinin-1/metabolism , Receptors, Neurokinin-1/agonists , Phosphorylation/drug effects , Humans , Substance P/pharmacology , Animals , Immunoassay/methods , Cricetulus , CHO Cells , Mice , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin A/pharmacology , Neurokinin A/metabolism
8.
Eur J Pharmacol ; 972: 176569, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38593930

ABSTRACT

In our previous study, we uncovered that ghrelin promotes angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro by activating the Jagged1/Notch2/VEGF pathway in preeclampsia (PE). However, the regulatory effects of ghrelin on placental dysfunction in PE are unclear. Therefore, we applied Normal pregnant Sprague-Dawley (SD) rats, treated with lipopolysaccharide (LPS), to establish a PE-like rat model. The hematoxylin-eosin (HE) staining method and immunohistochemistry (IHC) technology were used to detect morphological features of the placenta. IHC and Western blot were applied to examine Bax and Bcl-2 expression levels. The concentrations of serum soluble fms-like tyrosine kinase-1 (sFlt1) and placental growth factor (PIGF) were assessed by enzyme-linked immunosorbent assay (ELISA) kit. In addition, the apoptosis rates of JEG-3 and HTR-8/SVneo trophoblast cells were determined by Annexin V-FITC/PI apoptosis detection kit. Cell migratory capacities were assessed by scratch-wound assay, and RNA-sequencing assay was used to determine the mechanism of ghrelin in regulating trophoblast apoptosis. It has been found that ghrelin significantly reduced blood pressure, urinary protein, and urine creatinine in rats with PE, at the meanwhile, ameliorated placental and fetal injuries. Second, ghrelin clearly inhibited placental Bax expression and circulating sFlt-1 as well as elevated placental Bcl-2 expression and circulating PIGF, restored apoptosis and invasion deficiency of trophoblast cells caused by LPS in vitro. Finally, transcriptomics indicated that nuclear factor kappa B (NF-κB) was the potential downstream pathway of ghrelin. Our findings illustrated that ghrelin supplementation significantly improved LPS-induced PE-like symptoms and adverse pregnancy outcomes in rats by alleviating placental apoptosis and promoting trophoblast migration.


Subject(s)
Apoptosis , Disease Models, Animal , Ghrelin , Lipopolysaccharides , NF-kappa B , Placenta , Pre-Eclampsia , Rats, Sprague-Dawley , Animals , Ghrelin/pharmacology , Female , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Pregnancy , Placenta/metabolism , Placenta/drug effects , NF-kappa B/metabolism , Rats , Apoptosis/drug effects , Humans , Phosphorylation/drug effects , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Down-Regulation/drug effects , Placenta Growth Factor/metabolism , Placenta Growth Factor/genetics , Trophoblasts/metabolism , Trophoblasts/drug effects , Cell Movement/drug effects , bcl-2-Associated X Protein/metabolism , Signal Transduction/drug effects
9.
Biomed Pharmacother ; 174: 116558, 2024 May.
Article in English | MEDLINE | ID: mdl-38603887

ABSTRACT

Human adenovirus (HAdV) infection is a major cause of respiratory disease, yet no antiviral drugs have been approved for its treatment. Herein, we evaluated the antiviral and anti-inflammatory effects of cyclin-dependent protein kinase (CDK) inhibitor indirubin-3'-monoxime (IM) against HAdV infection in cells and a transgenic mouse model. After evaluating its cytotoxicity, cytopathic effect reduction, antiviral replication kinetics, and viral yield reduction assays were performed to assess the anti-HAdV activity of IM. Quantitative real-time polymerase chain reaction (qPCR), quantitative reverse transcription PCR (qRT-PCR), and western blotting were used to assess the effects of IM on HAdV DNA replication, transcription, and protein expression, respectively. IM significantly inhibited HAdV DNA replication as well as E1A and Hexon transcription, in addition to significantly suppressing the phosphorylation of the RNA polymerase II C-terminal domain (CTD). IM mitigated body weight loss, reduced viral burden, and lung injury, decreasing cytokine and chemokine secretion to a greater extent than cidofovir. Altogether, IM inhibits HAdV replication by downregulating CTD phosphorylation to suppress viral infection and corresponding innate immune reactions as a promising therapeutic agent.


Subject(s)
Adenoviruses, Human , Anti-Inflammatory Agents , Antiviral Agents , Indoles , Oximes , Virus Replication , Indoles/pharmacology , Animals , Oximes/pharmacology , Humans , Antiviral Agents/pharmacology , Adenoviruses, Human/drug effects , Virus Replication/drug effects , Anti-Inflammatory Agents/pharmacology , Mice , Mice, Transgenic , Adenovirus Infections, Human/drug therapy , Adenovirus Infections, Human/virology , A549 Cells , Cytokines/metabolism , Phosphorylation/drug effects
10.
Neuromolecular Med ; 26(1): 15, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653878

ABSTRACT

Lycium barbarum polysaccharide (LBP) have a certain curative effect on hypoglycemic and neuroprotective effects, but the specific mechanism is unclear and needs to be further explored. This study aimed to clarify the mechanisms of LBP in the treatment of ICV-STZ mice model of AD from the perspectives of insulin resistance, IRS1/PI3K/AKT signaling pathway, and synaptic protein expression. We used male C57BL/6J mice injected with STZ (3 mg/kg) in the lateral ventricle as an AD model. After treatment with LBP, the learning and memory abilities of ICV-STZ mice were enhanced, and the pathological changes in brain tissue were alleviated. LBP can regulate the expression of proteins related to the IRS1/PI3K/AKT signaling pathway and thereby reducing Aß deposition and tau protein phosphorylation in the brain of ICV-STZ mice. In addition, LBP also can up-regulate the expression of synaptic proteins. The results indicated that LBP played a neuroprotective role by regulating the IRS1/PI3K/AKT pathway, inhibiting tau protein hyperphosphorylation and improving the expression levels of synapse-related proteins.


Subject(s)
Alzheimer Disease , Drugs, Chinese Herbal , Insulin Receptor Substrate Proteins , Mice, Inbred C57BL , Neuronal Plasticity , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , tau Proteins , Animals , Male , Mice , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Cognition/drug effects , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance , Neuronal Plasticity/drug effects , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Streptozocin , Synapses/drug effects , tau Proteins/metabolism
11.
Clin Cancer Res ; 30(10): 2193-2205, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38592373

ABSTRACT

PURPOSE: TGFß signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFß signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN: In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS: Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS: Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.


Subject(s)
Adenocarcinoma , Ataxia Telangiectasia Mutated Proteins , DNA Repair , Esophageal Neoplasms , Oxaliplatin , Smad3 Protein , Xenograft Model Antitumor Assays , Humans , Smad3 Protein/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , DNA Repair/drug effects , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Mice , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , DNA Damage/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Signal Transduction/drug effects , Phosphorylation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Organoids/drug effects
12.
Int Immunopharmacol ; 133: 112069, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38643710

ABSTRACT

Epigallocatechin-3-gallate (EGCG) is an important tea polyphenol with anti-tumor potential. Our previous studies revealed that EGCG was a promising immune checkpoint inhibitor (ICI) as it could downregulate expression of programmed cell death 1 ligand 1 (PD-L1) in tumor cells, thereby resulting tumor killing effect. In particular, EGCG can effectively avoid the inflammatory storm caused by anti-tumor therapy, which is a healthy green capacity absent from many ICIs. However, the relationship between EGCG and programmed cell death 1 (PD-1) of T cells remains unclear. In this work, we explored the effect of EGCG on T cells and found that EGCG suppressed PD-1 via inhibiting NF-κB phosphorylation and nuclear translocation. Furtherly, the capability of EGCG was confirmed in tumor-bearing mice to inhibit PD-1 expression in T cells and enhance apoptosis in tumor cells. These results implied that EGCG could inhibit the expression of PD-1 in T cells, thereby promoting anti-tumor effects of T cells. EGCG will be a promising candidate in anti-tumor therapy.


Subject(s)
Catechin , NF-kappa B , Programmed Cell Death 1 Receptor , T-Lymphocytes , Catechin/analogs & derivatives , Catechin/pharmacology , Animals , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , NF-kappa B/metabolism , Phosphorylation/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice , Humans , Apoptosis/drug effects , Cell Line, Tumor , Mice, Inbred C57BL , Female , Cell Nucleus/metabolism , Cell Nucleus/drug effects , Active Transport, Cell Nucleus/drug effects
13.
J Pharmacol Sci ; 155(2): 35-43, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677784

ABSTRACT

Imeglimin is a novel oral antidiabetic drug for treating type 2 diabetes. However, the effect of imeglimin on NLRP3 inflammasome activation has not been investigated yet. Here, we aimed to investigate whether imeglimin reduces LPS-induced NLRP3 inflammasome activation in THP-1 macrophages and examine the associated underlying mechanisms. We analyzed the mRNA and protein expression levels of NLRP3 inflammasome components and IL-1ß secretion. Additionally, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and mitochondrial permeability transition pore (mPTP) opening were measured by flow cytometry. Imeglimin inhibited NLRP3 inflammasome-mediated IL-1ß production in LPS-stimulated THP-1-derived macrophages. In addition, imeglimin reduced LPS-induced mitochondrial ROS production and mitogen-activated protein kinase phosphorylation. Furthermore, imeglimin restored the mitochondrial function by modulating mitochondrial membrane depolarization and mPTP opening. We demonstrated for the first time that imeglimin reduces LPS-induced NLRP3 inflammasome activation by inhibiting mPTP opening in THP-1 macrophages. These results suggest that imeglimin could be a promising new anti-inflammatory agent for treating diabetic complications.


Subject(s)
Inflammasomes , Interleukin-1beta , Lipopolysaccharides , Macrophages , Membrane Potential, Mitochondrial , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Macrophages/drug effects , Macrophages/metabolism , Interleukin-1beta/metabolism , Membrane Potential, Mitochondrial/drug effects , Anti-Inflammatory Agents/pharmacology , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Hypoglycemic Agents/pharmacology , Phosphorylation/drug effects , THP-1 Cells , Mitogen-Activated Protein Kinases/metabolism
14.
BMC Cancer ; 24(1): 520, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658865

ABSTRACT

Acute myeloid leukaemia (AML) is a fatal haematopoietic malignancy and is treated with the conventional combination of cytarabine (Ara-C) and daunorubicin (Dau). The survival rate of AML patients is lower due to the cardiotoxicity of daunorubicin. Clinically, homoharringtonine (HHT) plus Ara-C has been reported to be equally effective as Dau plus Ara-C in some types of AML patients with less toxic effects. We utilized the clinical use of homoharringtonine in combination with Ara-C to test its combination mechanism. We found that the insensitivity of AML cells to cytarabine-induced apoptosis is associated with increased Mcl-1 stability and p38 inactivation. HHT downregulates Mcl-1, phosphorylates H2AX and induces apoptosis by activating p38 MAPK. Inactivation of p38 through inhibitors and siRNA blocks apoptosis, H2AX phosphorylation and Mcl-1 reduction. HHT enhances Ara-C activation of the p38 MAPK signalling pathway, overcoming Ara-C tolerance to cell apoptosis by regulating the p38/H2AX/Mcl-1 axis. The optimal ratio of HHT to Ara-C for synergistic lethality in AML cells is 1:4 (M/M). HHT synergistically induces apoptosis in combination with Ara-C in vitro and prolongs the survival of xenografts. We provide a new mechanism for AML treatment by regulating the p38 MAPK/H2AX/Mcl-1 axis to improve cytarabine therapy.


Subject(s)
Apoptosis , Cytarabine , Histones , Homoharringtonine , Leukemia, Myeloid, Acute , Myeloid Cell Leukemia Sequence 1 Protein , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases , Humans , Homoharringtonine/pharmacology , Cytarabine/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Apoptosis/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Mice , Histones/metabolism , Cell Line, Tumor , Drug Synergism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Phosphorylation/drug effects , Female
15.
Biomolecules ; 14(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38672521

ABSTRACT

Rett Syndrome (RTT) is a progressive X-linked neurodevelopmental disorder with no cure. RTT patients show disease-associated symptoms within 18 months of age that include developmental regression, progressive loss of useful hand movements, and breathing difficulties, along with neurological impairments, seizures, tremor, and mental disability. Rett Syndrome is also associated with metabolic abnormalities, and the anti-diabetic drug metformin is suggested to be a potential drug of choice with low or no side-effects. Previously, we showed that in vitro exposure of metformin in a human brain cell line induces MECP2E1 transcripts, the dominant isoform of the MECP2 gene in the brain, mutations in which causes RTT. Here, we report the molecular impact of metformin in mice. Protein analysis of specific brain regions in the male and female mice by immunoblotting indicated that metformin induces MeCP2 in the hippocampus, in a sex-dependent manner. Additional experiments confirm that the regulatory role of metformin on the MeCP2 target "BDNF" is brain region-dependent and sex-specific. Measurement of the ribosomal protein S6 (in both phosphorylated and unphosphorylated forms) confirms the sex-dependent role of metformin in the liver. Our results can help foster a better understanding of the molecular impact of metformin in different brain regions of male and female adult mice, while providing some insight towards its potential in therapeutic strategies for the treatment of Rett Syndrome.


Subject(s)
Brain-Derived Neurotrophic Factor , Hippocampus , Metformin , Methyl-CpG-Binding Protein 2 , Rett Syndrome , Metformin/pharmacology , Animals , Male , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Female , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Rett Syndrome/metabolism , Rett Syndrome/drug therapy , Rett Syndrome/genetics , Ribosomal Protein S6/metabolism , Mice, Inbred C57BL , Sex Characteristics , Phosphorylation/drug effects , Brain/metabolism , Brain/drug effects , Sex Factors
16.
Neurochem Int ; 176: 105746, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641027

ABSTRACT

PURPOSE: Epilepsy is a chronic brain dysfunction characterized by recurrent epileptic seizures. Rapamycin is a naturally occurring macrolide from Streptomyces hygroscopicus, and rapamycin may provide a protective effect on the nervous system by affecting mTOR. Therefore, we investigated the pharmacologic mechanism of rapamycin treating epilepsy through bioinformatics analysis, cellular experiments and supercomputer simulation. METHODS: Bioinformatics analysis was used to analyze targets of rapamycin treating epilepsy. We established epilepsy cell model by HT22 cells. RT-qPCR, WB and IF were used to verify the effects of rapamycin on mTOR at gene level and protein level. Computer simulations were used to model and evaluate the stability of rapamycin binding to mTOR protein. RESULTS: Bioinformatics indicated mTOR played an essential role in signaling pathways of cell growth and cell metabolism. Cellular experiments showed that rapamycin could promote cell survival, and rapamycin did not have an effect on mRNA expression of mTOR. However, rapamycin was able to significantly inhibit the phosphorylation of mTOR at protein level. Computer simulations indicated that rapamycin was involved in the treatment of epilepsy through regulating phosphorylation of mTOR at protein level. CONCLUSION: We found that rapamycin was capable of promoting the survival of epilepsy cells by inhibiting the phosphorylation of mTOR at protein level, and rapamycin did not have an effect on mRNA expression of mTOR. In addition to the traditional study that rapamycin affects mTORC1 complex by acting on FKBP12, this study found rapamycin could also directly block the phosphorylation of mTOR, therefore affecting the assembly of mTORC1 complex and mTOR signaling pathway.


Subject(s)
Cell Survival , Computer Simulation , Epilepsy , Sirolimus , TOR Serine-Threonine Kinases , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism , Animals , Phosphorylation/drug effects , Mice , Cell Survival/drug effects , Cell Survival/physiology , Cell Line
17.
Dis Model Mech ; 17(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38655653

ABSTRACT

Steroid myopathy is a clinically challenging condition exacerbated by prolonged corticosteroid use or adrenal tumors. In this study, we engineered a functional three-dimensional (3D) in vitro skeletal muscle model to investigate steroid myopathy. By subjecting our bioengineered muscle tissues to dexamethasone treatment, we reproduced the molecular and functional aspects of this disease. Dexamethasone caused a substantial reduction in muscle force, myotube diameter and induced fatigue. We observed nuclear translocation of the glucocorticoid receptor (GCR) and activation of the ubiquitin-proteasome system within our model, suggesting their coordinated role in muscle atrophy. We then examined the therapeutic potential of taurine in our 3D model for steroid myopathy. Our findings revealed an upregulation of phosphorylated AKT by taurine, effectively countering the hyperactivation of the ubiquitin-proteasomal pathway. Importantly, we demonstrate that discontinuing corticosteroid treatment was insufficient to restore muscle mass and function. Taurine treatment, when administered concurrently with corticosteroids, notably enhanced contractile strength and protein turnover by upregulating the AKT-mTOR axis. Our model not only identifies a promising therapeutic target, but also suggests combinatorial treatment that may benefit individuals undergoing corticosteroid treatment or those diagnosed with adrenal tumors.


Subject(s)
Dexamethasone , Models, Biological , Muscle Contraction , Muscular Diseases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Taurine , Proto-Oncogene Proteins c-akt/metabolism , Humans , Taurine/pharmacology , TOR Serine-Threonine Kinases/metabolism , Muscle Contraction/drug effects , Dexamethasone/pharmacology , Muscular Diseases/pathology , Muscular Diseases/drug therapy , Signal Transduction/drug effects , Receptors, Glucocorticoid/metabolism , Muscle Strength/drug effects , Proteasome Endopeptidase Complex/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Organ Size/drug effects , Phosphorylation/drug effects , Adrenal Cortex Hormones/pharmacology , Ubiquitin/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Steroids/pharmacology
18.
Mol Brain ; 17(1): 21, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38685105

ABSTRACT

Dopamine plays important roles in cognitive function and inflammation and therefore is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Drugs that increase or maintain dopamine levels in the brain could be a therapeutic strategy for AD. However, the effects of dopamine and its precursor levodopa (L-DOPA) on Aß/tau pathology in vivo and the underlying molecular mechanisms have not been studied in detail. Here, we investigated whether L-DOPA treatment alters neuroinflammation, Aß pathology, and tau phosphorylation in 5xFAD mice, a model of AD. We found that L-DOPA administration significantly reduced microgliosis and astrogliosis in 5xFAD mice. In addition, L-DOPA treatment significantly decreased Aß plaque number by upregulating NEP and ADAM17 levels in 5xFAD mice. However, L-DOPA-treated 5xFAD mice did not exhibit changes in tau hyperphosphorylation or tau kinase levels. These data suggest that L-DOPA alleviates neuroinflammatory responses and Aß pathology but not tau pathology in this mouse model of AD.


Subject(s)
ADAM17 Protein , Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Levodopa , Mice, Transgenic , Neuroinflammatory Diseases , tau Proteins , Animals , Levodopa/pharmacology , Alzheimer Disease/pathology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , ADAM17 Protein/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Phosphorylation/drug effects , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , Mice , Brain/pathology , Brain/drug effects , Brain/metabolism
19.
Biomed Pharmacother ; 174: 116507, 2024 May.
Article in English | MEDLINE | ID: mdl-38565059

ABSTRACT

Thioredoxin reductase 1 (TrxR1) has emerged as a promising target for cancer therapy. In our previous research, we discovered several new TrxR1 inhibitors and found that they all have excellent anti-tumor activity. At the same time, we found these TrxR1 inhibitors all lead to an increase in AKT phosphorylation in cancer cells, but the detailed role of AKT phosphorylation in TrxR1 inhibitor-mediated cell death remains unclear. In this study, we identified the combination of AKT and TrxR1 inhibitor displayed a strong synergistic effect in colon cancer cells. Furthermore, we demonstrated that the synergistic effect of auranofin (TrxR1 inhibitor) and MK-2206 (AKT inhibitor) was caused by ROS accumulation. Importantly, we found that ATM inhibitor KU-55933 can block the increase of AKT phosphorylation caused by auranofin, and exhibited a synergistic effect with auranofin. Taken together, our study demonstrated that the activation of ATM/AKT pathway is a compensatory mechanism to cope with ROS accumulation induced by TrxR1 inhibitor, and synergistic targeting of TrxR1 and ATM/AKT pathway is a promising strategy for treating colon cancer.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Auranofin , Colonic Neoplasms , Drug Synergism , Heterocyclic Compounds, 3-Ring , Proto-Oncogene Proteins c-akt , Pyrones , Reactive Oxygen Species , Signal Transduction , Thioredoxin Reductase 1 , Humans , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Thioredoxin Reductase 1/metabolism , Thioredoxin Reductase 1/antagonists & inhibitors , Auranofin/pharmacology , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Cell Line, Tumor , Phosphorylation/drug effects , Morpholines/pharmacology , HCT116 Cells
20.
Free Radic Biol Med ; 218: 94-104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582228

ABSTRACT

Lamin A/C, essential inner nuclear membrane proteins, have been linked to progeria, a disease of accelerated aging, and many other diseases, which include cardiac disorder. Lamin A/C mutation and its phosphorylation are associated with altering nuclear shape and size. The role of lamin A/C in regulating normal cardiac function was reported earlier. In the present study, we hypothesized that Doxorubicin (Dox) may alter total lamin A/C expression and phosphorylation, thereby taking part in cardiac injury. An in vitro cellular injury model was generated with Dox (0.1-10.0 µM) treatment on cardiomyoblast cells (H9c2) to prove our hypothesis. Increased size and irregular (ameboid) nucleus shape were observed in H9c2 cells after Dox treatment. Similarly, we have observed a significant increase in cell death on increasing the Dox concentration. The expression of lamin A/C and its phosphorylation at serine 22 significantly decreased and increased, respectively in H9c2 cells and rat hearts after Dox exposure. Phosphorylation led to depolymerization of the lamin A/C in the inner nuclear membrane and was evidenced by their presence throughout the nucleoplasm as observed by immunocytochemistry techniques. Thinning and perforation on the walls of the nuclear membrane were observed in Dox-treated H9c2 cells. LMNA-overexpression in H9c2 protected the cells from Dox-induced cell death, reversing all changes described above. Further, improvement of lamin A/C levels was observed in Dox-treated H9c2 cells when treated with Purvalanol A, a CDK1 inhibitor and N-acetylcysteine, an antioxidant. The study provides new insight regarding Dox-induced cardiac injury with the involvement of lamin A/C and alteration of inner nuclear membrane structure.


Subject(s)
Cardiotoxicity , Doxorubicin , Lamin Type A , Nuclear Envelope , Doxorubicin/toxicity , Lamin Type A/metabolism , Lamin Type A/genetics , Animals , Phosphorylation/drug effects , Nuclear Envelope/metabolism , Nuclear Envelope/drug effects , Rats , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Cardiotoxicity/etiology , Cell Line , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Antibiotics, Antineoplastic/toxicity , Male , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...