Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.383
Filter
1.
J Biol Chem ; 300(3): 105725, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325743

ABSTRACT

The cAMP/PKA and mitogen-activated protein kinase (MAPK) signaling cascade control many cellular processes and are highly regulated for optimal cellular responses upon external stimuli. Phosphodiesterase 8A (PDE8A) is an important regulator that inhibits signaling via cAMP-dependent PKA by hydrolyzing intracellular cAMP pool. Conversely, PDE8A activates the MAPK pathway by protecting CRAF/Raf1 kinase from PKA-mediated inhibitory phosphorylation at Ser259 residue, a binding site of scaffold protein 14-3-3. It still remains enigmatic as to how the cross-talk involving PDE8A regulation influences cAMP/PKA and MAPK signaling pathways. Here, we report that PDE8A interacts with 14-3-3ζ in both yeast and mammalian system, and this interaction is enhanced upon the activation of PKA, which phosphorylates PDE8A's Ser359 residue. Biophysical characterization of phospho-Ser359 peptide with 14-3-3ζ protein further supports their interaction. Strikingly, 14-3-3ζ reduces the catalytic activity of PDE8A, which upregulates the cAMP/PKA pathway while the MAPK pathway is downregulated. Moreover, 14-3-3ζ in complex with PDE8A and cAMP-bound regulatory subunit of PKA, RIα, delays the deactivation of PKA signaling. Our results define 14-3-3ζ as a molecular switch that operates signaling between cAMP/PKA and MAPK by associating with PDE8A.


Subject(s)
14-3-3 Proteins , 3',5'-Cyclic-AMP Phosphodiesterases , Cyclic AMP-Dependent Protein Kinases , MAP Kinase Signaling System , Humans , 14-3-3 Proteins/metabolism , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Phosphoserine/metabolism , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism
2.
Nucleic Acids Res ; 52(7): 3989-4001, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38340338

ABSTRACT

Protein-protein and protein-rRNA interactions at the interface between ribosomal proteins uS4 and uS5 are thought to maintain the accuracy of protein synthesis by increasing selection of cognate aminoacyl-tRNAs. Selection involves a major conformational change-domain closure-that stabilizes aminoacyl-tRNA in the ribosomal acceptor (A) site. This has been thought a constitutive function of the ribosome ensuring consistent accuracy. Recently, the Saccharomyces cerevisiae Ctk1 cyclin-dependent kinase was demonstrated to ensure translational accuracy and Ser238 of uS5 proposed as its target. Surprisingly, Ser238 is outside the uS4-uS5 interface and no obvious mechanism has been proposed to explain its role. We show that the true target of Ctk1 regulation is another uS5 residue, Ser176, which lies in the interface opposite to Arg57 of uS4. Based on site specific mutagenesis, we propose that phospho-Ser176 forms a salt bridge with Arg57, which should increase selectivity by strengthening the interface. Genetic data show that Ctk1 regulates accuracy indirectly; the data suggest that the kinase Ypk2 directly phosphorylates Ser176. A second kinase pathway involving TORC1 and Pkc1 can inhibit this effect. The level of accuracy appears to depend on competitive action of these two pathways to regulate the level of Ser176 phosphorylation.


Subject(s)
Arginine , Phosphoserine , Protein Biosynthesis , Protein Kinases , Ribosomal Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/chemistry , Arginine/metabolism , Arginine/chemistry , Phosphoserine/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Phosphorylation , Evolution, Molecular
3.
Nature ; 627(8003): 382-388, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418878

ABSTRACT

Calcium (Ca2+) is an essential nutrient for plants and a cellular signal, but excessive levels can be toxic and inhibit growth1,2. To thrive in dynamic environments, plants must monitor and maintain cytosolic Ca2+ homeostasis by regulating numerous Ca2+ transporters3. Here we report two signalling pathways in Arabidopsis thaliana that converge on the activation of vacuolar Ca2+/H+ exchangers (CAXs) to scavenge excess cytosolic Ca2+ in plants. One mechanism, activated in response to an elevated external Ca2+ level, entails calcineurin B-like (CBL) Ca2+ sensors and CBL-interacting protein kinases (CIPKs), which activate CAXs by phosphorylating a serine (S) cluster in the auto-inhibitory domain. The second pathway, triggered by molecular patterns associated with microorganisms, engages the immune receptor complex FLS2-BAK1 and the associated cytoplasmic kinases BIK1 and PBL1, which phosphorylate the same S-cluster in CAXs to modulate Ca2+ signals in immunity. These Ca2+-dependent (CBL-CIPK) and Ca2+-independent (FLS2-BAK1-BIK1/PBL1) mechanisms combine to balance plant growth and immunity by regulating cytosolic Ca2+ homeostasis.


Subject(s)
Arabidopsis , Calcium , Homeostasis , Plant Immunity , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Cytosol/metabolism , Phosphorylation , Phosphoserine/metabolism , Protein Serine-Threonine Kinases/metabolism , Cation Transport Proteins/metabolism , Antiporters/metabolism
4.
J Inorg Biochem ; 251: 112454, 2024 02.
Article in English | MEDLINE | ID: mdl-38100901

ABSTRACT

Neuronal nitric oxide synthase (nNOS) is regulated by phosphorylation in vivo, yet the underlying biochemical mechanisms remain unclear, primarily due to difficulty in obtaining milligram quantities of phosphorylated nNOS protein; detailed spectroscopic and rapid kinetics investigations require purified protein samples at a concentration in the range of hundreds microM. Moreover, the functional diversity of the nNOS isoform is linked to its splice variants. Also of note is that determination of protein phosphorylation stoichiometry remains as a challenge. To address these issues, this study first expanded a recent genetic code expansion approach to produce phosphorylated rat nNOSµ and nNOSα holoproteins through site-specific incorporation of phosphoserine (pSer) at residues 1446 and 1412, respectively; this site is at the C-terminal tail region, a NOS-unique regulatory element. A quantitative mass spectrometric approach was then developed in-house to analyze unphosphorylated peptides in phosphatase-treated and -untreated phospho-nNOS proteins. The observed pSer-incorporation efficiency consistently exceeded 80%, showing high pSer-incorporation efficiency. Notably, EPR spin trapping results demonstrate that under l-arginine-depleted conditions, pSer1412 nNOSα presented a significant reduction in superoxide generation, whereas pSer1446 nNOSµ exhibited the opposite effect, compared to their unphosphorylated counterparts. This suggests that phosphorylation at the C-terminal tail has a regulatory effect on nNOS uncoupling that may differ between variant forms. Furthermore, the methodologies for incorporating pSer into large, complex protein and quantifying the percentage of phosphorylation in recombinant purified protein should be applicable to other protein systems.


Subject(s)
Nitric Oxide Synthase Type I , Nitric Oxide , Superoxides , Animals , Rats , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/genetics , Phosphorylation , Phosphoserine/metabolism , Recombinant Proteins/metabolism , Superoxides/metabolism
5.
J Biol Chem ; 300(1): 105559, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097187

ABSTRACT

Bub1 is a conserved mitotic kinase involved in signaling of the spindle assembly checkpoint. Multiple phosphorylation sites on Bub1 have been characterized, yet it is challenging to understand the interplay between the multiple phosphorylation sites due to the limited availability of phosphospecific antibodies. In addition, phosphoregulation of Bub1 in Schizosaccharomyces pombe is poorly understood. Here we report the identification of a new Mph1/Mps1-mediated phosphorylation site, i.e., Ser532, of Bub1 in Schizosaccharomyces pombe. A phosphospecific antibody against phosphorylated Bub1-Ser532 was developed. Using the phosphospecific antibody, we demonstrated that phosphorylation of Bub1-Ser352 was mediated specifically by Mph1/Mps1 and took place during early mitosis. Moreover, live-cell microscopy showed that inhibition of the phosphorylation of Bub1 at Ser532 impaired the localization of Bub1, Mad1, and Mad2 to the kinetochore. In addition, inhibition of the phosphorylation of Bub1 at Ser532 caused anaphase B lagging chromosomes. Hence, our study constitutes a model in which Mph1/Mps1-mediated phosphorylation of fission yeast Bub1 promotes proper kinetochore localization of Bub1 and faithful chromosome segregation.


Subject(s)
Chromosome Segregation , Kinetochores , Protein Serine-Threonine Kinases , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Signal Transduction , Anaphase , Antibodies, Phospho-Specific/immunology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Kinetochores/metabolism , Mitosis , Phosphorylation , Phosphoserine/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Protein Serine-Threonine Kinases/metabolism , Protein Transport , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/immunology , Schizosaccharomyces pombe Proteins/metabolism , Spindle Apparatus/metabolism
6.
Mol Biol Cell ; 35(1): ar10, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37991902

ABSTRACT

α-Synuclein is a presynaptic protein that regulates synaptic vesicle (SV) trafficking. In Parkinson's disease (PD) and dementia with Lewy bodies (DLB), α-synuclein aberrantly accumulates throughout neurons, including at synapses. During neuronal activity, α-synuclein is reversibly phosphorylated at serine 129 (pS129). While pS129 comprises ∼4% of total α-synuclein under physiological conditions, it dramatically increases in PD and DLB brains. The impacts of excess pS129 on synaptic function are currently unknown. We show here that compared with wild-type (WT) α-synuclein, pS129 exhibits increased binding and oligomerization on synaptic membranes and enhanced vesicle "microclustering" in vitro. Moreover, when acutely injected into lamprey reticulospinal axons, excess pS129 α-synuclein robustly localized to synapses and disrupted SV trafficking in an activity-dependent manner, as assessed by ultrastructural analysis. Specifically, pS129 caused a declustering and dispersion of SVs away from the synaptic vicinity, leading to a significant loss of total synaptic membrane. Live imaging further revealed altered SV cycling, as well as microclusters of recently endocytosed SVs moving away from synapses. Thus, excess pS129 caused an activity-dependent inhibition of SV trafficking via altered vesicle clustering/reclustering. This work suggests that accumulation of pS129 at synapses in diseases like PD and DLB could have profound effects on SV dynamics.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Phosphoserine/metabolism , Synapses/metabolism , Synaptic Vesicles/metabolism , Lampreys
7.
J Biol Chem ; 299(7): 104911, 2023 07.
Article in English | MEDLINE | ID: mdl-37311534

ABSTRACT

Reversible lysine-63 (K63) polyubiquitination regulates proinflammatory signaling in vascular smooth muscle cells (SMCs) and plays an integral role in atherosclerosis. Ubiquitin-specific peptidase 20 (USP20) reduces NFκB activation triggered by proinflammatory stimuli, and USP20 activity attenuates atherosclerosis in mice. The association of USP20 with its substrates triggers deubiquitinase activity; this association is regulated by phosphorylation of USP20 on Ser334 (mouse) or Ser333 (human). USP20 Ser333 phosphorylation was greater in SMCs of atherosclerotic segments of human arteries as compared with nonatherosclerotic segments. To determine whether USP20 Ser334 phosphorylation regulates proinflammatory signaling, we created USP20-S334A mice using CRISPR/Cas9-mediated gene editing. USP20-S334A mice developed ∼50% less neointimal hyperplasia than congenic WT mice after carotid endothelial denudation. WT carotid SMCs showed substantial phosphorylation of USP20 Ser334, and WT carotids demonstrated greater NFκB activation, VCAM-1 expression, and SMC proliferation than USP20-S334A carotids. Concordantly, USP20-S334A primary SMCs in vitro proliferated and migrated less than WT SMCs in response to IL-1ß. An active site ubiquitin probe bound to USP20-S334A and USP20-WT equivalently, but USP20-S334A associated more avidly with TRAF6 than USP20-WT. IL-1ß induced less K63-linked polyubiquitination of TRAF6 and less downstream NFκB activity in USP20-S334A than in WT SMCs. Using in vitro phosphorylation with purified IRAK1 and siRNA-mediated gene silencing of IRAK1 in SMCs, we identified IRAK1 as a novel kinase for IL-1ß-induced USP20 Ser334 phosphorylation. Our findings reveal novel mechanisms regulating IL-1ß-induced proinflammatory signaling: by phosphorylating USP20 Ser334, IRAK1 diminishes the association of USP20 with TRAF6 and thus augments NFκB activation, SMC inflammation, and neointimal hyperplasia.


Subject(s)
Atherosclerosis , Inflammation , Interleukin-1 Receptor-Associated Kinases , Interleukin-1beta , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phosphoserine , Ubiquitin Thiolesterase , Animals , Humans , Mice , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Hyperplasia/metabolism , Hyperplasia/pathology , Inflammation/metabolism , Inflammation/pathology , Interleukin-1 Receptor-Associated Kinases/chemistry , Interleukin-1 Receptor-Associated Kinases/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Phosphorylation , Phosphoserine/metabolism , TNF Receptor-Associated Factor 6/metabolism , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism , NF-kappa B/metabolism , Carotid Arteries/metabolism , Carotid Arteries/pathology , Interleukin-1beta/metabolism , Ubiquitination
8.
Pestic Biochem Physiol ; 192: 105384, 2023 May.
Article in English | MEDLINE | ID: mdl-37105614

ABSTRACT

Neonicotinoids are insect-selective nicotinic acetylcholine receptors (nAChRs) agonists that are used extensively for plant protection and animal health care. Some chaperone proteins, such as 14-3-3 proteins, importantly modulate nAChRs to display the physiological and pharmacological properties. Here we found that there is a 14-3-3 binding motif RSPSTH within the cytoplasmic loop of most insect α8 subunits. In the motif, a potential phosphorylated serine residue, serine 337, was a putative protein kinase A (PKA) substrate. Using Locusta migratoria α8 subunit as a representative, here we demonstrated that Loc14-3-3ε interacted with the unique phosphoserine (α8S337) of Locα8 subunit to regulate agonist efficacy on hybrid Locα8/ß2 nAChRs in Xenopus oocytes. Co-expression of Loc14-3-3ε caused a dramatic rise of maximal inward currents (Imax) of Locα8/ß2 for acetylcholine and imidacloprid to 2.9-fold and 3.1-fold of that of Locα8/ß2 alone. The S337A substitution of Locα8 reduced the Imax rise when Locα8S337A/ß2 and Loc14-3-3ε were co-expressed. The increased agonist currents by exogenous Loc14-3-3ε on Locα8/ß2 could be almost abolished by either PKA inhibitor KT5720 or 14-3-3 inhibitor difopein. The findings revealed that serine 337 within motif RSPSTH was important for the interaction between insect nAChRs and 14-3-3ε, and inhibiting the interaction would change the pharmacological property of insect nAChRs to agonist such as neonicotinoids which may provide insights to develop new targets for insecticide design.


Subject(s)
Insecta , Receptors, Nicotinic , Animals , Phosphoserine/metabolism , Consensus , Neonicotinoids/metabolism , Receptors, Nicotinic/metabolism , Oocytes/metabolism , Xenopus laevis/metabolism , Protein Subunits/metabolism
9.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902219

ABSTRACT

Identification of specific protein phosphatase-1 (PP1) inhibitors is of special importance regarding the study of its cellular functions and may have therapeutic values in diseases coupled to signaling processes. In this study, we prove that a phosphorylated peptide of the inhibitory region of myosin phosphatase (MP) target subunit (MYPT1), R690QSRRS(pT696)QGVTL701 (P-Thr696-MYPT1690-701), interacts with and inhibits the PP1 catalytic subunit (PP1c, IC50 = 3.84 µM) and the MP holoenzyme (Flag-MYPT1-PP1c, IC50 = 3.84 µM). Saturation transfer difference NMR measurements established binding of hydrophobic and basic regions of P-Thr696-MYPT1690-701 to PP1c, suggesting interactions with the hydrophobic and acidic substrate binding grooves. P-Thr696-MYPT1690-701 was dephosphorylated by PP1c slowly (t1/2 = 81.6-87.9 min), which was further impeded (t1/2 = 103 min) in the presence of the phosphorylated 20 kDa myosin light chain (P-MLC20). In contrast, P-Thr696-MYPT1690-701 (10-500 µM) slowed down the dephosphorylation of P-MLC20 (t1/2 = 1.69 min) significantly (t1/2 = 2.49-10.06 min). These data are compatible with an unfair competition mechanism between the inhibitory phosphopeptide and the phosphosubstrate. Docking simulations of the PP1c-P-MYPT1690-701 complexes with phosphothreonine (PP1c-P-Thr696-MYPT1690-701) or phosphoserine (PP1c-P-Ser696-MYPT1690-701) suggested their distinct poses on the surface of PP1c. In addition, the arrangements and distances of the surrounding coordinating residues of PP1c around the phosphothreonine or phosphoserine at the active site were distinct, which may account for their different hydrolysis rate. It is presumed that P-Thr696-MYPT1690-701 binds tightly at the active center but the phosphoester hydrolysis is less preferable compared to P-Ser696-MYPT1690-701 or phosphoserine substrates. Moreover, the inhibitory phosphopeptide may serve as a template to synthesize cell permeable PP1-specific peptide inhibitors.


Subject(s)
Enzyme Inhibitors , Phosphopeptides , Protein Phosphatase 1 , Myosin-Light-Chain Phosphatase/metabolism , Phosphopeptides/chemistry , Phosphopeptides/pharmacology , Phosphorylation , Phosphoserine/metabolism , Phosphothreonine/metabolism , Protein Phosphatase 1/antagonists & inhibitors , Protein Phosphatase 1/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology
10.
Toxicol In Vitro ; 89: 105564, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36736710

ABSTRACT

Epidemiological studies indicate that human and animal exposure to environmental mercury (Hg) disrupts normal immune system function, but the molecular mechanism responsible for this is still unresolved. We have previously utilized phospho-proteomic mass spectrometry to demonstrate that in the absence of B Cell Receptor (BCR) stimulation, exposure of B cells to Hg induces significant changes to a great many elements of the BCR signaling pathway in a concentration dependent manner. In this report, we have extended those initial findings by utilizing mass spectrometry to evaluate in detail the effect of low-level Hg exposure on BCR induced phospho-proteomic changes. Specifically, murine WEHI-231 B lymphoma cells were exposed to environmentally relevant levels of Hg with or without concomitant BCR stimulation. The cellular phospho-proteomes were then profiled by LC-MS/MS. We found that for low-level exposures, Hg interference with signal transduction across the BCR pathway was predominantly associated with modification of phosphorylation of 12 phosphosites located on seven different proteins. Nine sites were serine, two sites tyrosine and one site threonine. Most of these sites are novel, in the sense that only the two tyrosine and one of the serine sites have previously been reported to be associated with BCR signaling.


Subject(s)
Mercury , Animals , Mice , Humans , Phosphoserine/metabolism , Phosphoserine/pharmacology , Mercury/toxicity , Chromatography, Liquid , Proteomics , Cell Line , Tandem Mass Spectrometry , Signal Transduction , Receptors, Antigen, B-Cell/metabolism , Proteins/metabolism , Phosphorylation , Tyrosine/metabolism
11.
Nat Commun ; 14(1): 166, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631525

ABSTRACT

The heptad repeats of the C-terminal domain (CTD) of RNA polymerase II (Pol II) are extensively modified throughout the transcription cycle. The CTD coordinates RNA synthesis and processing by recruiting transcription regulators as well as RNA capping, splicing and 3'end processing factors. The SPOC domain of PHF3 was recently identified as a CTD reader domain specifically binding to phosphorylated serine-2 residues in adjacent CTD repeats. Here, we establish the SPOC domains of the human proteins DIDO, SHARP (also known as SPEN) and RBM15 as phosphoserine binding modules that can act as CTD readers but also recognize other phosphorylated binding partners. We report the crystal structure of SHARP SPOC in complex with CTD and identify the molecular determinants for its specific binding to phosphorylated serine-5. PHF3 and DIDO SPOC domains preferentially interact with the Pol II elongation complex, while RBM15 and SHARP SPOC domains engage with writers and readers of m6A, the most abundant RNA modification. RBM15 positively regulates m6A levels and mRNA stability in a SPOC-dependent manner, while SHARP SPOC is essential for its localization to inactive X-chromosomes. Our findings suggest that the SPOC domain is a major interface between the transcription machinery and regulators of transcription and co-transcriptional processes.


Subject(s)
DNA-Binding Proteins , Phosphoserine , Protein Domains , RNA-Binding Proteins , Transcription, Genetic , Humans , Phosphorylation , Phosphoserine/chemistry , Phosphoserine/metabolism , RNA Polymerase II/metabolism , RNA Processing, Post-Transcriptional , RNA Splicing , Transcription, Genetic/physiology , Protein Domains/physiology , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/physiology , RNA-Binding Proteins/chemistry
12.
Nature ; 613(7945): 759-766, 2023 01.
Article in English | MEDLINE | ID: mdl-36631611

ABSTRACT

Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.


Subject(s)
Phosphoproteins , Protein Serine-Threonine Kinases , Proteome , Serine , Threonine , Humans , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Serine/metabolism , Substrate Specificity , Threonine/metabolism , Proteome/chemistry , Proteome/metabolism , Datasets as Topic , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Cell Line , Phosphoserine/metabolism , Phosphothreonine/metabolism
13.
Histochem Cell Biol ; 159(2): 149-162, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36260112

ABSTRACT

Uterine myocytes during pregnancy proceed through a series of adaptations and collectively transform into a powerfully contractile tissue by term. Previous work has indicated that members of the heat shock protein (HSP) B family of stress proteins are associated with the process of adaptation and transformation. Utilizing immunoblot analyses, widefield epifluorescence and total internal reflection (TIRF) microscopy, this study investigated the temporal and spatial detection of HSPB1 phosphorylated on serine-86 (pS86-HSPB1) in rat myometrium during pregnancy, the role of uterine distension in regulation of pS86-HSPB1, and the comparative localization with pS15-HSPB1 in rat myometrial tissue as well as in an immortalized human myometrial cell line. Immunoblot detection of pS86-HSPB1 was significantly elevated during late pregnancy and labour. In particular, pS86-HSPB1 was significantly increased at day (d)22 and d23 (labour) compared with all other timepoints assessed. Localization of pS86-HSPB1 in myometrium became prominent at d22 and d23 with cytoplasmic detection around myometrial cell nuclei. Furthermore, pS86-HSPB1 detection was found to be significantly elevated in the gravid rat uterine myometrium compared with the non-gravid tissue at d19 and d23. Both widefield epifluorescence and TIRF microscopy examination of human myometrial cells demonstrated that pS15-HSPB1 was prominently localized to focal adhesions, while pS82-HSPB1 (homologous to rodent pS86-HSPB1) was primarily located in the cell cytoplasm. Our data demonstrate that levels of phosphorylated HSPB1 increase just prior to and during labour, and that uterine distension is a stress-inducing signal for HSPB1 phosphorylation. The exact roles of these phosphorylated forms in myometrial cells remain to be determined.


Subject(s)
Heat-Shock Proteins , Myometrium , Female , Pregnancy , Rats , Animals , Humans , Myometrium/metabolism , Phosphoserine/metabolism , Rats, Sprague-Dawley , Heat-Shock Proteins/metabolism , Cytoplasm/metabolism , Molecular Chaperones/metabolism
14.
J Biol Chem ; 298(12): 102613, 2022 12.
Article in English | MEDLINE | ID: mdl-36265582

ABSTRACT

Phosphoserine (pSer) sites are primarily located within disordered protein regions, making it difficult to experimentally ascertain their effects on protein structure and function. Therefore, the production of 15N- (and 13C)-labeled proteins with site-specifically encoded pSer for NMR studies is essential to uncover molecular mechanisms of protein regulation by phosphorylation. While genetic code expansion technologies for the translational installation of pSer in Escherichia coli are well established and offer a powerful strategy to produce site-specifically phosphorylated proteins, methodologies to adapt them to minimal or isotope-enriched media have not been described. This shortcoming exists because pSer genetic code expansion expression hosts require the genomic ΔserB mutation, which increases pSer bioavailability but also imposes serine auxotrophy, preventing growth in minimal media used for isotopic labeling of recombinant proteins. Here, by testing different media supplements, we restored normal BL21(DE3) ΔserB growth in labeling media but subsequently observed an increase of phosphatase activity and mis-incorporation not typically seen in standard rich media. After rounds of optimization and adaption of a high-density culture protocol, we were able to obtain ≥10 mg/L homogenously labeled, phosphorylated superfolder GFP. To demonstrate the utility of this method, we also produced the intrinsically disordered serine/arginine-rich region of the SARS-CoV-2 Nucleocapsid protein labeled with 15N and pSer at the key site S188 and observed the resulting peak shift due to phosphorylation by 2D and 3D heteronuclear single quantum correlation analyses. We propose this cost-effective methodology will pave the way for more routine access to pSer-enriched proteins for 2D and 3D NMR analyses.


Subject(s)
COVID-19 , Humans , Phosphoserine/metabolism , SARS-CoV-2/metabolism , Magnetic Resonance Spectroscopy , Recombinant Proteins/chemistry , Serine/genetics , Serine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
15.
Nat Methods ; 19(11): 1371-1375, 2022 11.
Article in English | MEDLINE | ID: mdl-36280721

ABSTRACT

Mass-spectrometry-based phosphoproteomics has become indispensable for understanding cellular signaling in complex biological systems. Despite the central role of protein phosphorylation, the field still lacks inexpensive, regenerable, and diverse phosphopeptides with ground-truth phosphorylation positions. Here, we present Iterative Synthetically Phosphorylated Isomers (iSPI), a proteome-scale library of human-derived phosphoserine-containing phosphopeptides that is inexpensive, regenerable, and diverse, with precisely known positions of phosphorylation. We demonstrate possible uses of iSPI, including use as a phosphopeptide standard, a tool to evaluate and optimize phosphorylation-site localization algorithms, and a benchmark to compare performance across data analysis pipelines. We also present AScorePro, an updated version of the AScore algorithm specifically optimized for phosphorylation-site localization in higher energy fragmentation spectra, and the FLR viewer, a web tool for phosphorylation-site localization, to enable community use of the iSPI resource. iSPI and its associated data constitute a useful, multi-purpose resource for the phosphoproteomics community.


Subject(s)
Phosphopeptides , Proteome , Humans , Proteome/metabolism , Phosphopeptides/metabolism , Phosphoserine/metabolism , Proteomics , Mass Spectrometry , Phosphorylation
16.
PLoS One ; 17(9): e0273797, 2022.
Article in English | MEDLINE | ID: mdl-36048825

ABSTRACT

There is growing evidence to suggest that phosphohistidines are present at significant levels in mammalian cells and play a part in regulating cellular activity, in particular signaling pathways related to cancer. Because of the chemical instability of phosphohistidine at neutral or acid pH, it remains unclear how much phosphohistidine is present in cells. Here we describe a protocol for extracting proteins from mammalian cells in a way that avoids loss of covalent phosphates from proteins, and use it to measure phosphohistidine concentrations in human bronchial epithelial cell (16HBE14o-) lysate using 31P NMR spectroscopic analysis. Phosphohistidine is determined on average to be approximately one third as abundant as phosphoserine and phosphothreonine combined (and thus roughly 15 times more abundant than phosphotyrosine). The amount of phosphohistidine, and phosphoserine/phosphothreonine per gram of protein from a cell lysate was determined to be 23 µmol/g and 68 µmol/g respectively. The amount of phosphohistidine, and phosphoserine/phosphothreonine per cell was determined to be 1.8 fmol/cell, and 5.8 fmol/cell respectively. Phosphorylation is largely at the N3 (tele) position. Typical tryptic digest conditions result in loss of most of the phosphohistidine present, which may explain why the amounts reported here are greater than is generally seen using mass spectroscopy assays. The results further strengthen the case for a functional role of phosphohistidine in eukaryotic cells.


Subject(s)
Histidine , Proteins , Animals , Cell Line , Histidine/analogs & derivatives , Histidine/metabolism , Humans , Mammals/metabolism , Phosphorylation , Phosphoserine/metabolism , Phosphothreonine/metabolism , Proteins/metabolism
17.
Plant Physiol Biochem ; 190: 24-34, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36088784

ABSTRACT

Dendrobium officinale, which is a medicine food homology plant, contains many metabolites, especially polysaccharides and flavonoids. Unlike flowers and stems, which are the most frequently harvested organs for a variety of uses, leaves tend to be discarded. This study assessed main metabolites in leaves to identify the most appropriate timing of collection during harvest, which was divided into three stages (S1-S3: 8, 10, and 11 months after sprouting, respectively). Metabolomic and transcriptomic analyses of S1-S3 were performed. Water-soluble polysaccharides (WSPs), flavonoids and free amino acids (FAAs) were detected in leaves. WSPs decreased from S1 to S3 but flavonoids and some FAAs (e.g., phophoserine) increased from S1 to S2, then decreased from S2 to S3. In all three stages, mannose was the dominant monosaccharide among WSPs, followed by glucose. In S2, 35 flavonoids were identified, the most abundant being rutin, schaftoside and vitexin, while 34 FAAs were identified in all three stages, the most abundant being tyrosine, phosphoserine and alanine. A total of 2584, 3414 and 2032 differentially expressed genes (DEGs) were discovered in S1 vs S2, S1 vs S3 and S1 vs S3, respectively. Correlation analysis revealed that five DEGs (DoSUS, DoXYLA, DoFRK, DoGMP, and DoCSLA), two DEGs (DoDFR, and DoANS) and a single DEG (DoPGAM) were involved in the metabolism of WSPs, flavonoids and phosphoserine, respectively. The findings of this study lay a foundation for the commercial exploitation of metabolites in the harvested leaves of D. officinale, and the use of detected DEGs in applied genetic studies.


Subject(s)
Dendrobium , Alanine/metabolism , Dendrobium/genetics , Dendrobium/metabolism , Flavonoids/metabolism , Glucose/metabolism , Mannose/metabolism , Monosaccharides/metabolism , Phosphoserine/metabolism , Polysaccharides/metabolism , Rutin/metabolism , Transcriptome , Tyrosine/metabolism , Water/metabolism
18.
Nat Struct Mol Biol ; 29(10): 966-977, 2022 10.
Article in English | MEDLINE | ID: mdl-36175670

ABSTRACT

SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2. Our structures reveal that SHOC2, MRAS, and PP1C form a stable ternary complex in which all three proteins synergistically interact with each other. Our results show that dephosphorylation of RAF substrates by PP1C is enhanced upon interacting with SHOC2 and MRAS. The SMP complex forms only when MRAS is in an active state and is dependent on SHOC2 functioning as a scaffolding protein in the complex by bringing PP1C and MRAS together. Our results provide structural insights into the role of the SMP complex in RAF activation and how mutations found in Noonan syndrome enhance complex formation, and reveal new avenues for therapeutic interventions.


Subject(s)
Noonan Syndrome , Humans , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Noonan Syndrome/genetics , Noonan Syndrome/metabolism , Phosphoserine/metabolism , Protein Phosphatase 1 , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , raf Kinases/genetics , raf Kinases/metabolism , ras Proteins/metabolism
19.
Mol Biol Rep ; 49(10): 9521-9534, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35962848

ABSTRACT

BACKGROUND: Post-translational modification of some mitoribosomal proteins has been found to regulate their functions. MRPS23 has been reported to be overexpressed in various cancers and has been predicted to be involved in increased cell proliferation. Furthermore, MRPS23 is a driver of luminal subtype breast cancer. However, its exact role and function in cancer remains unknown. METHODS AND RESULTS: Our previous study identified protein-protein interactions involving MRPS23 and CDK11A. In this study, we confirmed the interaction of MRPS23 with the p110 and p58 isoforms of CDK11A. Phosphoprotein enrichment studies and in vitro kinase assay using CDK11A/cyclin D3 followed by MALDI-ToF/ToF analysis confirmed the phosphorylation of MRPS23 at N-terminal serine 11 residue. Breast cancer cells expressing the MRPS23 (S11G) mutant showed increased cell proliferation, increased expression of PI3-AKT pathway proteins [p-AKT (Ser47), p-AKT (Thr308), p-PDK (Ser241) and p-GSK-3ß (Ser9)] and increased antiapoptotic pathway protein expression [Bcl-2, Bcl-xL, p-Bcl2 (Ser70) and MCL-1] when compared with the MRPS23 (S11A) mutant-overexpressing cells. This finding indicated the role of MRPS23 phosphorylation in the proliferation and survival of breast cancer cells. The correlation of inconsistent MRPS23 phosphoserine 11 protein expression with CDK11A in the breast cancer cells suggested phosphorylation by other kinases. In vitro kinase assay showed that CDK1 kinase also phosphorylated MRPS23 and that inhibition using CDK1 inhibitors lowered phospho-MRPS23 (Ser11) levels. Additionally, modulating the expression of MRPS23 altered the sensitivity of the cells to CDK1 inhibitors. CONCLUSION: In conclusion, phosphorylation of MRPS23 by mitotic kinases might potentially be involved in the proliferation of breast cancer cells. Furthermore, MRPS23 can be targeted for sensitizing the breast cancer cells to CDK1 inhibitors.


Subject(s)
Breast Neoplasms , CDC2 Protein Kinase , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Breast Neoplasms/genetics , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Cell Proliferation , Cyclin D3/metabolism , Female , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Phosphorylation , Phosphoserine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
20.
Cancer Commun (Lond) ; 42(3): 205-222, 2022 03.
Article in English | MEDLINE | ID: mdl-35191227

ABSTRACT

BACKGROUND: Understanding how the tumor microenvironment is shaped by various factors is important for the development of new therapeutic strategies. Tumor cells often undergo spontaneous apoptotic cell death in tumor microenvironment, these apoptotic cells are histologically co-localized with immunosuppressive macrophages. However, the mechanism by which tumor cell apoptosis modulates macrophage polarization is not fully understood. In this study, we aimed to explore the tumor promoting effects of apoptotic tumor cells and the signal pathways involved. METHODS: Apoptotic cells and macrophages in tumors were detected by immunohistochemical staining. Morphological analysis was performed with Giemsa staining. Lipids generated from apoptotic cells were detected by liquid chromatography-mass spectrometry. Phosphatidylserine-containing liposomes were prepared to mimic apoptotic cells. The expression of protein was determined by real-time PCR, immunohistochemistry enzyme-linked immunosorbent assay and Western blotting. Mouse malignant ascites and subcutaneous tumor models were designed for in vivo analysis. Transgenic mice with specific genes knocked out and inhibitors specific to certain proteins were used for the mechanistic studies. RESULTS: The location and the number of apoptotic cells were correlated with that of macrophages in several types of carcinomas. Phosphatidylserine, a lipid molecule generated in apoptotic cells, induced polarization and accumulation of M2-like macrophages in vivo and in vitro. Moreover, sustained administration of phosphoserine promoted tumor growth in the malignant ascites and subcutaneous tumor models. Further analyses suggested that phosphoserine induced a M2-like phenotype in macrophages, which was related to the activation of phosphoserine receptors including T-cell immunoglobin mucin 4 (TIM4) and the FAK-SRC-STAT3 signaling pathway as well as elevated the expression of the histone demethylase Jumonji domain-containing protein 3 (JMJD3). Administration of specific inhibitors of these pathways could reduce tumor progression. CONCLUSIONS: This study suggest that apoptotic cell-generated phosphoserine might be a notable signal for immunosuppressive macrophages in tumors, and the related pathways might be potential therapeutic targets for cancer therapy.


Subject(s)
Neoplasms , Phosphatidylserines , Animals , Apoptosis , Ascites/metabolism , Jumonji Domain-Containing Histone Demethylases , Macrophages/metabolism , Mice , Neoplasms/metabolism , Phosphatidylserines/metabolism , Phosphatidylserines/pharmacology , Phosphoserine/metabolism , Phosphoserine/pharmacology , STAT3 Transcription Factor/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...