Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167163, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599261

ABSTRACT

PMM2-CDG (MIM # 212065), the most common congenital disorder of glycosylation, is caused by the deficiency of phosphomannomutase 2 (PMM2). It is a multisystemic disease of variable severity that particularly affects the nervous system; however, its molecular pathophysiology remains poorly understood. Currently, there is no effective treatment. We performed an RNA-seq based transcriptomic study using patient-derived fibroblasts to gain insight into the mechanisms underlying the clinical symptomatology and to identify druggable targets. Systems biology methods were used to identify cellular pathways potentially affected by PMM2 deficiency, including Senescence, Bone regulation, Cell adhesion and Extracellular Matrix (ECM) and Response to cytokines. Functional validation assays using patients' fibroblasts revealed defects related to cell proliferation, cell cycle, the composition of the ECM and cell migration, and showed a potential role of the inflammatory response in the pathophysiology of the disease. Furthermore, treatment with a previously described pharmacological chaperone reverted the differential expression of some of the dysregulated genes. The results presented from transcriptomic data might serve as a platform for identifying therapeutic targets for PMM2-CDG, as well as for monitoring the effectiveness of therapeutic strategies, including pharmacological candidates and mannose-1-P, drug repurposing.


Subject(s)
Congenital Disorders of Glycosylation , Fibroblasts , Phosphotransferases (Phosphomutases) , Humans , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/pathology , Congenital Disorders of Glycosylation/metabolism , Congenital Disorders of Glycosylation/drug therapy , Phosphotransferases (Phosphomutases)/genetics , Phosphotransferases (Phosphomutases)/metabolism , Phosphotransferases (Phosphomutases)/deficiency , Fibroblasts/metabolism , Fibroblasts/pathology , Transcriptome , Gene Expression Profiling , Cell Proliferation/genetics , Cell Proliferation/drug effects , Female , Male , Cell Movement/genetics , Cell Movement/drug effects
2.
Orphanet J Rare Dis ; 19(1): 39, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308356

ABSTRACT

BACKGROUND: Congenital disorders of glycosylation (CDG) are genetic diseases caused by impaired synthesis of glycan moieties linked to glycoconjugates. Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent CDG, is characterized by prominent neurological involvement. Gait disturbance is a major cause of functional disability in patients with PMM2-CDG. However, no specific gait assessment for PMM2-CDG is available. This study analyses gait-related parameters in PMM2-CDG patients using a standardized clinical assessment and instrumented gait analysis (IGA). RESULTS: Seven adult patients with a molecular diagnosis of PMM2-CDG were followed-up from February 2021 to December 2022 and compared to a group of healthy control (HC) subjects, matched for age and sex. Standardized assessment of disease severity including ataxia and peripheral neuropathy along with isometric muscle strength and echo-biometry measurements at lower limbs were performed. IGA spatiotemporal parameters were obtained by means of a wearable sensor in basal conditions. PMM2-CDG patients displayed lower gait speed, stride length, cadence and symmetry index, compared to HC. Significant correlations were found among the used clinical scales and between disease severity (NCRS) scores and the gait speed measured by IGA. Variable reduction of knee extension strength and a significant decrease of lower limb muscle thickness with conserved echo intensity were found in PMM2-CDG compared to HC. CONCLUSIONS: The study elucidates different components of gait disturbance in PMM2-CDG patients and shows advantages of using wearable sensor-based IGA in this frame. IGA parameters may potentially serve as quantitative measures for follow-up or outcome quantification in PMM2-CDG.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Adult , Humans , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Feasibility Studies , Phosphotransferases (Phosphomutases)/genetics , Gait , Immunoglobulin A
3.
Mol Genet Metab ; 139(4): 107629, 2023 08.
Article in English | MEDLINE | ID: mdl-37392701

ABSTRACT

PMM2-CDG is the most prevalent type of congenital disorders of glycosylation (CDG). It is caused by pathogenic variants in the gene encoding phosphomannomutase 2 (PMM2), which converts mannose-6-phosphate to mannose-1-phosphate and thus activates this saccharide for further glycosylation processes. Defective glycosylation can lead to an abnormal accumulation of unfolded proteins in endoplasmic reticulum (ER) and cause its stress. The ER is a key compartment for glycosylation, and its connection and communication with mitochondria has been described extensively in literature. Their crosstalk is important for cell proliferation, calcium homeostasis, apoptosis, mitochondrial fission regulation, bioenergetics, autophagy, lipid metabolism, inflammasome formation and unfolded protein response. Therefore, in the present study we posed a question, whether defective glycosylation leads to bioenergetic disruption. Our data reveal possible chronic stress in ER and activated unfolded protein response via PERK pathway in PMM2-CDG fibroblasts. Presumably, it leads to bioenergetic reorganization and increased assembly of respiratory chain complexes into supercomplexes together with suppressed glycolysis in PMM2-CDG patient cells. These changes cause alterations in Krebs cycle, which is tightly connected to electron transport system in mitochondria. In summary, we present data showing metabolic adaptation of cells to glycosylation defect caused by various pathogenic variants in PMM2.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Humans , Glycosylation , Congenital Disorders of Glycosylation/pathology , Phosphotransferases (Phosphomutases)/genetics , Fibroblasts/metabolism
4.
Mol Genet Metab ; 139(3): 107610, 2023 07.
Article in English | MEDLINE | ID: mdl-37245379

ABSTRACT

PMM2-CDG is the most common defect among the congenital disorders of glycosylation. In order to investigate the effect of hypoglycosylation on important cellular pathways, we performed extensive biochemical studies on skin fibroblasts of PMM2-CDG patients. Among others, acylcarnitines, amino acids, lysosomal proteins, organic acids and lipids were measured, which all revealed significant abnormalities. There was an increased expression of acylcarnitines and amino acids associated with increased amounts of calnexin, calreticulin and protein-disulfid-isomerase in combination with intensified amounts of ubiquitinylated proteins. Lysosomal enzyme activities were widely decreased as well as citrate and pyruvate levels indicating mitochondrial dysfunction. Main lipid classes such as phosphatidylethanolamine, cholesterol or alkyl-phosphatidylcholine, as well as minor lipid species like hexosylceramide, lysophosphatidylcholines or phosphatidylglycerol, were abnormal. Biotinidase and catalase activities were severely reduced. In this study we discuss the impact of metabolite abnormalities on the phenotype of PMM2-CDG. In addition, based on our data we propose new and easy-to-implement therapeutic approaches for PMM2-CDG patients.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Humans , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/therapy , Congenital Disorders of Glycosylation/metabolism , Glycosylation , Phosphotransferases (Phosphomutases)/genetics , Amino Acids/metabolism , Lipids
5.
Mol Genet Metab ; 139(2): 107606, 2023 06.
Article in English | MEDLINE | ID: mdl-37224763

ABSTRACT

BACKGROUND: Given the lack of reliable data on the prevalence of bleeding abnormalities and thrombotic episodes in PMM2-CDG patients, and whether coagulation abnormalities change over time, we prospectively collected and reviewed natural history data. Patients with PMM2-CDG often have abnormal coagulation studies due to glycosylation abnormalities but the frequency of complications resulting from these has not been prospectively studied. METHODS: We studied fifty individuals enrolled in the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study with molecularly confirmed diagnosis of PMM2-CDG. We collected data on prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), platelets, factor IX activity (FIX), factor XI activity (FXI), protein C activity (PC), protein S activity (PS) and antithrombin activity (AT). RESULTS: Prothrombotic and antithrombotic factor activities were frequently abnormal in PMM2-CDG patients, including AT, PC, PT, INR, and FXI. AT deficiency was the most common abnormality in 83.3% of patients. AT activity was below 50% in 62.5% of all patients (normal range 80-130%). Interestingly, 16% of the cohort experienced symptoms of spontaneous bleeding and 10% had thrombosis. Stroke-like episodes (SLE) were reported in 18% of patients in our cohort. Based on the linear growth models, on average, patients did not show significant change in AT (n = 48; t(23.8) = 1.75, p = 0.09), FIX (n = 36; t(61) = 1.60, p = 0.12), FXI (n = 39; t(22.8) = 1.88, p = 0.07), PS (n = 25; t(28.8) = 1.08, p = 0.29), PC (n = 38; t(68) = 1.61, p = 0.11), INR (n = 44; t(184) = -1.06, p = 0.29), or PT (n = 43; t(192) = -0.69, p = 0.49) over time. AT activity positively correlated with FIX activity. PS activity was significantly lower in males. CONCLUSION: Based on our natural history data and previous literature, we conclude that caution should be exercised when the AT levels are lower than 65%, as most thrombotic events occur in patients with AT below this level. All five, male PMM2-CDG patients in our cohort who developed thrombosis had abnormal AT levels, ranging between 19% and 63%. Thrombosis was associated with infection in all cases. We did not find significant change in AT levels over time. Several PMM2-CDG patients had an increased bleeding tendency. More long-term follow-up is necessary on coagulation abnormalities and the associated clinical symptoms to provide guidelines for therapy, patient management, and appropriate counseling. SYNOPSIS: Most PMM2-CDG patients display chronic coagulation abnormalities without significant improvement, associated with a frequency of 16% clinical bleeding abnormalities, and 10% thrombotic episodes in patients with severe antithrombin deficiency.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Thrombosis , Humans , Male , Glycosylation , Prospective Studies , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/diagnosis , Thrombosis/epidemiology , Thrombosis/genetics , Phosphotransferases (Phosphomutases)/genetics , Antithrombins/therapeutic use
6.
Mol Genet Metab ; 138(4): 107559, 2023 04.
Article in English | MEDLINE | ID: mdl-36965289

ABSTRACT

Phosphomannomutase-2-congenital disorder of glycosylation (PMM2-CDG) is the most common CDG and presents with highly variable features ranging from isolated neurologic involvement to severe multi-organ dysfunction. Liver abnormalities occur in in almost all patients and frequently include hepatomegaly and elevated aminotransferases, although only a minority of patients develop progressive hepatic fibrosis and liver failure. No curative therapies are currently available for PMM2-CDG, although investigation into several novel therapies is ongoing. We report the first successful liver transplantation in a 4-year-old patient with PMM2-CDG. Over a 3-year follow-up period, she demonstrated improved growth and neurocognitive development and complete normalization of liver enzymes, coagulation parameters, and carbohydrate-deficient transferrin profile, but persistently abnormal IgG glycosylation and recurrent upper airway infections that did not require hospitalization. Liver transplant should be considered as a treatment option for PMM2-CDG patients with end-stage liver disease, however these patients may be at increased risk for recurrent bacterial infections post-transplant.


Subject(s)
Congenital Disorders of Glycosylation , Liver Transplantation , Phosphotransferases (Phosphomutases) , Female , Humans , Child, Preschool , Glycosylation , Follow-Up Studies , Phosphotransferases (Phosphomutases)/genetics , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/genetics , Liver/metabolism , Immunoglobulin G
7.
Oxid Med Cell Longev ; 2023: 5964723, 2023.
Article in English | MEDLINE | ID: mdl-36743691

ABSTRACT

Congenital disorders of glycosylation (CDG) are severe metabolic disorders caused by an imbalance in the glycosylation pathway. Phosphomannomutase2 (PMM2-CDG), the most prevalent CDG, is mainly due to the disorder of PMM2. Pathogenic variants in cysteine have been found in various diseases, and cysteine residues have a potential as therapeutic targets. PMM2 harbor six cysteines; the variants Cys9Tyr (C9Y) and Cys241Ser (C241S) of PMM2 have been identified to associate with CDG, but the underlying molecular mechanisms remain uncharacterized. Here, we purified PMM2 wild type (WT), C9Y, and C241S to investigate their structural characteristics and biophysical properties by spectroscopic experiments under physiological temperature and environmental stress. Notably, the variants led to drastic changes in the protein properties and were prone to aggregate at physiological temperature. Meanwhile, PMM2 was sensitive to oxidative stress, and the cysteine pathogenic variants led to obvious aggregate formation and a higher cellular apoptosis ratio under oxidative stress. Molecular dynamic simulations indicated that the pathogenic variants changed the core domain of homomeric PMM2 and subunit binding free energy. Moreover, we tested the potential drug targeting PMM2-celastrol in cell level and explained the result by molecular docking simulation. In this study, we delineated the pathological mechanism of the cysteine substitution in PMM2, which addressed the vital role of cysteine in PMM2 and provided novel insights into prevention and treatment strategies for PMM2-CDG.


Subject(s)
Congenital Disorders of Glycosylation , Cysteine , Phosphotransferases (Phosphomutases) , Humans , Congenital Disorders of Glycosylation/metabolism , Congenital Disorders of Glycosylation/pathology , Cysteine/genetics , Cysteine/metabolism , Glycosylation , Molecular Docking Simulation , Phosphotransferases (Phosphomutases)/genetics
9.
Orphanet J Rare Dis ; 17(1): 398, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36309700

ABSTRACT

BACKGROUND: Congenital disorders of glycosylation (CDG) are a growing group of rare genetic disorders. The most common CDG is phosphomannomutase 2 (PMM2)-CDG which often has a severe clinical presentation and life-limiting consequences. There are no approved therapies for this condition. Also, there are no validated disease-specific quality of life (QoL) scales to assess the heterogeneous clinical burden of PMM2-CDG which presents a challenge for the assessment of the disease severity and the impact of a certain treatment on the course of the disease. AIM AND METHODS: This study aimed to identify the most impactful clinical signs and symptoms of PMM2-CDG, and specific patient and observer reported outcome measures (PROMs and ObsROMs, respectively) that can adequately measure such impact on patients' QoL. The most burdensome signs and symptoms were identified through input from the CDG community using a survey targeting PMM2-CDG families and experts, followed by family interviews to understand the real burden of these symptoms in daily life. The list of signs and symptoms was then verified and refined by patient representatives and medical experts in the field. Finally, a literature search for PROMs and ObsROMs used in other rare or common diseases with similar signs and symptoms to those of PMM2-CDG was performed. RESULTS: Twenty-four signs/symptoms were identified as the most impactful throughout PMM2-CDG patients' lifetime. We found 239 articles that included tools to measure those community-selected PMM2-CDG symptoms. Among them, we identified 80 QoL scales that address those signs and symptoms and, subsequently, their psychometric quality was analysed. These scales could be applied directly to the PMM2-CDG population or adapted to create the first PMM2-CDG-specific QoL questionnaire. CONCLUSION: Identifying the impactful clinical manifestations of PMM2-CDG, along with the collection of PROMs/ObsROMs assessing QoL using a creative and community-centric methodology are the first step towards the development of a new, tailored, and specific PMM2-CDG QoL questionnaire. These findings can be used to fill a gap in PMM2-CDG clinical development. Importantly, this methodology is transferable to other CDG and rare diseases with multiple signs and symptoms.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Humans , Congenital Disorders of Glycosylation/drug therapy , Quality of Life , Glycosylation , Phosphotransferases (Phosphomutases)/genetics , Patient Reported Outcome Measures
10.
Carbohydr Polym ; 294: 119828, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868775

ABSTRACT

In this study, we explored a novel approach to enhancing the production and bioactivities of Ganoderma exopolysaccharides. The homologous phosphomannomutase gene (PMM1) was cloned and overexpressed in Ganoderma for the first time. As a result, the maximum production of exopolysaccharides by the PMM1 transformant was 1.53 g/L, which was 1.41-fold higher than of a wild-type (WT) strain in a 5-L bioreactor. The transcription levels of PMM1 and PMM2 increased 40.5- and 2.4-fold, respectively, whereas the value of the GDP-D-mannose pyrophosphorylase gene did not change significantly in this transgenic strain. Furthermore, the major exopolysaccharide fractions from PMM1 transformants contained higher amounts of mannose (56.5 % and 21.1 %) than those from a WT strain (26.7 % and 9.3 %). Moreover, the major fractions from PMM1 transformants exhibited stronger regulation effects on macrophage. In conclusion, this study is helpful for the efficient production and application of Ganoderma exopolysaccharides and facilitates an understanding of polysaccharide biosynthesis regulation.


Subject(s)
Ganoderma , Phosphotransferases (Phosphomutases) , Bioreactors , Mannose , Phosphotransferases (Phosphomutases)/genetics
11.
Hum Mutat ; 43(10): 1430-1442, 2022 10.
Article in English | MEDLINE | ID: mdl-35789514

ABSTRACT

Different strategies are being investigated for treating PMM2-CDG, the most common congenital disorder of glycosylation. The use of pharmacochaperones (PCs) is one of the most promising. The present work characterizes the expression, stability, and enzymatic properties of 15 previously described clinical variants of the PMM2 protein, four novel variants, the Pmm2 mouse variant p.Phe115Leu, and its p.Phe119Leu human counterpart, with the aim of extending the potential use of pharmacochaperoning treatment. PMM2 variants were purified as stable homodimers, except for p.Asp65Gly, p.Ile120Thr, and p.Thr237Lys (no expression detected), p.Thr226Ser and p.Val231Met (aggregates), and p.Glu93Ala, p.Phe119Leu, and p.Phe115Leu (partial dissociated). Enzyme activity analyses identified severe variants and milder ones. Pure dimeric mutant proteins showed a reduction in thermal stability except for p.Asn216Asp. The thermal stability of all the unstable mutants was recovered in the presence of the PC compound VIII. This study adds to the list of destabilizing human variants amenable to rescue by small chemical compounds that increase the stability/activity of PMM2. The proposed platform can be reliably used for assessing the disease-causing effects of PMM2 missense variants, for assessing the correlation between genotype and phenotype, for confirming new clinical defects, and for identifying destabilizing mutations amenable to rescue by PCs.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Animals , Congenital Disorders of Glycosylation/genetics , Glycosylation , Humans , Mice , Mutation , Phenotype , Phosphotransferases (Phosphomutases)/genetics
12.
Mol Genet Metab ; 136(2): 145-151, 2022 06.
Article in English | MEDLINE | ID: mdl-35491370

ABSTRACT

Patient-reported outcomes (PROs) measure important aspects of disease burden, however they have received limited attention in the care of patients with Congenital Disorders of Glycosylation (CDG). We evaluated the PROs and correlation between clinical disease severity scoring and reported quality of life (QoL) in a PMM2-CDG patient cohort. Twenty-five patients with diagnosis of PMM2-CDG were enrolled as part of the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study. Patient- Reported Outcomes Measurement Information System (PROMIS) was completed by caregivers to assess health-related QoL. Clinical disease severity was scored by medical providers using the Nijmegen Progression CDG Rating Scale (NPCRS). The domains such as physical activity, strength impact, upper extremity, physical mobility, and a satisfaction in social roles (peer relationships) were found to be the most affected in the PMM2-CDG population compared to US general population. We found a strong correlation between NPCRS 1 (current functional ability) and three out of ten PROMIS subscales. NPCRS 2 (laboratory and organ function) and NPCRS 3 (neurological involvement) did not correlate with PROMIS. Mental health domains, such as anxiety, were positively correlated with depressive symptoms (r = 0.76, p = 0.004), fatigue (r = 0.67, p = 0.04). Surprisingly, patients with severely affected physical mobility showed low anxiety scores according to PROMIS (inverse correlation, r = -0.74, p = 0.005). Additionally, there was a positive correlation between upper extremity and physical mobility (r = 0.75, p = 002). Here, we found that PROMIS is an informative additional tool to measure CDG disease burden, which could be used as clinical trial outcome measures. The addition of PROMIS to clinical follow-up could help improve the quality of care for PMM2-CDG by facilitating a holistic approach for clinical decision-making. SYNOPSIS: We recommend PROMIS as an informative tool to measure disease burden in PMM2-CDG in addition to traditional CDG disease severity scores.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Humans , Patient Reported Outcome Measures , Phosphotransferases (Phosphomutases)/deficiency , Phosphotransferases (Phosphomutases)/genetics , Quality of Life
13.
J Biol Chem ; 298(2): 101550, 2022 02.
Article in English | MEDLINE | ID: mdl-34973333

ABSTRACT

The malaria-causing parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of parasite GPI anchor biosynthesis, the putative phosphomannomutase (PMM) (EC 5.4.2.8), HAD5 (PF3D7_1017400). We confirmed the PMM and phosphoglucomutase activities of purified recombinant HAD5 by developing novel linked enzyme biochemical assays. By regulating the expression of HAD5 in transgenic parasites with a TetR-DOZI-inducible knockdown system, we demonstrated that HAD5 is required for malaria parasite egress and erythrocyte reinvasion, and we assessed the role of HAD5 in GPI anchor synthesis by autoradiography of radiolabeled glucosamine and thin layer chromatography. Finally, we determined the three-dimensional X-ray crystal structure of HAD5 and identified a substrate analog that specifically inhibits HAD5 compared to orthologous human PMMs in a time-dependent manner. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition in parasites and that HAD5 has potential as a specific, multistage antimalarial target.


Subject(s)
Phosphotransferases (Phosphomutases) , Plasmodium falciparum , Protozoan Proteins , Animals , Erythrocytes/parasitology , Glycosylphosphatidylinositols/metabolism , Humans , Malaria, Falciparum/parasitology , Phosphotransferases (Phosphomutases)/genetics , Phosphotransferases (Phosphomutases)/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
14.
Front Endocrinol (Lausanne) ; 13: 1102307, 2022.
Article in English | MEDLINE | ID: mdl-36726472

ABSTRACT

Congenital hyperinsulinemia (CHI), is a clinically heterogeneous disorder that presents as a major cause of persistent and recurrent hypoglycemia during infancy and childhood. There are 16 subtypes of CHI-related genes. Phosphomannomutase 2 hyperinsulinemia (PMM2-HI) is an extremely rare subtype which is first reported in 2017, with only 18 families reported so far. This review provides a structured description of the genetic pathogenesis, and current diagnostic and therapeutic advances of PMM2-HI to increase clinicians' awareness of PMM2-HI.


Subject(s)
Hyperinsulinism , Hypoglycemia , Phosphotransferases (Phosphomutases) , Humans , Child , Hyperinsulinism/diagnosis , Hyperinsulinism/genetics , Hyperinsulinism/therapy , Hypoglycemia/etiology , Phosphotransferases (Phosphomutases)/genetics
15.
Mol Genet Metab ; 134(4): 344-352, 2021 12.
Article in English | MEDLINE | ID: mdl-34863624

ABSTRACT

Phosphomannomutase 2 deficiency, PMM2-CDG, is the most frequent disorder of protein N-glycosylation. It is an autosomal recessive disease with a broad clinical and biochemical phenotype. Trying to predict the impact of novel variants is often a challenge due to the high number of variants and the difficulty to establish solid genotype-phenotype correlations. A potential useful strategy is to use computational chemistry calculations as a tool from which relevant information on the structural impact of novel variants may be deduced. Here we present our analyses based on four well-known PMM2 deleterious variants (p.(Leu32Arg), p.(Asp65Tyr), p.(Phe119Leu), p.(Arg141His)) and the polymorphic p.(Glu197Ala) for which we have predicted the effect on protein stability. Our work predicts the effect of different amino acid residues on the conformation and stability of PMM2. These computational simulations are, therefore, an extremely useful methodology which, in combination with routinely used in silico methods of pathogenicity prediction, may help to reveal the structural impact of novel variants at the protein level, potentially leading to a better understanding of target biological molecules.


Subject(s)
Mutation, Missense , Phosphotransferases (Phosphomutases)/genetics , Molecular Dynamics Simulation , Phosphotransferases (Phosphomutases)/chemistry , Protein Conformation , Protein Multimerization , Protein Stability
16.
Genes (Basel) ; 12(11)2021 10 21.
Article in English | MEDLINE | ID: mdl-34828263

ABSTRACT

PMM2-CDG is a rare disease, causing hypoglycosylation of multiple proteins, hence preventing full functionality. So far, no direct genotype-phenotype correlations have been identified. We carried out a retrospective cohort study on 26 PMM2-CDG patients. We collected the identified genotype, as well as continuous variables indicating the disease severity (based on Nijmegen Pediatric CDG Rating Score or NPCRS) and dichotomous variables reflecting the patients' phenotype. The phenotypic effects of patients' genotype were studied using non-parametric and Chi-Square tests. Seventeen different pathogenic variants have been studied. Variants with zero enzyme activity had no significant impact on the Nijmegen score. Pathogenic variants involving the stabilization/folding domain have a significantly lower total NPCRS (p = 0.017): presence of the p.Cys241Ser mutation had a significantly lower subscore 1,3 and NPCRS (p = 0.04) and thus result in a less severe phenotype. On the other hand, variants involving the dimerization domain, p.Pro113Leu and p.Phe119Leu, resulted in a significantly higher NPCRS score (p = 0.002), which indicates a worse clinical course. These concepts give a better insight in the phenotypic prognosis of PMM2-CDG, according to their molecular base.


Subject(s)
Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/pathology , Genetic Association Studies , Phosphotransferases (Phosphomutases)/deficiency , Adolescent , Adult , Belgium/epidemiology , Child , Child, Preschool , Congenital Disorders of Glycosylation/epidemiology , Female , Genotype , Humans , Infant , Male , Middle Aged , Models, Molecular , Mutation , Phenotype , Phosphotransferases (Phosphomutases)/chemistry , Phosphotransferases (Phosphomutases)/genetics , Protein Structure, Secondary/genetics , Retrospective Studies , Severity of Illness Index , United States/epidemiology , Young Adult
17.
Mol Biol Rep ; 48(11): 7193-7201, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34546508

ABSTRACT

BACKGROUND: Nephrotic syndrome appears as a group of symptoms like proteinuria, edema and hyperlipidemia. Identification of monogenic forms revealed the physiology and pathogenesis of the SRNS. METHODS AND RESULTS: We performed Illumina panel sequencing of seven genes in 90 Indian patients to determine the role of these genetic mutations in nephrotic syndrome prognosis. Samtool was used for variants calling, and SnpEff and Snpsift did variants annotation. Clinical significance and variant classification were performed by the ClinVar database. In SSNS and SRNS patients, we found 0.78% pathogenic and 3.41% likely pathogenic mutations. Pathogenic mutations were found in LAMB2, LMX1B and WT1 genes, while likely pathogenic mutations were found in (6/13) LAMB2, (2/13) LMX1B, (2/13) TRPC6, (2/13) PTPRO and (1/13) PMM2 genes. Approximately 46% likely pathogenic mutations were contributed to the LAMB2 gene in SSNS and SRNS patients. We also detect 30 VUS (variants of uncertain significance), which were found (17/30) pathogenic and (13/30) likely pathogenic by different prediction tools. CONCLUSIONS: Multigene panels were used for genetic screening of heterogeneous disorders like nephrotic syndrome in the Indian population. We found pathogenic, likely pathogenic and certain VUS, which were responsible for the pathogenesis of the disease. Therefore, mutational analysis of SSNS and SRNS is necessary to avoid adverse effects of corticosteroids, modify the intensity of immunosuppressing agents, and prevent the disease's progression.


Subject(s)
Genetic Predisposition to Disease , Mutation , Nephrotic Syndrome/genetics , Child , Child, Preschool , DNA Mutational Analysis , Female , Genes, Wilms Tumor , Humans , LIM-Homeodomain Proteins/genetics , Laminin/genetics , Male , Phosphotransferases (Phosphomutases)/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , TRPC6 Cation Channel/genetics , Transcription Factors/genetics
18.
Orphanet J Rare Dis ; 16(1): 359, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34380532

ABSTRACT

In this response to the letter by Witters et al., we refer to the authors' arguments regarding spontaneous enhancement of glycosylation and the claim, that mannose has no place in the treatment of PMM2-CDG. Our paper "Dietary mannose supplementation in phosphomannomutase 2 deficiency (PMM2-CDG)" has shown that further investigation of mannose in PMM2-CDG is worthwhile alongside other treatment options and should not be dismissed off-hand without the willingness to prove or disprove it in controlled prospective clinical trials.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Congenital Disorders of Glycosylation/genetics , Dietary Supplements , Humans , Mannose , Phosphotransferases (Phosphomutases)/deficiency , Phosphotransferases (Phosphomutases)/genetics , Prospective Studies
19.
Mol Genet Metab ; 133(4): 397-399, 2021 08.
Article in English | MEDLINE | ID: mdl-34140212

ABSTRACT

PMM2-CDG is the most common congenital disorder of glycosylation (CDG) accounting for almost 65% of known CDG cases affecting N-glycosylation. Abnormalities in N-glycosylation could have a negative impact on many endocrine axes. There is very little known on the effect of impaired N-glycosylation on the hypothalamic-pituitary-adrenal axis function and whether CDG patients are at risk of secondary adrenal insufficiency and decreased adrenal cortisol production. Cortisol and ACTH concentrations were simultaneously measured between 7:44 am to 1 pm in forty-three subjects (20 female, median age 12.8 years, range 0.1 to 48.6 years) participating in an ongoing international, multi-center Natural History study for PMM2-CDG (ClinicalTrials.gov Identifier: NCT03173300). Of the 43 subjects, 11 (25.6%) had cortisol below 5 µg/dl and low to normal ACTH levels, suggestive of secondary adrenal insufficiency. Two of the 11 subjects have confirmed central adrenal insufficiency and are on hydrocortisone replacement and/or stress dosing during illness; 3 had normal and 1 had subnormal cortisol response to ACTH low-dose stimulation test but has not yet been started on therapy; the remaining 5 have upcoming stimulation testing planned. Our findings suggest that patients with PMM2-CDG may be at risk for adrenal insufficiency. Monitoring of morning cortisol and ACTH levels should be part of the standard care in patients with PMM2-CDG.


Subject(s)
Adrenal Insufficiency/diagnosis , Adrenal Insufficiency/physiopathology , Phosphotransferases (Phosphomutases)/blood , Adolescent , Adrenal Insufficiency/etiology , Adult , Child , Child, Preschool , Congenital Disorders of Glycosylation , Female , Glycosylation , Humans , Infant , Male , Middle Aged , Phosphotransferases (Phosphomutases)/genetics , Pituitary-Adrenal System/physiology , Prospective Studies , Risk Factors , Young Adult
20.
Article in English | MEDLINE | ID: mdl-33858316

ABSTRACT

BACKGROUND: In Congenital Disorder of Glycosylation (CDG) type Ia, homozygous mutations of the PMM2 gene cause phosphomannomutase 2 dysfunction. CASE PRESENTATION: Herein, a 10-month-old girl, is presented with severe hypotonia, along with inappropriately normal mental status and normal facies. High 2-ketoglutaric acid was detected in her urine, therefore, the diagnosis of 2-Ketoglutarate dehydrogenase complex (KDHC) deficiency was made for this patient. A high dose of vitamin B1 was administered because thiamine is considered a co-factor in this inborn error of metabolism. She responded very well to the daily administration of 500 mg/day vitamin B1 and stood up without help 5 months later. She had also experienced a seizure, which responded well to pyridoxine. Then, she grew up into a 3.5-years-old child who could talk and walk normally. Recently, whole-exome sequencing was performed for her, which showed homozygote mutation of PMM2, therefore, the diagnosis was changed from KDHC deficiency to PMM2-CDG. CONCLUSION: Paying attention to the pathophysiology of inborn errors of metabolism is necessary while considering the defective enzyme co-factor, which may help us to find an option for the treatment of such rare diseases.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Child, Preschool , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/drug therapy , Female , Glycosylation , Homozygote , Humans , Infant , Mutation , Phosphotransferases (Phosphomutases)/genetics , Phosphotransferases (Phosphomutases)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...