Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 904
Filter
1.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542185

ABSTRACT

Photobiology is a challenging research area that aims to explore the interactions between light and living organisms and their biological consequences, with applications in the fields of photomedicine, photo(nano)technology, photosynthesis, and photosensory biology [...].


Subject(s)
Photobiology , Photosynthesis , Light
2.
Odovtos (En línea) ; 25(3): 43-54, Sep.-Dec. 2023. tab, graf
Article in English | LILACS, SaludCR | ID: biblio-1529068

ABSTRACT

Abstract The aim of this experimental study was to determine the effect of photobiomodulation therapy on bone repair in a rat tibia osteotomy model at 15 and 30 days. The sample consisted of 36 male Holtzman rats that were randomized into 6 equal groups. Groups A1 and A2: osteotomy + 1 J laser energy. Groups B1 and B2: osteotomy + 3 J laser energy. Groups C1 and C2 (controls): osteotomy only. The bone repair was analyzed by histological evaluation of osteoblasts and osteocytes both at 15 days (groups A1, B1, and C1) and at 30 days (groups A2, B2, and C2). Within the results, in all groups a greater number of osteoblasts was found at 15 days vs 30 days (p<0.05), and a greater number of osteocytes in B1 and C2 vs B2 and C1, respectively (p<0.05). When evaluating the 3 groups worked up to 15 days, more osteoblasts were found in A1 and C1 vs B1 (p<0.001); and osteocytes predominated in A1 and B1 vs C1 (p<0.001). At 30 days there was a greater quantity of osteoblasts in C2 vs A2 and B2 (p<0.05) and of osteocytes in C2 vs B2 (p<0.05). It is concluded that 1 J photobiomodulation therapy improved bone repair at 15 days; however, this improvement was not observed at 30 days because there were no differences between the irradiated groups and the control.


Resumen El objetivo de este estudio experimental fue determinar el efecto de terapia de fotobiomodulación sobre la reparación ósea en un modelo de osteotomía de tibia de rata a los 15 y 30 días. La muestra estuvo compuesta por 36 ratas Holtzman macho que se aleatorizaron en 6 grupos iguales. Grupos A1 y A2: osteotomía + energía láser de 1 Joule. Grupos B1 y B2: osteotomía + energía láser 3 Joule. Grupos C1 y C2 (controles): solo osteotomía. La reparación ósea fue analizada por evaluación histológica de osteoblastos y osteocitos tanto a los 15 días (grupos A1, B1 y C1) como a los 30 días (grupos A2, B2 y C2). Como resultados se encontró que en todos los grupos hubo mayor número de osteoblastos a los 15 días vs. 30 días (p<0,05), y mayor número de osteocitos en B1 y C2 vs B2 y C1, respectivamente (p<0,05). Al evaluar a los animales a los 15 días, se observó mayor número de osteoblastos en A1 y C1 vs B1 (p<0.001); y mayor número de osteocitos en A1 y B1 vs C1 (p<0,001). Al evaluar a los ratones a los 30 días hubo mayor cantidad de osteoblastos en C2 vs A2 y B2 (p<0,05) y de osteocitos en C2 vs B2 (p<0,05). Se concluye que la terapia de fotobiomodulación con 1 Joule mejoró la reparación ósea a los 15 días; sin embargo, dicha mejora no se observó a los 30 días porque no hubo diferencias entre los grupos irradiados y el control.


Subject(s)
Animals , Rats , Tibia , Photobiology , Low-Level Light Therapy , Bone and Bones
3.
Curr Biol ; 33(15): R810-R812, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37552947

ABSTRACT

The UV radiation in sunlight can damage organisms. A new study reveals that female zebrafish deposit a chemical sunscreen into their eggs to protect their developing embryos, a feat that has been lost in fish species whose embryos never experience sunlight.


Subject(s)
Sunlight , Zebrafish , Animals , Female , Photobiology , Ultraviolet Rays/adverse effects , Sunscreening Agents/chemistry
4.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240051

ABSTRACT

Botrytis cinerea is a necrotrophic fungus characterized mainly by its wide host range of infected plants. The deletion of the white-collar-1 gene (bcwcl1), which encodes for a blue-light receptor/transcription factor, causes a decrease in virulence, particularly when assays are conducted in the presence of light or photocycles. However, despite ample characterization, the extent of the light-modulated transcriptional responses regulated by BcWCL1 remains unknown. In this study, pathogen and pathogen:host RNA-seq analyses, conducted during non-infective in vitro plate growth and when infecting Arabidopsis thaliana leaves, respectively, informed on the global gene expression patterns after a 60 min light pulse on the wild-type B05.10 or ∆bcwcl1 B. cinerea strains. The results revealed a complex fungal photobiology, where the mutant did not react to the light pulse during its interaction with the plant. Indeed, when infecting Arabidopsis, no photoreceptor-encoding genes were upregulated upon the light pulse in the ∆bcwcl1 mutant. Differentially expressed genes (DEGs) in B. cinerea under non-infecting conditions were predominantly related to decreased energy production in response to the light pulse. In contrast, DEGs during infection significantly differ in the B05.10 strain and the ∆bcwcl1 mutant. Upon illumination at 24 h post-infection in planta, a decrease in the B. cinerea virulence-associated transcripts was observed. Accordingly, after a light pulse, biological functions associated with plant defense appear enriched among light-repressed genes in fungus-infected plants. Taken together, our results show the main transcriptomic differences between wild-type B. cinerea B05.10 and ∆bcwcl1 after a 60 min light pulse when growing saprophytically on a Petri dish and necrotrophically over A. thaliana.


Subject(s)
Arabidopsis , Photobiology , Arabidopsis/genetics , Arabidopsis/microbiology , Botrytis , Gene Expression , Plant Diseases/genetics , Plant Diseases/microbiology , Gene Expression Regulation, Plant
5.
Photochem Photobiol ; 99(6): 1361-1363, 2023.
Article in English | MEDLINE | ID: mdl-36862007

ABSTRACT

The translation of photodynamic effects into clinical practice is a complex process that involves the pharmacokinetics of photosensitizing agents, light dosimetry and oxygenation levels. But even the 'translation' of basic photobiology into meaningful preclinical information can be challenging. Some thoughts on directions for progress in clinical trials are suggested.


Subject(s)
Photochemotherapy , Photosensitizing Agents/therapeutic use , Photobiology
6.
Molecules ; 28(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36771053

ABSTRACT

The trans-A2B-corrole series was prepared starting with 5-(pentafluorophenyl)dipyrromethene, which was then reacted with respective aryl-substituted aldehyde by Gryko synthesis. It was further characterized by HRMS and electrochemical methods. In addition, we investigated experimental photophysical properties (absorption, emission by steady-state and time-resolved fluorescence) in several solvents and TDDFT calculations, aggregation, photostability and reactive oxygen species generation (ROS), which are relevant when selecting photosensitizers used in photodynamic therapy and many other photo-applications. In addition, we also evaluated the biomolecule-binding properties with CT-DNA and HSA by spectroscopy, viscometry and molecular docking calculations assays.


Subject(s)
Photochemotherapy , Porphyrins , Molecular Docking Simulation , Porphyrins/chemistry , Photobiology
7.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835395

ABSTRACT

Light is an emerging treatment approach that is being used to treat many diseases and conditions such as pain, inflammation, and wound healing. The light used in dental therapy generally lies in visible and invisible spectral regions. Despite many positive results in the treatment of different conditions, this therapy still faces some skepticism, which has prevented its widespread adoption in clinics. The main reason for this skepticism is the lack of comprehensive information about the molecular, cellular, and tissular mechanisms of action, which underpin the positive effects of phototherapy. However, there is currently promising evidence in support of the use of light therapy across a spectrum of oral hard and soft tissues, as well as in a variety of important dental subspecialties, such as endodontics, periodontics, orthodontics, and maxillofacial surgery. The merging of diagnostic and therapeutic light procedures is also seen as a promising area for future expansion. In the next decade, several light technologies are foreseen as becoming integral parts of modern dentistry practice.


Subject(s)
Endodontics , Orthodontics , Surgery, Oral , Photobiology , Periodontics
8.
J Inorg Biochem ; 238: 112031, 2023 01.
Article in English | MEDLINE | ID: mdl-36327501

ABSTRACT

Photoreactive Ru(II) complexes capable of ejecting ligands have been used extensively for photocaging applications and for the creation of "photocisplatin" reagents. The incorporation of distortion into the structure of the coordination complex lowers the energy of dissociative excited states, increasing the yield of the photosubstitution reaction. While steric clash between ligands induced by adding substituents at the coordinating face of the ligand has been extensively utilized, a lesser known, more subtle approach is to distort the coordination sphere by altering the chelate ring size. Here a systematic study was performed to alter metal-ligand bond lengths, angles, and to cause intraligand distortion by introducing a "linker" atom or group between two pyridine rings. The synthesis, photochemistry, and photobiology of five Ru(II) complexes containing CH2, NH, O, and S-linked dipyridine ligands was investigated. All systems where stable in the dark, and three of the five were photochemically active in buffer. While a clear periodic trend was not observed, this study lays the foundation for the creation of photoactive systems utilizing an alternative type of distortion to facilitate photosubstitution reactions.


Subject(s)
Ruthenium , Ruthenium/chemistry , Ligands , Photobiology , Photochemistry
9.
J R Coll Physicians Edinb ; 52(4): 287-291, 2022 12.
Article in English | MEDLINE | ID: mdl-36281748

ABSTRACT

BACKGROUND: Proton pump inhibitors (PPIs) are extensively prescribed but may cause photosensitivity and drug-induced lupus erythematosus (DILE), which can be overlooked as the drug may have been taken for years prior to presentation. METHODS: We reviewed the clinical and investigation findings of patients diagnosed with PPI-induced photosensitivity, diagnosed through the Scottish Photobiology Service. RESULTS: We report 11 patients with median age of onset 61-years and mean duration of PPI ingestion of 5-years [DILE (n = 6), phototoxicity (n = 3) and drug-induced solar urticaria through a lupus mechanism (n = 2)]. Five had Anti-Ro antibodies (three also ANA positive). Predominantly UVA and visible light photosensitivity was observed on phototesting. DISCUSSION: PPIs are a reversible cause of photosensitivity and DILE. Time to onset from drug initiation to symptoms can be prolonged, so clinicians should have a high index of suspicion in those taking PPIs. Most are diagnosed through clinical assessment and lupus serology, with phototesting indicated if there is diagnostic uncertainty.


Subject(s)
Lupus Erythematosus, Cutaneous , Lupus Erythematosus, Systemic , Photosensitivity Disorders , Humans , Middle Aged , Lupus Erythematosus, Cutaneous/chemically induced , Lupus Erythematosus, Cutaneous/diagnosis , Proton Pump Inhibitors/adverse effects , Photobiology , Photosensitivity Disorders/chemically induced , Photosensitivity Disorders/diagnosis , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/drug therapy , Observational Studies as Topic
10.
Prog Brain Res ; 273(1): 97-116, 2022.
Article in English | MEDLINE | ID: mdl-35940726

ABSTRACT

Over the last decades remarkable advances have been made in the understanding of the photobiology of circadian rhythms. The identification of a third photoreceptive system in the mammalian eye, in addition to the rods and cones that mediate vision, has transformed our appreciation of the role of light in regulating physiology and behavior. These photosensitive retinal ganglion cells (pRGCs) express the blue-light sensitive photopigment melanopsin and project to the suprachiasmatic nuclei (SCN)-the master circadian pacemaker-as well as many other brain regions. Much of our understanding of the fundamental mechanisms of the pRGCs, and the processes that they regulate, comes from mouse and other rodent models. Here we describe the contribution of rodent models to circadian photobiology, including both their strengths and limitations. In addition, we discuss how an appreciation of both rodent and human data is important for translational circadian photobiology. Such an approach enables a bi-directional flow of information whereby an understanding of basic mechanisms derived from mice can be integrated with studies from humans. Progress in this field is being driven forward at several levels of analysis, not least by the use of personalized light measurements and photoreceptor specific stimuli in human studies, and by studying the impact of environmental, rather than laboratory, lighting on different rodent models.


Subject(s)
Photobiology , Rodentia , Animals , Circadian Rhythm/physiology , Humans , Mice , Retinal Ganglion Cells/metabolism , Rod Opsins/metabolism , Rodentia/metabolism , Suprachiasmatic Nucleus/metabolism
11.
Bioresour Technol ; 362: 127787, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35985465

ABSTRACT

Photosynthetic biohydrogen has the advantages of extensive raw materials, clean and renewable, etc. But, its low substrate utilization rate limit its commercial application. It is reported that the use of additives in the process of biohydrogen by photofermentation is beneficial to increase biohydrogen. However, in practical application, the mechanism of additives in hydrogen production is not understood. This paper, the promotion effect of some additives on biohydrogen by photofermentation was reviewed. Whatever, the existing problems and development trends of various additives are also discussed. It is necessary to select appropriate additives according to the hydrogen-producing characteristics. The use of composite additives may further enhance biohydrogen, but the specific situation needs further exploration. The research results of this paper can help readers to further understand the role of additives in the crouse of photofermentative biohydrogen, provide reference for the research of photofermentative biohydrogen.


Subject(s)
Hydrogen , Photobiology , Fermentation
12.
Photochem Photobiol Sci ; 21(11): 2001-2009, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35904704

ABSTRACT

BACKGROUND: UVB absorption by 7-dehydrocholesterol (7DHC) in the skin triggers the production of vitamin D and its metabolites, which maintain calcium homeostasis. Detection and measurement of 7DHC in skin using modern liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have been lacking, yet there is need for such a technique to provide more information on 7DHC concentration and its UVB responses in human skin. OBJECTIVES: To develop and validate a reliable method to measure 7DHC concentration in skin. METHODS: Human skin punch biopsies of 5 mm diameter obtained through the Manchester Skin Health Biobank were utilised. 7DHC was extracted with ethyl acetate:methanol 1:1 (v/v) and derivatised using 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), to allow for improved ionisation of 7DHC through Electrospray Ionisation Mass Spectrometry (ESI-MS). Solid supported liquid extraction (SLE) was also employed to allow the removal of larger lipids from 7DHC and minimise potential matrix effects. RESULTS: The LC-MS/MS assay satisfied International Council for Harmonisation research standards for method validation. Calibration curve was linear with a typical r2 of 0.997, coefficient of variation was 11.1% and 4.32% for inter-assay and intra-assay imprecision, respectively. Lower limit of quantification was 1.6 µg/g and upper limit of quantification was 100 µg/g, SLE recovery of 7DHC was on average 91.4%. CONCLUSIONS: We have developed a robust, precise and accurate assay for the detection and quantification of 7DHC in small samples of human skin (0.2 cm2 surface area). This novel method of extraction and quantification will be valuable to future vitamin D photobiology research.


Subject(s)
Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Photobiology , Tandem Mass Spectrometry/methods , Vitamin D
13.
Proc Natl Acad Sci U S A ; 119(13): e2118803119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35312355

ABSTRACT

SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.


Subject(s)
Circadian Clocks , Circadian Rhythm/physiology , Humans , Light , Photobiology , Suprachiasmatic Nucleus/physiology
14.
Photochem Photobiol Sci ; 21(4): 557-584, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35188651

ABSTRACT

Time-resolved infrared (IR) spectroscopy is a widely used technique in the investigation of photoinduced reactions, given its capabilities of providing structural information about the presence of intermediates and the reaction mechanism. Despite the fact that it is used in several fields since the '80s, the communication between the different scientific communities (photochemists, photobiologists, etc.) has been to date quite limited. In some cases, this lack of communication happened-and still happens-even inside the same scientific community (for instance between specialists in ultrafast ps/fs IR and those in "fast" ns/µs/ms IR). Even more surprising is the difficulty of non-specialists to understand the potential of time-resolved IR spectroscopy, despite the fact that IR spectroscopy is normally taught to all chemistry and material science students, and to several biology and physics students. This tutorial review aims at helping to solve these issues, first by providing a comprehensive but reader-friendly overview of the different techniques, and second, by focusing on five "case studies" (from photobiology, gas-phase photocatalysis, photochemistry, semiconductors and metal-carbonyl complexes). We are confident that this approach can help the reader-whichever is its background-to understand the capabilities of time-resolved IR spectroscopy to study the mechanism of photoinduced reactions.


Subject(s)
Coordination Complexes , Semiconductors , Humans , Photobiology , Photochemistry , Spectrophotometry, Infrared
15.
J Invest Dermatol ; 142(7): 1903-1911.e5, 2022 07.
Article in English | MEDLINE | ID: mdl-35031135

ABSTRACT

Pigment-producing melanocytes overcome frequent oxidative stress in their physiological role of protecting the skin against the deleterious effects of solar UV irradiation. This is accomplished by the activity of several endogenous antioxidant systems, including the thioredoxin antioxidant system, in which thioredoxin reductase 1 (TR1) plays an important part. To determine whether TR1 contributes to the redox regulation of melanocyte homeostasis, we have generated a selective melanocytic Txnrd1-knockout mouse model (Txnrd1mel‒/‒), which exhibits a depigmentation phenotype consisting of variable amelanotic ventral spotting and reduced pigmentation on the extremities (tail tip, ears, and paws). The antioxidant role of TR1 was further probed in the presence of acute neonatal UVB irradiation, which stimulates melanocyte activation and introduces a spike in oxidative stress in the skin microenvironment. Interestingly, we observed a significant reduction in overall melanocyte count and proliferation in the absence of TR1. Furthermore, melanocytes exhibited an elevated level of UV-induced DNA damage in the form of 8-oxo-2'-deoxyguanosine after acute UVB treatment. We also saw an engagement of compensatory antioxidant mechanisms through increased nuclear localization of transcription factor NRF2. Altogether, these data indicate that melanocytic TR1 positively regulates melanocyte homeostasis and pigmentation during development and protects against UVB-induced DNA damage and oxidative stress.


Subject(s)
Photobiology , Thioredoxin Reductase 1 , Animals , Antioxidants/pharmacology , Melanocytes/radiation effects , Mice , Pigmentation , Thioredoxin Reductase 1/genetics , Ultraviolet Rays
16.
Nat Commun ; 13(1): 507, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082282

ABSTRACT

Green fluorescent protein (GFP), the most widely used fluorescent protein for in vivo monitoring of biological processes, is known to undergo photooxidation reactions. However, the most fundamental property underpinning photooxidation, the electron detachment energy, has only been measured for the deprotonated GFP chromophore in the gas phase. Here, we use multiphoton ultraviolet photoelectron spectroscopy in a liquid-microjet and high-level quantum chemistry calculations to determine the electron detachment energy of the GFP chromophore in aqueous solution. The aqueous environment is found to raise the detachment energy by around 4 eV compared to the gas phase, similar to calculations of the chromophore in its native protein environment. In most cases, electron detachment is found to occur resonantly through electronically excited states of the chromophore, highlighting their importance in photo-induced electron transfer processes in the condensed phase. Our results suggest that the photooxidation properties of the GFP chromophore in an aqueous environment will be similar to those in the protein.


Subject(s)
Green Fluorescent Proteins , Photoelectron Spectroscopy/methods , Electron Transport , Electronics , Electrons , Models, Molecular , Photobiology/methods , Quantum Theory
17.
ACS Appl Bio Mater ; 5(2): 897-903, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35080839

ABSTRACT

Photobiological hydrogen production is among the most promising ways toward the mass production of hydrogen energy. The use of green algal aggregates to produce photobiological hydrogen has attracted much attention because it overcomes the limitations of sulfur deprivation and oxygen scavengers. However, the current preparation of green algal aggregates that are capable of hydrogen production is time-consuming and laborious, leading to a difficulty in large-scale applications. Here, we demonstrated that the chemical flocculation of green algae is able to generate aggregates for photobiological hydrogen production. We find that Chlorella pyrenoidosa can directly form aggregates in the original liquid cultures by a commercial chemical flocculant, cationic etherified starch, thereby achieving sustainable hydrogen production for 11 days under continuous light irradiation, and the average rate of photobiological production reaches 0.37 µmol H2 (mg chlorophyll·h)-1. This research provides a feasible approach for preparing a low-cost photobiological hydrogen production system helping to realize carbon neutrality.


Subject(s)
Chlorella , Flocculation , Hydrogen , Photobiology , Photosynthesis
18.
Photochem Photobiol ; 98(3): 649-661, 2022 05.
Article in English | MEDLINE | ID: mdl-34555202

ABSTRACT

Photobiological effects are known to greatly depend on the wavelength of the incident photons that define the nature of the activated chromophores. A growing number of experimental data show that considering the effect of complex light sources as a sum of the effects of monochromatic exposures can be misleading. Indeed, the combined exposure to several wavelength ranges may modulate photobiological responses or even induce novel processes. These observations are similar to a well-known topic in chemical toxicology: the nonadditivity of effects in mixtures where either antagonism or synergy are often observed. In the present work, we investigated whether a data analysis tool first developed for studying nonadditivity in mixtures of drugs, the combination index, could be applied to photobiological processes. We chose to work on the formation of UV-induced DNA photoproducts where additive, antagonist, and synergistic effects take place simultaneously. In addition to this application, we worked on the mathematical bases of the concept in order to broaden its applicability to phenomena exhibiting various dose-response patterns. We also addressed the question of the evaluation of the error on the determination of the combination index.


Subject(s)
DNA Damage , Ultraviolet Rays , DNA , Photobiology , Photons
19.
Photochem Photobiol ; 98(1): 130-131, 2022 01.
Article in English | MEDLINE | ID: mdl-34312877

ABSTRACT

The figure presented here illuminates the large number of variables that are necessary to adequately describe phototesting protocols. Each of these characteristics can be critical in understanding results presented in the photomedicine community as well as the broader photobiology and photochemistry communities. The inclusion of all of these variables within each phototesting publication will aid in discourse and further scientific discovery within our field.


Subject(s)
Photobiology , Photobiology/methods , Photochemistry
20.
Photochem Photobiol ; 98(1): 272-274, 2022 01.
Article in English | MEDLINE | ID: mdl-34812514

ABSTRACT

Progress in photodynamic therapy (PDT) relies on the design and synthesis of photosensitizers that can efficiently sensitize singlet oxygen using visible light irradiation while displaying limited dark toxicity. Here, we highlight the paper by Linker and coworkers published in this issue of Photochemistry and Photobiology, which evaluates the effect of the regiochemistry of pyridinium rings in three isomeric pyridinium alkynylanthracenes on their performance as photosensitizers for PDT in HeLa cells.


Subject(s)
Photochemotherapy , Photosensitizing Agents , HeLa Cells , Humans , Photobiology , Photosensitizing Agents/therapeutic use , Singlet Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...