Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Nature ; 616(7955): 199-206, 2023 04.
Article in English | MEDLINE | ID: mdl-36922595

ABSTRACT

In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.


Subject(s)
Light-Harvesting Protein Complexes , Photosystem I Protein Complex , Photosystem II Protein Complex , Phycobilisomes , Porphyridium , Energy Transfer , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/ultrastructure , Photosynthesis , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/ultrastructure , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/ultrastructure , Phycobilisomes/chemistry , Phycobilisomes/metabolism , Phycobilisomes/ultrastructure , Porphyridium/chemistry , Porphyridium/enzymology , Porphyridium/metabolism , Porphyridium/ultrastructure , Cryoelectron Microscopy , Single Molecule Imaging
2.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34937700

ABSTRACT

Photosystem II (PSII) enables global-scale, light-driven water oxidation. Genetic manipulation of PSII from the mesophilic cyanobacterium Synechocystis sp. PCC 6803 has provided insights into the mechanism of water oxidation; however, the lack of a high-resolution structure of oxygen-evolving PSII from this organism has limited the interpretation of biophysical data to models based on structures of thermophilic cyanobacterial PSII. Here, we report the cryo-electron microscopy structure of PSII from Synechocystis sp. PCC 6803 at 1.93-Å resolution. A number of differences are observed relative to thermophilic PSII structures, including the following: the extrinsic subunit PsbQ is maintained, the C terminus of the D1 subunit is flexible, some waters near the active site are partially occupied, and differences in the PsbV subunit block the Large (O1) water channel. These features strongly influence the structural picture of PSII, especially as it pertains to the mechanism of water oxidation.


Subject(s)
Cryoelectron Microscopy/methods , Photosystem II Protein Complex/ultrastructure , Synechocystis/chemistry , Bacterial Proteins/metabolism , Protein Conformation
3.
Plant Physiol ; 186(4): 2124-2136, 2021 08 03.
Article in English | MEDLINE | ID: mdl-33944951

ABSTRACT

Diatoms are a large group of marine algae that are responsible for about one-quarter of global carbon fixation. Light-harvesting complexes of diatoms are formed by the fucoxanthin chlorophyll a/c proteins and their overall organization around core complexes of photosystems (PSs) I and II is unique in the plant kingdom. Using cryo-electron tomography, we have elucidated the structural organization of PSII and PSI supercomplexes and their spatial segregation in the thylakoid membrane of the model diatom species Thalassiosira pseudonana. 3D sub-volume averaging revealed that the PSII supercomplex of T. pseudonana incorporates a trimeric form of light-harvesting antenna, which differs from the tetrameric antenna observed previously in another diatom, Chaetoceros gracilis. Surprisingly, the organization of the PSI supercomplex is conserved in both diatom species. These results strongly suggest that different diatom classes have various architectures of PSII as an adaptation strategy, whilst a convergent evolution occurred concerning PSI and the overall plastid structure.


Subject(s)
Diatoms/ultrastructure , Photosynthesis , Photosystem I Protein Complex/ultrastructure , Photosystem II Protein Complex/ultrastructure , Thylakoids/ultrastructure , Diatoms/metabolism
4.
Nat Commun ; 12(1): 2291, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863895

ABSTRACT

Plants need to protect themselves from excess light, which causes photo-oxidative damage and lowers the efficiency of photosynthesis. Photosystem II subunit S (PsbS) is a pH sensor protein that plays a crucial role in plant photoprotection by detecting thylakoid lumen acidification in excess light conditions via two lumen-faced glutamates. However, how PsbS is activated under low-pH conditions is unknown. To reveal the molecular response of PsbS to low pH, here we perform an NMR, FTIR and 2DIR spectroscopic analysis of Physcomitrella patens PsbS and of the E176Q mutant in which an active glutamate has been replaced. The PsbS response mechanism at low pH involves the concerted action of repositioning of a short amphipathic helix containing E176 facing the lumen and folding of the luminal loop fragment adjacent to E71 to a 310-helix, providing clear evidence of a conformational pH switch. We propose that this concerted mechanism is a shared motif of proteins of the light-harvesting family that may control thylakoid inter-protein interactions driving photoregulatory responses.


Subject(s)
Adaptation, Physiological , Bryopsida/physiology , Light/adverse effects , Photosystem II Protein Complex/metabolism , Stress, Physiological , Bryopsida/radiation effects , Glutamic Acid/genetics , Hydrogen-Ion Concentration/radiation effects , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Photosynthesis/physiology , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/isolation & purification , Photosystem II Protein Complex/ultrastructure , Protein Conformation, alpha-Helical , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Thylakoids/radiation effects
5.
Nat Plants ; 7(4): 524-538, 2021 04.
Article in English | MEDLINE | ID: mdl-33846594

ABSTRACT

Biogenesis of photosystem II (PSII), nature's water-splitting catalyst, is assisted by auxiliary proteins that form transient complexes with PSII components to facilitate stepwise assembly events. Using cryo-electron microscopy, we solved the structure of such a PSII assembly intermediate from Thermosynechococcus elongatus at 2.94 Å resolution. It contains three assembly factors (Psb27, Psb28 and Psb34) and provides detailed insights into their molecular function. Binding of Psb28 induces large conformational changes at the PSII acceptor side, which distort the binding pocket of the mobile quinone (QB) and replace the bicarbonate ligand of non-haem iron with glutamate, a structural motif found in reaction centres of non-oxygenic photosynthetic bacteria. These results reveal mechanisms that protect PSII from damage during biogenesis until water splitting is activated. Our structure further demonstrates how the PSII active site is prepared for the incorporation of the Mn4CaO5 cluster, which performs the unique water-splitting reaction.


Subject(s)
Bacterial Proteins/genetics , Photosystem II Protein Complex/genetics , Bacterial Proteins/ultrastructure , Photosynthesis , Photosystem II Protein Complex/ultrastructure , Thermosynechococcus/genetics , Thermosynechococcus/ultrastructure
6.
Commun Biol ; 4(1): 382, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753866

ABSTRACT

Photosystem II (PSII) plays a key role in water-splitting and oxygen evolution. X-ray crystallography has revealed its atomic structure and some intermediate structures. However, these structures are in the crystalline state and its final state structure has not been solved. Here we analyzed the structure of PSII in solution at 1.95 Å resolution by single-particle cryo-electron microscopy (cryo-EM). The structure obtained is similar to the crystal structure, but a PsbY subunit was visible in the cryo-EM structure, indicating that it represents its physiological state more closely. Electron beam damage was observed at a high-dose in the regions that were easily affected by redox states, and reducing the beam dosage by reducing frames from 50 to 2 yielded a similar resolution but reduced the damage remarkably. This study will serve as a good indicator for determining damage-free cryo-EM structures of not only PSII but also all biological samples, especially redox-active metalloproteins.


Subject(s)
Bacterial Proteins/ultrastructure , Cryoelectron Microscopy , Electrons/adverse effects , Photosystem II Protein Complex/ultrastructure , Bacterial Proteins/metabolism , Models, Molecular , Oxidation-Reduction , Photosystem II Protein Complex/metabolism , Protein Conformation , Thermosynechococcus/metabolism , Thermosynechococcus/ultrastructure
7.
Nat Commun ; 12(1): 1100, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597543

ABSTRACT

Photosystem I (PSI) and II (PSII) balance their light energy distribution absorbed by their light-harvesting complexes (LHCs) through state transition to maintain the maximum photosynthetic performance and to avoid photodamage. In state 2, a part of LHCII moves to PSI, forming a PSI-LHCI-LHCII supercomplex. The green alga Chlamydomonas reinhardtii exhibits state transition to a far larger extent than higher plants. Here we report the cryo-electron microscopy structure of a PSI-LHCI-LHCII supercomplex in state 2 from C. reinhardtii at 3.42 Å resolution. The result reveals that the PSI-LHCI-LHCII of C. reinhardtii binds two LHCII trimers in addition to ten LHCI subunits. The PSI core subunits PsaO and PsaH, which were missed or not well-resolved in previous Cr-PSI-LHCI structures, are observed. The present results reveal the organization and assembly of PSI core subunits, LHCI and LHCII, pigment arrangement, and possible pathways of energy transfer from peripheral antennae to the PSI core.


Subject(s)
Algal Proteins/metabolism , Chlamydomonas reinhardtii/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosystem I Protein Complex/metabolism , Algal Proteins/chemistry , Algal Proteins/ultrastructure , Chlorophyll/metabolism , Cryoelectron Microscopy , Energy Transfer , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/ultrastructure , Models, Molecular , Photosynthesis , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/ultrastructure , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/ultrastructure , Protein Binding , Protein Conformation , Protein Multimerization , Thylakoids/metabolism , Thylakoids/ultrastructure
8.
Biochemistry ; 59(30): 2823-2831, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32650633

ABSTRACT

The oxygen-evolving complex (OEC) of photosystem II (PSII) is an oxomanganese cluster composed of four redox-active Mn ions and one redox-inactive Ca2+ ion, with two nearby bound Cl- ions. Sodium is a common counterion of both chloride and hydroxide anions, and a sodium-specific binding site has not been identified near the OEC. Here, we find that the oxygen-evolution activity of spinach PSII increases with Na+ concentration, particularly at high pH. A Na+-specific binding site next to the OEC, becomes available after deprotonation of the D1-H337 amino acid residue, is suggested by the analysis of two recently published PSII cryo-electron microscopy maps in combination with quantum mechanical calculations and multiconformation continuum electrostatics simulations.


Subject(s)
Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Sodium/metabolism , Spinacia oleracea/metabolism , Binding Sites , Density Functional Theory , Hydrogen-Ion Concentration , Ligands , Models, Molecular , Photosystem II Protein Complex/ultrastructure , Static Electricity
9.
J Biol Chem ; 295(43): 14537-14545, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32561642

ABSTRACT

An intriguing molecular architecture called the "semi-crystalline photosystem II (PSII) array" has been observed in the thylakoid membranes in vascular plants. It is an array of PSII-light-harvesting complex II (LHCII) supercomplexes that only appears in low light, but its functional role has not been clarified. Here, we identified PSII-LHCII supercomplexes in their monomeric and multimeric forms in low light-acclimated spinach leaves and prepared them using sucrose-density gradient ultracentrifugation in the presence of amphipol A8-35. When the leaves were acclimated to high light, only the monomeric forms were present, suggesting that the multimeric forms represent a structural adaptation to low light and that disaggregation of the PSII-LHCII supercomplex represents an adaptation to high light. Single-particle EM revealed that the multimeric PSII-LHCII supercomplexes are composed of two ("megacomplex") or three ("arraycomplex") units of PSII-LHCII supercomplexes, which likely constitute a fraction of the semi-crystalline PSII array. Further characterization with fluorescence analysis revealed that multimeric forms have a higher light-harvesting capability but a lower thermal dissipation capability than the monomeric form. These findings suggest that the configurational conversion of PSII-LHCII supercomplexes may serve as a structural basis for acclimation of plants to environmental light.


Subject(s)
Chlamydomonas reinhardtii/chemistry , Light-Harvesting Protein Complexes/chemistry , Photosystem II Protein Complex/chemistry , Plant Leaves/chemistry , Acclimatization , Chlamydomonas reinhardtii/physiology , Light , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/ultrastructure , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/ultrastructure , Plant Leaves/physiology , Protein Conformation , Protein Multimerization , Thylakoids/chemistry , Thylakoids/metabolism
10.
FEBS J ; 287(11): 2191-2200, 2020 06.
Article in English | MEDLINE | ID: mdl-31854056

ABSTRACT

In photosynthesis, light energy is captured by pigments bound to light-harvesting antenna proteins (LHC) that then transfer the energy to the photosystem (PS) cores to initiate photochemical reactions. The LHC proteins surround the PS cores to form PS-LHC supercomplexes. In order to adapt to a wide range of light environments, photosynthetic organisms have developed a large variety of pigments and antenna proteins to utilize the light energy efficiently under different environments. Diatoms are a group of important eukaryotic algae and possess fucoxanthin (Fx) chlorophyll a/c proteins (FCP) as antenna which have exceptional capabilities of harvesting blue-green light under water and dissipate excess energy under strong light conditions. We have solved the structure of a PSII-FCPII supercomplex from a centric diatom Chaetoceros gracilis by cryo-electron microscopy, and also the structure of an isolated FCP dimer from a pennate diatom Phaeodactylum tricornutum by X-ray crystallography at a high resolution. These results revealed the oligomerization states of FCPs distinctly different from those of LHCII found in the green lineage organisms, the detailed binding patterns of Chl c and Fxs, a huge pigment network, and extensive protein-protein, pigment-protein, and pigment-pigment interactions within the PSII-FCPII supercomplex. These results therefore provide a solid structural basis for examining the detailed mechanisms of the highly efficient energy transfer and quenching processes in diatoms.


Subject(s)
Diatoms/ultrastructure , Light-Harvesting Protein Complexes/genetics , Photosynthesis/genetics , Photosystem II Protein Complex/genetics , Chlorophyll A/chemistry , Chlorophyll A/genetics , Cryoelectron Microscopy , Diatoms/chemistry , Diatoms/genetics , Energy Transfer/genetics , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/ultrastructure , Photosystem II Protein Complex/ultrastructure , Xanthophylls/chemistry
11.
Biochim Biophys Acta Biomembr ; 1861(12): 183059, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31518553

ABSTRACT

Depending on the amount of light, the photosystem II (PSII) antennae or Light Harvesting Complexes (LHCII) switch between two states within the thylakoid membranes of higher plants, i.e., a light-harvesting and a photoprotective mode. This switch is co-regulated by a pH gradient (ΔpH) across the membrane and the interaction with the PSII subunit S (PsbS) that is proposed to induce LHCII aggregation. Herein we employ all-atom and coarse-grained molecular simulations of the major LHCII trimer at low and excess ΔpH, as well as in complexation with PsbS within a native thylakoid membrane model. Our results demonstrate the aggregation potential of LHCII and, consistent with the experimental literature, reveal the role of PsbS at atomic resolution. PsbS alters the LHCII-thylakoid lipid interactions and restores the LHCII mobility that is lost in the transition to photoprotective conditions (low lumenal pH). In agreement with this finding, diffusion of the integral membrane protein LHCII is dependent on both, electrostatic interactions and hydrophobic mismatch, while it does not obey the Saffman-Delbrück diffusion model.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Photosystem II Protein Complex/metabolism , Thylakoids/metabolism , Computer Simulation , Hydrogen-Ion Concentration , Light , Light-Harvesting Protein Complexes/ultrastructure , Models, Molecular , Photosystem II Protein Complex/ultrastructure , Structure-Activity Relationship , Thylakoids/ultrastructure
12.
Physiol Plant ; 166(1): 165-180, 2019 May.
Article in English | MEDLINE | ID: mdl-30693529

ABSTRACT

High solar flux is known to diminish photosynthetic growth rates, reducing biomass productivity and lowering disease tolerance. Photosystem II (PSII) of plants is susceptible to photodamage (also known as photoinactivation) in strong light, resulting in severe loss of water oxidation capacity and destruction of the water-oxidizing complex (WOC). The repair of damaged PSIIs comes at a high energy cost and requires de novo biosynthesis of damaged PSII subunits, reassembly of the WOC inorganic cofactors and membrane remodeling. Employing membrane-inlet mass spectrometry and O2 -polarography under flashing light conditions, we demonstrate that newly synthesized PSII complexes are far more susceptible to photodamage than are mature PSII complexes. We examined these 'PSII birth defects' in barley seedlings and plastids (etiochloroplasts and chloroplasts) isolated at various times during de-etiolation as chloroplast development begins and matures in synchronization with thylakoid membrane biogenesis and grana membrane formation. We show that the degree of PSII photodamage decreases simultaneously with biogenesis of the PSII turnover efficiency measured by O2 -polarography, and with grana membrane stacking, as determined by electron microscopy. Our data from fluorescence, QB -inhibitor binding, and thermoluminescence studies indicate that the decline of the high-light susceptibility of PSII to photodamage is coincident with appearance of electron transfer capability QA - → QB during de-etiolation. This rate depends in turn on the downstream clearing of electrons upon buildup of the complete linear electron transfer chain and the formation of stacked grana membranes capable of longer-range energy transfer.


Subject(s)
Chloroplasts/metabolism , Photosystem II Protein Complex/metabolism , Chloroplasts/ultrastructure , Mass Spectrometry , Microscopy, Electron , Organelle Biogenesis , Photosynthesis/physiology , Photosystem II Protein Complex/ultrastructure
13.
Plant J ; 97(3): 412-429, 2019 02.
Article in English | MEDLINE | ID: mdl-30312499

ABSTRACT

In plants, the stacking of part of the photosynthetic thylakoid membrane generates two main subcompartments: the stacked grana core and unstacked stroma lamellae. However, a third distinct domain, the grana margin, has been postulated but its structural and functional identity remains elusive. Here, an optimized thylakoid fragmentation procedure combined with detailed ultrastructural, biochemical, and functional analyses reveals the distinct composition of grana margins. It is enriched with lipids, cytochrome b6 f complex, and ATPase while depleted in photosystems and light-harvesting complexes. A quantitative method is introduced that is based on Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) and dot immunoblotting for quantifying various photosystem II (PSII) assembly forms in different thylakoid subcompartments. The results indicate that the grana margin functions as a degradation and disassembly zone for photodamaged PSII. In contrast, the stacked grana core region contains fully assembled and functional PSII holocomplexes. The stroma lamellae, finally, contain monomeric PSII as well as a significant fraction of dimeric holocomplexes that identify this membrane area as the PSII repair zone. This structural organization and the heterogeneous PSII distribution support the idea that the stacking of thylakoid membranes leads to a division of labor that establishes distinct membrane areas with specific functions.


Subject(s)
Plants/ultrastructure , Thylakoids/ultrastructure , Cytochrome b6f Complex/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/ultrastructure , Plants/metabolism , Thylakoids/metabolism
14.
Biochemistry ; 57(41): 5925-5929, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30260634

ABSTRACT

Computational simulations of electrostatic potentials (ESPs), based on atomistic models and independent atomic scattering factors, have remained challenging when applied to the oxygen-evolving complex (OEC) of photosystem II (PSII). Here, we overcome that challenge by using an ESP function obtained with density functional theory and atomic coordinates for the OEC of PSII obtained by optimization of the dark-adapted S1 state. We find that the ESP is much higher for the OEC than for the nearby reference side chain of amino acid residue D1-H190. In contrast, experimental ESP maps recently published for two PSII-light-harvesting complex II super-complexes show that the ESP of the OEC is approximately half the value of the D1-H190 side chain. The apparent disparity is attributed to a reduced 31-38% occupancy of the OEC, likely associated with its reduction by electron scattering.


Subject(s)
Models, Molecular , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/ultrastructure , Thylakoids/chemistry , Thylakoids/ultrastructure , Cryoelectron Microscopy
15.
Sci Rep ; 7(1): 10067, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855679

ABSTRACT

In higher plant thylakoids, the heterogeneous distribution of photosynthetic protein complexes is a determinant for the formation of grana, stacks of membrane discs that are densely populated with Photosystem II (PSII) and its light harvesting complex (LHCII). PSII associates with LHCII to form the PSII-LHCII supercomplex, a crucial component for solar energy conversion. Here, we report a biochemical, structural and functional characterization of pairs of PSII-LHCII supercomplexes, which were isolated under physiologically-relevant cation concentrations. Using single-particle cryo-electron microscopy, we determined the three-dimensional structure of paired C2S2M PSII-LHCII supercomplexes at 14 Å resolution. The two supercomplexes interact on their stromal sides through a specific overlap between apposing LHCII trimers and via physical connections that span the stromal gap, one of which is likely formed by interactions between the N-terminal loops of two Lhcb4 monomeric LHCII subunits. Fast chlorophyll fluorescence induction analysis showed that paired PSII-LHCII supercomplexes are energetically coupled. Molecular dynamics simulations revealed that additional flexible physical connections may form between the apposing LHCII trimers of paired PSII-LHCII supercomplexes in appressed thylakoid membranes. Our findings provide new insights into how interactions between pairs of PSII-LHCII supercomplexes can link adjacent thylakoids to mediate the stacking of grana membranes.


Subject(s)
Chlorophyll/chemistry , Light-Harvesting Protein Complexes/ultrastructure , Photosystem II Protein Complex/ultrastructure , Pisum sativum/chemistry , Plant Leaves/chemistry , Thylakoids/chemistry , Binding Sites , Cryoelectron Microscopy , Light-Harvesting Protein Complexes/physiology , Molecular Dynamics Simulation , Pisum sativum/physiology , Photosystem II Protein Complex/physiology , Plant Leaves/physiology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Thylakoids/ultrastructure
16.
J Phys Chem B ; 121(40): 9382-9388, 2017 10 12.
Article in English | MEDLINE | ID: mdl-28915048

ABSTRACT

The oxygen-evolving complex (OEC) catalyzes water-splitting through a reaction mechanism that cycles the OEC through the "S-state" intermediates. Understanding structure/function relationsships of the S-states is crucial for elucidating the water-oxidation mechanism. Serial femtosecond X-ray crystallography has been used to obtain radiation damage-free structures. However, it remains to be established whether "diffraction-before-destruction" is actually accomplished or if significant changes are produced by the high-intensity X-ray pulses during the femtosecond scattering measurement. Here, we use ab initio molecular dynamics simulations to estimate the extent of structural changes induced on the femtosecond time scale. We found that the radiation damage is dependent on the bonding and charge of each atom in the OEC, in a manner that may provide lessons for XFEL studies of other metalloproteins. The maximum displacement of Mn and oxygen centers is 0.25 and 0.39 Å, respectively, during the 50 fs pulse, which is significantly smaller than the uncertainty given the 1.9 Å resolution of the current PSII crystal structures. However, these structural changes might be detectable when comparing isomorphous Fourier differences of electron density maps of the different S-states. One conclusion is that pulses shorter than 15 fs should be used to avoid significant radiation damage.


Subject(s)
Lasers , Photosystem II Protein Complex/radiation effects , Light , Manganese/chemistry , Molecular Dynamics Simulation , Oxidation-Reduction , Oxygen/chemistry , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/ultrastructure , Protein Conformation
17.
Science ; 357(6353): 815-820, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28839073

ABSTRACT

In plants, the photosynthetic machinery photosystem II (PSII) consists of a core complex associated with variable numbers of light-harvesting complexes II (LHCIIs). The supercomplex, comprising a dimeric core and two strongly bound and two moderately bound LHCIIs (C2S2M2), is the dominant form in plants acclimated to limited light. Here we report cryo-electron microscopy structures of two forms of C2S2M2 (termed stacked and unstacked) from Pisum sativum at 2.7- and 3.2-angstrom resolution, respectively. In each C2S2M2, the moderately bound LHCII assembles specifically with a peripheral antenna complex CP24-CP29 heterodimer and the strongly bound LHCII, to establish a pigment network that facilitates light harvesting at the periphery and energy transfer into the core. The high mobility of peripheral antennae, including the moderately bound LHCII and CP24, provides insights into functional regulation of plant PSII.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Photosynthesis , Photosystem II Protein Complex/chemistry , Pisum sativum/enzymology , Protein Kinases/chemistry , Cryoelectron Microscopy , Crystallography, X-Ray , Light-Harvesting Protein Complexes/ultrastructure , Photosystem II Protein Complex/ultrastructure , Protein Conformation , Protein Kinases/ultrastructure , Protein Multimerization
18.
Nat Plants ; 3: 17080, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28604725

ABSTRACT

Photosystem II (PSII) is a light-driven protein, involved in the primary reactions of photosynthesis. In plant photosynthetic membranes PSII forms large multisubunit supercomplexes, containing a dimeric core and up to four light-harvesting complexes (LHCs), which act as antenna proteins. Here we solved a three-dimensional (3D) structure of the C2S2M2 supercomplex from Arabidopsis thaliana using cryo-transmission electron microscopy (cryo-EM) and single-particle analysis at an overall resolution of 5.3 Å. Using a combination of homology modelling and restrained refinement against the cryo-EM map, it was possible to model atomic structures for all antenna complexes and almost all core subunits. We located all 35 chlorophylls of the core region based on the cyanobacterial PSII structure, whose positioning is highly conserved, as well as all the chlorophylls of the LHCII S and M trimers. A total of 13 and 9 chlorophylls were identified in CP26 and CP24, respectively. Energy flow from LHC complexes to the PSII reaction centre is proposed to follow preferential pathways: CP26 and CP29 directly transfer to the core using several routes for efficient transfer; the S trimer is directly connected to CP43 and the M trimer can efficiently transfer energy to the core through CP29 and the S trimer.


Subject(s)
Arabidopsis/chemistry , Chlorophyll/chemistry , Photosystem II Protein Complex/chemistry , Crystallography, X-Ray , Models, Molecular , Photosystem II Protein Complex/ultrastructure , Protein Conformation
19.
Biochim Biophys Acta Bioenerg ; 1858(5): 379-385, 2017 May.
Article in English | MEDLINE | ID: mdl-28257778

ABSTRACT

Photosynthetic organisms can thermally dissipate excess of absorbed energy in high-light conditions in a process known as non-photochemical quenching (NPQ). In the green alga Chlamydomonas reinhardtii this process depends on the presence of the light-harvesting protein LHCSR3, which is only expressed in high light. LHCSR3 has been shown to act as a quencher when associated with the Photosystem II supercomplex and to respond to pH changes, but the mechanism of quenching has not been elucidated yet. In this work we have studied the interaction between LHCSR3 and Photosystem II C2S2 supercomplexes by single particle electron microscopy. It was found that LHCSR3 predominantly binds at three different positions and that the CP26 subunit and the LHCII trimer of C2S2 supercomplexes are involved in binding, while we could not find evidences for a direct association of LHCSR3 with the PSII core. At all three locations LHCSR3 is present almost exclusively as a dimer.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Binding Sites , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/ultrastructure , Energy Transfer , Light , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/ultrastructure , Microscopy, Electron/methods , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/ultrastructure , Protein Binding , Protein Conformation , Protein Multimerization , Structure-Activity Relationship
20.
Biochim Biophys Acta Bioenerg ; 1858(5): 360-365, 2017 May.
Article in English | MEDLINE | ID: mdl-28237493

ABSTRACT

Energization of thylakoid membranes brings about the acidification of the lumenal aqueous phase, which activates important regulatory mechanisms. Earlier Jajoo and coworkers (2014 FEBS Lett. 588:970) have shown that low pH in isolated plant thylakoid membranes induces changes in the excitation energy distribution between the two photosystems. In order to elucidate the structural background of these changes, we used small-angle neutron scattering on thylakoid membranes exposed to low p2H (pD) and show that gradually lowering the p2H from 8.0 to 5.0 causes small but well discernible reversible diminishment of the periodic order and the lamellar repeat distance and an increased mosaicity - similar to the effects elicited by light-induced acidification of the lumen. Our data strongly suggest that thylakoids dynamically respond to the membrane energization and actively participate in different regulatory mechanisms.


Subject(s)
Neutron Diffraction , Photosynthesis , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Pisum sativum/metabolism , Scattering, Small Angle , Thylakoids/metabolism , Energy Transfer , Hydrogen-Ion Concentration , Membrane Fluidity , Pisum sativum/ultrastructure , Photosystem I Protein Complex/ultrastructure , Photosystem II Protein Complex/ultrastructure , Plant Leaves/metabolism , Thylakoids/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...