Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
1.
J Appl Physiol (1985) ; 136(5): 1113-1121, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38511211

ABSTRACT

The number of motor neurons (MNs) declines precipitously during the final trimester before birth. Thereafter, the number of MNs remains relatively stable, with their connections to skeletal muscle dependent on neurotrophins, including brain-derived neurotrophic factor (BDNF) signaling through its high-affinity full-length tropomyosin-related kinase receptor subtype B (TrkB.FL) receptor. As a genetic knockout of BDNF leads to extensive MN loss and postnatal death within 1-2 days after birth, we tested the hypothesis that postnatal inhibition of BDNF/TrkB.FL signaling is important for postnatal phrenic MN (PhMN) survival. In the present study, we used a 1NMPP1-sensitive TrkBF616A mutant mouse to evaluate the effects of inhibition of TrkB kinase activity on phrenic MN (PhMN) numbers and diaphragm muscle (DIAm) fiber cross-sectional area (CSA). Pups were exposed to 1NMPP1 or vehicle (DMSO) from birth to 21 days old (weaning) via the mother's ingestion in the drinking water. Following weaning, the right phrenic nerve was exposed in the neck and the proximal end dipped in a rhodamine solution to retrogradely label PhMNs. After 24 h, the cervical spinal cord and DIAm were excised. Labeled PhMNs were imaged using confocal microscopy, whereas DIAm strips were frozen at ∼1.5× resting length, cryosectioned, and stained with hematoxylin and eosin to assess CSA. We observed an ∼34% reduction in PhMN numbers and increased primary dendrite numbers in 1NMPP1-treated TrkBF616A mice. The distribution of PhMN size (somal surface area) DIAm fiber cross-sectional areas did not differ. We conclude that survival of PhMNs during early postnatal development is sensitive to BDNF/TrkB.FL signaling.NEW & NOTEWORTHY During early postnatal development, BDNF/TrkB signaling promotes PhMN survival. Inhibition of BDNF/TrkB signaling in early postnatal development does not impact PhMN size. Inhibition of BDNF/TrkB signaling in early postnatal development does not impact the number or CSA of DIAm fibers.


Subject(s)
Brain-Derived Neurotrophic Factor , Diaphragm , Motor Neurons , Phrenic Nerve , Receptor, trkB , Signal Transduction , Animals , Motor Neurons/metabolism , Motor Neurons/physiology , Motor Neurons/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Phrenic Nerve/physiology , Phrenic Nerve/metabolism , Phrenic Nerve/drug effects , Mice , Receptor, trkB/metabolism , Signal Transduction/physiology , Diaphragm/metabolism , Cell Survival/physiology , Cell Survival/drug effects , Mice, Inbred C57BL , Female , Animals, Newborn , Male , Pyrazoles , Pyrimidines
2.
Exp Neurol ; 345: 113813, 2021 11.
Article in English | MEDLINE | ID: mdl-34284029

ABSTRACT

Thyroid hormones (THs) are essential for foetal brain development. Because the gestating mother is the main source of THs to the foetus, maternal hypothyroidism and/or premature birth compromise neurological outcomes in the offspring. Respiratory instability and recurrent apneas due to immaturity of the respiratory control network are major causes of morbidity in infants. Inadequate TH supply may be sufficient to delay perinatal maturation of the respiratory control system; however, this hypothesis remains untested. To address this issue, maternal hypothyroidism was induced by adding methimazole (MMI; 0.02% w/v) to the drinking water of pregnant dams from conception to postpartum day 4 (P4). The effect of TH supplementation on respiratory function was tested by injecting levothyroxine (L-T4) in newborns at P1. Respiratory function was assessed by plethysmography (in vivo) and recording of phrenic output from medullary preparations (in vitro). By comparison with controls, TH deficiency increased the frequency of apneas and decreased basal ventilation in vivo and prevented the age-dependent increase in phrenic burst frequency normally observed in vitro. The effects of TH deficiency on GABAergic modulation of respiratory activity were measured by bath application of muscimol (GABAA agonist) or bicuculline (GABAA antagonist). The phrenic burst frequency responses to GABAergic agents were consistently greater in preparations from TH deficient pups. L-T4 supplementation reversed part of the respiratory anomalies related to MMI treatment in vitro. We conclude that TH deficiency during the perinatal period is sufficient to delay maturation of the respiratory control network development. Excessive GABAergic inhibition may contribute to this effect.


Subject(s)
Antithyroid Agents/pharmacology , Nerve Net/metabolism , Phrenic Nerve/metabolism , Respiratory Mechanics/physiology , Thyroid Hormones/deficiency , Animals , Animals, Newborn , Female , GABA-A Receptor Antagonists/pharmacology , Male , Methimazole/pharmacology , Nerve Net/drug effects , Phrenic Nerve/drug effects , Plethysmography/methods , Pregnancy , Rats , Rats, Sprague-Dawley , Respiration/drug effects , Respiratory Mechanics/drug effects
3.
J Neurophysiol ; 126(3): 709-722, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34288779

ABSTRACT

Intrapleural injection of cholera toxin B conjugated to saporin (CTB-SAP) mimics respiratory motor neuron death and respiratory deficits observed in rat models of neuromuscular diseases. Seven-day CTB-SAP rats elicit enhanced phrenic long-term facilitation (pLTF) primarily through TrkB and PI3K/Akt-dependent mechanisms [i.e., Gs-pathway, which can be initiated by adenosine 2A (A2A) receptors in naïve rats], whereas 28-day CTB-SAP rats elicit moderate pLTF though BDNF- and MEK-/ERK-dependent mechanisms [i.e., Gq-pathway, which is typically initiated by serotonin (5-HT) receptors in naïve rats]. Here, we tested the hypothesis that pLTF following CTB-SAP is 1) A2A receptor-dependent at 7 days and 2) 5-HT receptor-dependent at 28 days. Adult Sprague-Dawley male rats were anesthetized, paralyzed, ventilated, and exposed to acute intermittent hypoxia (AIH; 3-, 5-min bouts of 10.5% O2) following bilateral, intrapleural injections at 7 days and 28 days of 1) CTB-SAP (25 µg) or 2) unconjugated CTB and SAP (control). Intrathecal C4 delivery included either the 1) A2A receptor antagonist (MSX-3; 10 µM; 12 µL) or 2) 5-HT receptor antagonist (methysergide; 20 mM; 15 µL). pLTF was abolished with A2A receptor inhibition in 7-day, not 28-day, CTB-SAP rats versus controls (P < 0.05), whereas pLTF was abolished following 5-HT receptor inhibition in 28-day, not 7-day, CTB-SAP rats versus controls (P < 0.05). In addition, 5-HT2A receptor expression was unchanged in CTB-SAP rats versus controls, whereas 5-HT2B receptor expression was decreased in CTB-SAP rats versus controls (P < 0.05). This study furthers our understanding of the contribution of differential receptor activation to pLTF and its implications for breathing following respiratory motor neuron death.NEW & NOTEWORTHY The current study investigates underlying receptor-dependent mechanisms contributing to phrenic long-term facilitation (pLTF) following CTB-SAP-induced respiratory motor neuron death at 7 days and 28 days. We found that A2A receptors are required for enhanced pLTF in 7-day CTB-SAP rats, whereas 5-HT receptors are required for moderate pLTF in 28-day CTB-SAP rats. Targeting these time-dependent mechanisms have implications for breathing maintenance over the course of many neuromuscular diseases.


Subject(s)
Phrenic Nerve/metabolism , Receptor, Adenosine A2A/metabolism , Receptor, trkB/metabolism , Receptors, Serotonin/metabolism , Synapses/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cholera Toxin/toxicity , Extracellular Signal-Regulated MAP Kinases/metabolism , Long-Term Potentiation , Male , Motor Neurons/drug effects , Motor Neurons/metabolism , Motor Neurons/physiology , Phosphatidylinositol 3-Kinases/metabolism , Phrenic Nerve/cytology , Phrenic Nerve/physiology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Respiration , Saporins/toxicity , Synapses/physiology
4.
Respir Physiol Neurobiol ; 292: 103704, 2021 10.
Article in English | MEDLINE | ID: mdl-34058433

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is a promising, innovative, and non-invasive therapy used clinically. Efficacy of rTMS has been demonstrated to ameliorate psychiatric disorders and neuropathic pain through neuromodulation of affected neural circuits. However, little is known about the mechanisms and the specific neural circuits via which rTMS facilitates these functional effects. The aim of this study was to begin revealing the mechanisms by which rTMS may tap into existing neural circuits, by using a well characterized spinal motor circuit - the phrenic circuit. Here we hypothesized that rTMS can be used to enhance phrenic motoneuron excitability in anesthetized Sprague Dawley rats. Multiple acute rTMS protocols were used revealing 10 Hz rTMS protocol induced a robust, long-lasting increase in phrenic motoneuron excitability, functionally evaluated by diaphragm motor evoked potentials (59.1 ± 21.1 % of increase compared to baseline 60 min after 10 Hz protocol against 6.0 ± 5.8 % (p = 0.007) for Time Control, -5.8 ± 7.4 % (p < 0.001) for 3 Hz, and 5.2 ± 12.5 % (p = 0.008) for 30 Hz protocols). A deeper analyze allowed to discriminate "responder" and "non-responder" subgroups among 10 Hz rTMS treated animals. Intravenous injections of GABAA and GABAB receptor agonists prior to 10 Hz rTMS treatment, abolished the enhanced phrenic motoneuron excitability, suggesting GABAergic input plays a mechanistic role in rTMS-induced phrenic excitability. These data demonstrate that a single high frequency rTMS protocol at 10 Hz increases phrenic motoneuron excitability, mediated by a local GABAergic "disinhibition". By understanding how rTMS can be used to affect neural circuits non-invasively we can begin to harness the therapeutic potential of this neuromodulatory strategy to promote recovery after disease or injury to the central nervous system.


Subject(s)
Evoked Potentials, Motor/physiology , GABA-A Receptor Agonists/pharmacology , GABA-B Receptor Agonists/pharmacology , Motor Neurons/physiology , Nerve Net/physiology , Phrenic Nerve/physiology , Transcranial Magnetic Stimulation , Animals , Diaphragm/drug effects , Diaphragm/physiology , Evoked Potentials, Motor/drug effects , Female , Motor Neurons/drug effects , Nerve Net/drug effects , Nerve Net/metabolism , Phrenic Nerve/drug effects , Phrenic Nerve/metabolism , Rats , Rats, Sprague-Dawley
5.
J Neurotrauma ; 38(9): 1292-1305, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33446048

ABSTRACT

"Low-dose" acute intermittent hypoxia (AIH; 3-15 episodes/day) is emerging as a promising therapeutic strategy to improve motor function after incomplete cervical spinal cord injury (cSCI). Conversely, chronic "high-dose" intermittent hypoxia (CIH; > 80-100 episodes/day) elicits multi-system pathology and is a hallmark of sleep apnea, a condition highly prevalent in individuals with cSCI. Whereas daily AIH (dAIH) enhances phrenic motor plasticity in intact rats, it is abolished by CIH. However, there have been no direct comparisons of prolonged dAIH versus CIH on phrenic motor outcomes after chronic cSCI. Thus, phrenic nerve activity and AIH-induced phrenic long-term facilitation (pLTF) were assessed in anesthetized rats. Experimental groups included: 1) intact rats exposed to 28 days of normoxia (Nx28; 21% O2; 8 h/day), and three groups with chronic C2 hemisection (C2Hx) exposed to either: 2) Nx28; 3) dAIH (dAIH28; 10, 5-min episodes of 10.5% O2/day; 5-min intervals); or 4) CIH (IH28-2/2; 2-min episodes; 2-min intervals; 8 h/day). Baseline ipsilateral phrenic nerve activity was reduced in injured versus intact rats but unaffected by dAIH28 or IH28-2/2. There were no group differences in contralateral phrenic activity. pLTF was enhanced bilaterally by dAIH28 versus Nx28 but unaffected by IH28-2/2. Whereas dAIH28 enhanced pLTF after cSCI, it did not improve baseline phrenic output. In contrast, unlike shorter protocols in intact rats, CIH28-2/2 did not abolish pLTF in chronic C2Hx. Mechanisms of differential responses to dAIH versus CIH are not yet known, particularly in the context of cSCI. Further, it remains unclear whether enhanced phrenic motor plasticity can improve breathing after cSCI.


Subject(s)
Cervical Cord/injuries , Hypoxia/metabolism , Neuronal Plasticity/physiology , Phrenic Nerve/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy , Animals , Blood Pressure/physiology , Heart Rate/physiology , Ischemic Preconditioning/methods , Male , Motor Neurons/metabolism , Rats , Rats, Sprague-Dawley
6.
Exp Neurol ; 338: 113609, 2021 04.
Article in English | MEDLINE | ID: mdl-33460645

ABSTRACT

Although cervical spinal cord injury (cSCI) disrupts bulbo-spinal serotonergic projections, partial recovery of spinal serotonergic innervation below the injury site is observed after incomplete cSCI. Since serotonin contributes to functional recovery post-injury, treatments to restore or accelerate serotonergic reinnervation are of considerable interest. Intermittent hypoxia (IH) was reported to increase serotonin innervation near respiratory motor neurons in spinal intact rats, and to improve function after cSCI. Here, we tested the hypotheses that spontaneous serotonergic reinnervation of key respiratory (phrenic and intercostal) motor nuclei: 1) is partially restored 12 weeks post C2 hemisection (C2Hx); 2) is enhanced by IH; and 3) results from sprouting of spared crossed-spinal serotonergic projections below the site of injury. Serotonin was assessed via immunofluorescence in male Sprague Dawley rats with and without C2Hx (12 wks post-injury); individual groups were exposed to 28 days of: 1) normoxia; 2) daily acute IH (dAIH28: 10, 5 min 10.5% O2 episodes per day; 5 min normoxic intervals); 3) mild chronic IH (IH28-5/5: 5 min 10.5% O2 episodes; 5 min intervals; 8 h/day); or 4) moderate chronic IH (IH28-2/2: 2 min 10.5% O2 episodes; 2 min intervals; 8 h/day), simulating IH experienced during moderate sleep apnea. After C2Hx, the number of ipsilateral serotonergic structures was decreased in both motor nuclei, regardless of IH protocol. However, serotonergic structures were larger after C2Hx in both motor nuclei, and total serotonin immunolabeling area was increased in the phrenic motor nucleus but reduced in the intercostal motor nucleus. Both chronic IH protocols increased serotonin structure size and total area in the phrenic motor nuclei of uninjured rats, but had no detectable effects after C2Hx. Although the functional implications of fewer but larger serotonergic structures are unclear, we confirm that serotonergic reinnervation is substantial following injury, but IH does not affect the extent of reinnervation.


Subject(s)
Cervical Cord/physiopathology , Hypoxia , Nerve Regeneration/physiology , Serotonin/metabolism , Spinal Cord Injuries/physiopathology , Animals , Cervical Cord/metabolism , Cervical Vertebrae , Intercostal Nerves/metabolism , Intercostal Nerves/physiopathology , Male , Motor Neurons/physiology , Phrenic Nerve/metabolism , Phrenic Nerve/physiopathology , Rats , Rats, Sprague-Dawley , Recovery of Function/physiology , Spinal Cord Injuries/metabolism
7.
Am J Physiol Regul Integr Comp Physiol ; 318(6): R1058-R1067, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32348679

ABSTRACT

Circadian rhythms are endogenous and entrainable daily patterns of physiology and behavior. Molecular mechanisms underlie circadian rhythms, characterized by an ~24-h pattern of gene expression of core clock genes. Although it has long been known that breathing exhibits circadian rhythms, little is known concerning clock gene expression in any element of the neuromuscular system controlling breathing. Furthermore, we know little concerning gene expression necessary for specific respiratory functions, such as phrenic motor plasticity. Thus, we tested the hypotheses that transcripts for clock genes (Bmal1, Clock, Per1, and Per2) and molecules necessary for phrenic motor plasticity (Htr2a, Htr2b, Bdnf, and Ntrk2) oscillate in regions critical for phrenic/diaphragm motor function via RT-PCR. Tissues were collected from male Sprague-Dawley rats entrained to a 12-h light-dark cycle at 4 zeitgeber times (ZT; n = 8 rats/group): ZT5, ZT11, ZT17, and ZT23; ZT0 = lights on. Here, we demonstrate that 1) circadian clock genes (Bmal1, Clock, Per1, and Per2) oscillate in regions critical for phrenic/diaphragm function, including the caudal medulla, ventral C3-C5 cervical spinal cord, and diaphragm; 2) the clock protein BMAL1 is localized within CtB-labeled phrenic motor neurons; 3) genes necessary for intermittent hypoxia-induced phrenic/diaphragm motor plasticity (Htr2b and Bdnf) oscillate in the caudal medulla and ventral C3-C5 spinal cord; and 4) there is higher intensity of immunofluorescent BDNF protein within phrenic motor neurons at ZT23 compared with ZT11 (n = 11 rats/group). These results suggest local circadian clocks exist in the phrenic motor system and confirm the potential for local circadian regulation of neuroplasticity and other elements of the neural network controlling breathing.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/physiology , Motor Neurons/metabolism , Neuronal Plasticity/genetics , Phrenic Nerve/metabolism , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Gene Expression , Male , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Rats , Rats, Sprague-Dawley , Spinal Cord/metabolism
8.
J Neurochem ; 153(5): 586-598, 2020 06.
Article in English | MEDLINE | ID: mdl-31563147

ABSTRACT

The diaphragm muscle comprises various types of motor units that are recruited in an orderly fashion governed by the intrinsic electrophysiological properties (membrane capacitance as a function of somal surface area) of phrenic motor neurons (PhMNs). Glutamate is the main excitatory neurotransmitter at PhMNs and acts primarily via fast acting AMPA and N-methyl-D-aspartic acid (NMDA) receptors. Differences in receptor expression may also contribute to motor unit recruitment order. We used single cell, multiplex fluorescence in situ hybridization to determine glutamatergic receptor mRNA expression across PhMNs based on their somal surface area. In adult male and female rats (n = 9) PhMNs were retrogradely labeled for analyses (n = 453 neurons). Differences in the total number and density of mRNA transcripts were evident across PhMNs grouped into tertiles according to somal surface area. A ~ 25% higher density of AMPA (Gria2) and NMDA (Grin1) mRNA expression was evident in PhMNs in the lower tertile compared to the upper tertile. These smaller PhMNs likely comprise type S motor units that are recruited first to accomplish lower force, ventilatory behaviors. In contrast, larger PhMNs with lower volume densities of AMPA and NMDA mRNA expression presumably comprise type FInt and FF motor units that are recruited during higher force, expulsive behaviors. Furthermore, there was a significantly higher cytosolic NMDA mRNA expression in small PhMNs suggesting a more important role for NMDA-mediated glutamatergic neurotransmission at smaller PhMNs. These results are consistent with the observed order of motor unit recruitment and suggest a role for glutamatergic receptors in support of this orderly recruitment. Cover Image for this issue: doi: 10.1111/jnc.14747.


Subject(s)
Motor Neurons/metabolism , Phrenic Nerve/metabolism , RNA, Messenger/biosynthesis , Receptors, AMPA/biosynthesis , Receptors, N-Methyl-D-Aspartate/biosynthesis , Recruitment, Neurophysiological/physiology , Animals , Female , Gene Expression , Male , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Receptors, AMPA/genetics , Receptors, N-Methyl-D-Aspartate/genetics
9.
Exp Neurol ; 323: 113067, 2020 01.
Article in English | MEDLINE | ID: mdl-31629857

ABSTRACT

Respiratory motor neuron survival is critical for maintenance of adequate ventilation and airway clearance, preventing dependence to mechanical ventilation and respiratory tract infections. Phrenic motor neurons are highly vulnerable in rodent models of motor neuron disease versus accessory inspiratory motor pools (e.g. intercostals, scalenus). Thus, strategies that promote phrenic motor neuron survival when faced with disease and/or toxic insults are needed to help preserve breathing ability, airway defense and ventilator independence. Adenosine 2A receptors (A2A) are emerging as a potential target to promote neuroprotection, although their activation can have both beneficial and pathogenic effects. Since the role of A2A receptors in the phrenic motor neuron survival/death is not known, we tested the hypothesis that A2A receptor antagonism promotes phrenic motor neuron survival and preserves diaphragm function when faced with toxic, neurodegenerative insults that lead to phrenic motor neuron death. We utilized a novel neurotoxic model of respiratory motor neuron death recently developed in our laboratory: intrapleural injections of cholera toxin B subunit (CtB) conjugated to the ribosomal toxin, saporin (CtB-Saporin). We demonstrate that intrapleural CtB-Saporin causes: 1) profound phrenic motor neuron death (~5% survival); 2) ~7-fold increase in phrenic motor neuron A2A receptor expression prior to cell death; and 3) diaphragm muscle paralysis (inactive in most rats; ~7% residual diaphragm EMG amplitude during room air breathing). The A2A receptor antagonist istradefylline given after CtB-Saporin: 1) reduced phrenic motor neuron death (~20% survival) and 2) preserved diaphragm EMG activity (~46%). Thus, A2A receptors contribute to neurotoxic phrenic motor neuron death, an effect mitigated by A2A receptor antagonism.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Cholera Toxin/toxicity , Motor Neurons/drug effects , Motor Neurons/metabolism , Phrenic Nerve/drug effects , Phrenic Nerve/metabolism , Saporins/toxicity , Animals , Apoptosis/drug effects , Diaphragm/innervation , Male , Purines/pharmacology , Rats , Rats, Sprague-Dawley
10.
Birth Defects Res ; 111(19): 1577-1583, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31595718

ABSTRACT

BACKGROUND: Paralysis of the diaphragm in newborn infants can lead to recurrent infections and life-threatening respiratory insufficiency. The clinical diagnosis of unilateral diaphragmatic paralysis has been reported in infants with laboratory evidence of congenital Zika virus infection and/or the congenital Zika syndrome (CZS) phenotype but no evaluation of phrenic nerve function has been described. All reported infants have had accompanying arthrogryposis. High infant mortality is reported. METHODS: The causal mechanism of congenital diaphragmatic paralysis was evaluated in three infants with arthrogryposis as a manifestation of CZS (two of the three infants had laboratory evidence of ZIKV infection shortly after birth; the remaining infant had negative serology for ZIKV when first tested at 7 months of age). Electromyography and phrenic nerve compound muscle action potential (CMAP) were performed in all infants with diaphragmatic paralysis demonstrated on imaging studies. RESULTS: All infants had evidence of moderate chronic involvement of peripheral motor neurons. Phrenic nerve CMAP was reduced on the side of the diaphragmatic paralysis in two infants and reduced bilaterally in the remaining infant who had primarily anterior involvement of the diaphragm. All three infants had multiple medical complications and one infant died at 18 months of age. CONCLUSION: Evaluation of three infants with CZS and diaphragmatic paralysis demonstrated phrenic nerve dysfunction. In these and other affected infants, arthrogryposis appears to be a constant co-occurring condition and health problems are significant; both conditions are likely due to involvement of the peripheral nervous system in some infants with CZS.


Subject(s)
Respiratory Paralysis/complications , Respiratory Paralysis/etiology , Respiratory Paralysis/physiopathology , Arthrogryposis/physiopathology , Arthrogryposis/virology , Brazil , Diaphragm/innervation , Diaphragm/physiopathology , Female , Humans , Infant , Infant, Newborn , Male , Phrenic Nerve/metabolism , Phrenic Nerve/virology , Pregnancy , Pregnancy Complications, Infectious/virology , Zika Virus/pathogenicity , Zika Virus Infection/complications
11.
J Physiol ; 597(15): 3951-3967, 2019 08.
Article in English | MEDLINE | ID: mdl-31280489

ABSTRACT

KEY POINTS: Intermittent reductions in respiratory neural activity, a characteristic of many ventilatory disorders, leads to inadequate ventilation and arterial hypoxia. Both intermittent reductions in respiratory neural activity and intermittent hypoxia trigger compensatory enhancements in inspiratory output when experienced separately, forms of plasticity called inactivity-induced inspiratory motor facilitation (iMF) and long-term facilitation (LTF), respectively. Reductions in respiratory neural activity that lead to moderate, but not mild, arterial hypoxia occludes plasticity expression, indicating that concurrent induction of iMF and LTF impairs plasticity through cross-talk inhibition of their respective signalling pathways. Moderate hypoxia undermines iMF by enhancing NR2B-containing NMDA receptor signalling, which can be rescued by exogenous retinoic acid, a molecule necessary for iMF. These data suggest that in ventilatory disorders characterized by reduced inspiratory motor output, such as sleep apnoea, endogenous mechanisms of compensatory plasticity may be impaired, and that exogenously activating respiratory plasticity may be a novel strategy to improve breathing. ABSTRACT: Many forms of sleep apnoea are characterized by recurrent reductions in respiratory neural activity, which leads to inadequate ventilation and arterial hypoxia. Both recurrent reductions in respiratory neural activity and hypoxia activate mechanisms of compensatory plasticity that augment inspiratory output and lower the threshold for apnoea, inactivity-induced inspiratory motor facilitation (iMF) and long-term facilitation (LTF), respectively. However, despite frequent concurrence of reduced respiratory neural activity and hypoxia, mechanisms that induce and regulate iMF and LTF have only been studied separately. Here, we demonstrate that recurrent reductions in respiratory neural activity ('neural apnoea') accompanied by cessations in ventilation that result in moderate (but not mild) hypoxaemia do not elicit increased inspiratory output, suggesting that concurrent induction of iMF and LTF occludes plasticity. A key role for NMDA receptor activation in impairing plasticity following concurrent neural apnoea and hypoxia is indicated since recurrent hypoxic neural apnoeas triggered increased phrenic inspiratory output in rats in which spinal NR2B-containing NMDA receptors were inhibited. Spinal application of retinoic acid, a key molecule necessary for iMF, bypasses NMDA receptor-mediated constraints, thereby rescuing plasticity following hypoxic neural apnoeas. These studies raise the intriguing possibility that endogenous mechanisms of compensatory plasticity may be impaired in some individuals with sleep apnoea, and that exogenously activating pathways giving rise to respiratory plasticity may be a novel pharmacological strategy to improve breathing.


Subject(s)
Hypoxia/physiopathology , Neuronal Plasticity , Sleep Apnea Syndromes/physiopathology , Animals , Homeostasis , Hypoxia/metabolism , Male , Oxygen/metabolism , Phrenic Nerve/metabolism , Phrenic Nerve/physiopathology , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Sleep Apnea Syndromes/metabolism
12.
J Appl Physiol (1985) ; 127(2): 432-443, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31219768

ABSTRACT

Serotonin (5-HT) is a key regulator of spinal respiratory motor plasticity. For example, spinal 5-HT receptor activation is necessary for the induction of phrenic long-term facilitation (pLTF), a form of respiratory motor plasticity triggered by moderate acute intermittent hypoxia (mAIH). mAIH-induced pLTF is blocked by cervical spinal application of the broad-spectrum 5-HT-receptor antagonist, methysergide. However, methysergide does not allow distinctions between the relative contributions of different 5-HT receptor subtypes. Intravenous administration of the Gq protein-coupled 5-HT2A/2C receptor antagonist ketanserin blocks mAIH-induced pLTF when administered before, but not after, mAIH; thus, 5-HT2 receptor activation is necessary for the induction but not maintenance of mAIH-induced pLTF. However, systemic ketanserin administration does not identify the site of the relevant 5-HT2A/2C receptors. Furthermore, this approach does not differentiate between the roles of 5-HT2A versus 5-HT2C receptors, nor does it preclude involvement of other Gq protein-coupled metabotropic 5-HT receptors capable of eliciting long-lasting phrenic motor facilitation, such as 5-HT2B receptors. Here we tested the hypothesis that mAIH-induced pLTF requires cervical spinal 5-HT2 receptor activation and determined which 5-HT2 receptor subtypes are involved. Anesthetized, paralyzed, and ventilated adult male Sprague Dawley rats were pretreated intrathecally with cervical (~C3-C5) spinal injections of subtype selective 5-HT2A/2C, 5-HT2B, or 5-HT2C receptor antagonists before mAIH. Whereas cervical spinal 5-HT2C receptor inhibition had no impact on mAIH-induced pLTF, pLTF was no longer observed after pretreatment with either 5-HT2A/2C or 5-HT2B receptor antagonists. Furthermore, spinal pretreatment with an MEK/ERK MAPK inhibitor blocked phrenic motor facilitation elicited by intrathecal injections of 5-HT2A but not 5-HT2B receptor agonists. Thus, mAIH-induced pLTF requires concurrent cervical spinal activation of both 5-HT2A and 5-HT2B receptors. However, these distinct receptor subtypes contribute to phrenic motor facilitation via distinct downstream signaling cascades that differ in their requirement for ERK MAPK signaling. The demonstration that both 5-HT2A and 5-HT2B receptors make unique contributions to mAIH-induced pLTF advances our understanding of mechanisms that underlie 5-HT-induced phrenic motor plasticity.NEW & NOTEWORTHY Moderate acute intermittent hypoxia (mAIH) triggers a persistent enhancement in phrenic motor output, an effect termed phrenic long-term facilitation (pLTF). mAIH-induced pLTF is blocked by cervical spinal application of the broad-spectrum serotonin (5-HT) receptor antagonist methysergide, demonstrating the need for spinal 5-HT receptor activation. However, the exact type of 5-HT receptors required for initiation of pLTF remains unknown. To the best of out knowledge, the present study is the first to demonstrate that 1) spinal coactivation of two distinct Gq protein-coupled 5-HT2 receptor subtypes is necessary for mAIH-induced pLTF, and 2) these receptors contribute to pLTF via cascades that differ in their requirement for ERK MAPK signaling.


Subject(s)
Hypoxia/metabolism , Long-Term Potentiation/physiology , Phrenic Nerve/metabolism , Receptors, Serotonin/metabolism , Spinal Cord/metabolism , Animals , Long-Term Potentiation/drug effects , Male , Phrenic Nerve/drug effects , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Serotonin Antagonists/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Spinal Cord/drug effects
13.
Muscle Nerve ; 59(5): 611-618, 2019 05.
Article in English | MEDLINE | ID: mdl-30677149

ABSTRACT

INTRODUCTION: In motor neurons, cholera toxin B (CTB) binds to the cell-surface ganglioside GM1 and is internalized and transported via structurally unique components of plasma membranes (lipid rafts). METHODS: Lipid raft uptake by axon terminals adjoining type-identified rat diaphragm muscle fibers was investigated using CTB and confocal imaging. RESULTS: Lipid raft uptake increased significantly at higher frequency stimulation (80 Hz), compared with lower frequency (20 Hz) and unstimulated (0 Hz) conditions. The fraction of axon terminal occupied by CTB was ∼45% at 0- or 20-Hz stimulation, and increased to ∼65% at 80 Hz. Total CTB fluorescence intensity also increased (∼20%) after 80-Hz stimulation compared with 0 Hz. DISCUSSION: Evidence of increased lipid raft uptake at high stimulation frequencies supports an important role for lipid raft signaling at rat diaphragm muscle axon terminals, primarily for motor units physiologically activated at the higher frequencies. Muscle Nerve 59:611-611, 2019.


Subject(s)
Cholera Toxin/metabolism , Diaphragm/innervation , Membrane Microdomains/metabolism , Neuromuscular Junction/metabolism , Phrenic Nerve/metabolism , Presynaptic Terminals/metabolism , Animals , Electric Stimulation , Membrane Microdomains/ultrastructure , Microscopy, Confocal , Motor Neurons/metabolism , Neuromuscular Junction/ultrastructure , Phrenic Nerve/cytology , Phrenic Nerve/ultrastructure , Presynaptic Terminals/ultrastructure , Rats
14.
Neuroscience ; 397: 107-115, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30458221

ABSTRACT

People with Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in the MECP2 gene, have breathing abnormalities manifested as periodical hypoventilation with compensatory hyperventilation, which are attributable to a high incidence of sudden death. Similar breathing abnormalities have been found in animal models with Mecp2 disruptions. Although RTT-type hypoventilation is believed to be due to depressed central inspiratory activity, whether this is true remains unknown. Here we show evidence for reshaping in firing activity and patterns of medullary respiratory neurons in RTT-type hypoventilation without evident depression in inspiratory neuronal activity. Experiments were performed in decerebrate rats in vivo. In Mecp2-null rats, abnormalities in breathing patterns were apparent in both decerebrate rats and awake animals, suggesting that RTT-type breathing abnormalities take place in the brainstem without forebrain input. In comparison to their wild-type counterparts, both inspiratory and expiratory neurons in Mecp2-null rats extended their firing duration, and fired more action potentials during each burst. No changes in inspiratory or expiratory neuronal distributions were found. Most inspiratory neurons started firing in the middle of expiration and changed their firing pattern to a phase-spanning type. The proportion of post-inspiratory neurons was reduced in the Mecp2-null rats. With the increased firing activity of both inspiratory and expiratory neurons in null rats, phrenic discharges shifted to a slow and deep breathing pattern. Thus, the RTT-type hypoventilation appears to result from reshaping of firing activity of both inspiratory and expiratory neurons without evident depression in central inspiratory activity.


Subject(s)
Action Potentials/physiology , Medulla Oblongata/metabolism , Methyl-CpG-Binding Protein 2/deficiency , Neurons/metabolism , Respiration , Rett Syndrome/metabolism , Animals , Decerebrate State , Disease Models, Animal , Male , Methyl-CpG-Binding Protein 2/genetics , Phrenic Nerve/metabolism , Rats, Sprague-Dawley , Rats, Transgenic , Wakefulness
15.
Neuroscience ; 399: 135-145, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30593920

ABSTRACT

Hydrogen peroxide (H2O2) is one of the reactive oxygen species (ROS), endogenously produced during metabolism, which acts as a second messenger. In skeletal muscles, hypoxia- or hyperthermia-induced increase in H2O2 might affect synaptic transmission by targeting the most redox-sensitive presynaptic compartment (Giniatullin et al., 2006). However, the effects of H2O2 as a signal molecule have not previously been studied in different patterns of the synaptic activity. Here, using optical and microelectrode recording of synaptic vesicle exocytosis, we studied the use-dependent action of low concentrations of H2O2 and other oxidants in the mouse neuromuscular junction. We found that: (i) H2O2 at low micromole concentrations inhibited both spontaneous and evoked transmitter releases from the motor nerve terminals in a use-dependent manner, (ii) the antioxidant N-acetylcysteine (NAC) eliminated these depressant effects, (iii) the influence of H2O2 was not associated with lipid oxidation suggesting a pure signaling action, (iv) the intracellular oxidant Chloramine-T or (v) the glutathione depletion produced similar to H2O2 depressant effects. Taken together, our data revealed the effective inhibition of neurotransmitter release by ROS, which was proportional to the intensity of synaptic activity at the neuromuscular junction. The combination of various oxidants suggested an intracellular location for redox-sensitive sites responsible for modulation of the synaptic transmission in the skeletal muscle.


Subject(s)
Hydrogen Peroxide/pharmacology , Neuromuscular Junction/drug effects , Oxidants/pharmacology , Synaptic Transmission/drug effects , Acetylcysteine/pharmacology , Animals , Antioxidants/pharmacology , Chloramines/metabolism , Diaphragm/drug effects , Diaphragm/innervation , Diaphragm/metabolism , Dose-Response Relationship, Drug , Exocytosis/drug effects , Exocytosis/physiology , Female , Glutathione/metabolism , Male , Membrane Lipids/metabolism , Mice , Neuromuscular Junction/physiology , Phrenic Nerve/drug effects , Phrenic Nerve/metabolism , Reactive Oxygen Species/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/drug effects , Synaptic Vesicles/physiology , Tissue Culture Techniques , Tosyl Compounds/metabolism
16.
Respir Physiol Neurobiol ; 261: 15-23, 2019 03.
Article in English | MEDLINE | ID: mdl-30590202

ABSTRACT

Spinal chloride-dependent synaptic inhibition is critical in regulating breathing and requires neuronal chloride gradients established by cation-chloride cotransporters Na+-K+-2Cl- (NKCC1) and K+-Cl- (KCC2). Spinal transection disrupts NKCC1/KCC2 balance, diminishing chloride gradients in neurons below injury, contributing to spasticity and chronic pain. It is not known if similar disruptions in NKCC1/KCC2 balance occur in respiratory motor neurons after incomplete cervical contusion (C2SC). We hypothesized that C2SC disrupts NKCC1/KCC2 balance in phrenic motor neurons. NKCC1 and KCC2 immunoreactivity was assessed in CtB-positive phrenic motor neurons. Five weeks post-C2SC: 1) neither membrane-bound nor cytosolic NKCC1 expression were significantly changed, although the membrane/cytosolic ratio increased, consistent with net chloride influx; and 2) both membrane and cytosolic KCC2 expression increased, although the membrane/cytosolic ratio decreased, consistent with net chloride efflux. Thus, contrary to our original hypothesis, complex shifts in NKCC1/KCC2 balance occur post-C2SC. The functional significance of these changes remains unclear.


Subject(s)
Cervical Cord/injuries , Contusions/metabolism , Motor Neurons/metabolism , Phrenic Nerve/metabolism , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , Animals , Cell Membrane/metabolism , Cell Membrane/pathology , Cervical Cord/metabolism , Cervical Cord/pathology , Cervical Vertebrae , Contusions/pathology , Cytosol/metabolism , Cytosol/pathology , Disease Models, Animal , Male , Motor Neurons/pathology , Phrenic Nerve/pathology , Random Allocation , Rats, Inbred Lew , Spinal Cord Injuries/metabolism , K Cl- Cotransporters
17.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L891-L909, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30188747

ABSTRACT

The retrotrapezoid nucleus (RTN) contains chemosensitive cells that distribute CO2-dependent excitatory drive to the respiratory network. This drive facilitates the function of the respiratory central pattern generator (rCPG) and increases sympathetic activity. It is also evidenced that during hypercapnia, the late-expiratory (late-E) oscillator in the parafacial respiratory group (pFRG) is activated and determines the emergence of active expiration. However, it remains unclear the microcircuitry responsible for the distribution of the excitatory signals to the pFRG and the rCPG in conditions of high CO2. Herein, we hypothesized that excitatory inputs from chemosensitive neurons in the RTN are necessary for the activation of late-E neurons in the pFRG. Using the decerebrated in situ rat preparation, we found that lesions of neurokinin-1 receptor-expressing neurons in the RTN region with substance P-saporin conjugate suppressed the late-E activity in abdominal nerves (AbNs) and sympathetic nerves (SNs) and attenuated the increase in phrenic nerve (PN) activity induced by hypercapnia. On the other hand, kynurenic acid (100 mM) injections in the pFRG eliminated the late-E activity in AbN and thoracic SN but did not modify PN response during hypercapnia. Iontophoretic injections of retrograde tracer into the pFRG of adult rats revealed labeled phox2b-expressing neurons within the RTN. Our findings are supported by mathematical modeling of chemosensitive and late-E populations within the RTN and pFRG regions as two separate but interacting populations in a way that the activation of the pFRG late-E neurons during hypercapnia require glutamatergic inputs from the RTN neurons that intrinsically detect changes in CO2/pH.


Subject(s)
Cell Nucleus/physiology , Exhalation/physiology , Neurons/physiology , Sympathetic Nervous System/physiopathology , Animals , Carbon Dioxide/metabolism , Cell Nucleus/metabolism , Hydrogen-Ion Concentration , Hypercapnia/metabolism , Hypercapnia/physiopathology , Male , Neurons/metabolism , Phrenic Nerve/metabolism , Phrenic Nerve/physiopathology , Rats , Rats, Wistar , Receptors, Neurokinin-1/metabolism , Sympathetic Nervous System/metabolism
18.
J Neurophysiol ; 119(6): 2176-2185, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29513151

ABSTRACT

Although systemic inflammation induced by even a low dose of lipopolysaccharide (LPS, 100 µg/kg) impairs respiratory motor plasticity, little is known concerning cellular mechanisms giving rise to this inhibition. Phrenic motor facilitation (pMF) is a form of respiratory motor plasticity elicited by pharmacological agents applied to the cervical spinal cord, or by acute intermittent hypoxia (AIH; 3, 5-min hypoxic episodes); when elicited by AIH, pMF is known as phrenic long-term facilitation (pLTF). AIH consisting of moderate hypoxic episodes (mAIH, arterial Po2 = 35-55 mmHg) elicits pLTF via the Q pathway to pMF, a mechanism that requires spinal serotonin (5HT2) receptor activation and new brain-derived neurotrophic factor (BDNF) protein synthesis. Although mild systemic inflammation attenuates mAIH-induced pLTF via spinal p38 MAP kinase activation, little is known concerning how p38 MAP kinase activity inhibits the Q pathway. Here, we confirmed that 24 h after a low LPS dose (100 µg/kg ip), mAIH-induced pLTF is greatly attenuated. Similarly, pMF elicited by intrathecal cervical injections of 5HT2A (DOI; 100 µM; 3 × 6 µl) or 5HT2B receptor agonists (BW723C86; 100 µM; 3 × 6 µl) is blocked 24 h post-LPS. When pMF was elicited by intrathecal BDNF (100 ng, 12 µl), pMF was actually enhanced 24 h post-LPS. Thus 5HT2A/2B receptor-induced pMF is impaired downstream from 5HT2 receptor activation, but upstream from BDNF/TrkB signaling. Mechanisms whereby LPS augments BDNF-induced pMF are not yet known. NEW & NOTEWORTHY These experiments give novel insights concerning mechanisms whereby systemic inflammation undermines serotonin-dependent, spinal respiratory motor plasticity, yet enhances brain-derived neurotrophic factor (BDNF)/TrkB signaling in phrenic motor neurons. These insights may guide development of new strategies to elicit functional recovery of breathing capacity in patients with respiratory impairment by reducing (or bypassing) the impact of systemic inflammation characteristic of clinical disorders that compromise breathing.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Hypoxia/metabolism , Motor Neurons/metabolism , Phrenic Nerve/metabolism , Receptor, trkB/metabolism , Receptors, Serotonin, 5-HT2/metabolism , Animals , Hypoxia/physiopathology , Inflammation/etiology , Inflammation/metabolism , Lipopolysaccharides/toxicity , Male , Motor Neurons/physiology , Phrenic Nerve/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction , Spinal Cord/metabolism , Spinal Cord/physiology , p38 Mitogen-Activated Protein Kinases/metabolism
19.
J Appl Physiol (1985) ; 125(2): 504-512, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29565772

ABSTRACT

Inflammation undermines respiratory motor plasticity, yet we are just beginning to understand the inflammatory signaling involved. Because interleukin-1 (IL-1) signaling promotes or inhibits plasticity in other central nervous system regions, we tested the following hypotheses: 1) IL-1 receptor (IL-1R) activation after systemic inflammation is necessary to undermine phrenic long-term facilitation (pLTF), a model of respiratory motor plasticity induced by acute intermittent hypoxia (AIH), and 2) spinal IL-1ß is sufficient to undermine pLTF. pLTF is significantly reduced 24 h after lipopolysaccharide (LPS; 100 µg/kg ip, 12 ± 18%, n = 5) compared with control (57 ± 25%, n = 6) and restored by peripheral IL-1R antagonism (63 ± 13%, n = 5, AF-12198, 0.5 mg/kg ip, 24 h). Furthermore, acute, spinal IL-1R antagonism (1 mM AF-12198, 15 µl it) restored pLTF (53 ± 15%, n = 4) compared with LPS-treated rats (11 ± 10%; n = 5), demonstrating IL-1R activation is necessary to undermine pLTF after systemic inflammation. However, in healthy animals, pLTF persisted after spinal, exogenous recombinant rat IL-1ß (rIL-1ß) (1 ng ± AIH; 66 ± 26%, n = 3, 10 ng ± AIH; 102 ± 49%, n = 4, 100 ng + AIH; 93 ± 51%, n = 3, 300 ng ± AIH; 37 ± 40%, n = 3; P < 0.05 from baseline). In the absence of AIH, spinal rIL-1ß induced progressive, dose-dependent phrenic amplitude facilitation (1 ng; -3 ± 5%, n = 3, 10 ng; 8 ± 22%, n = 3, 100 ng; 31 ± 12%, P < 0.05, n = 4, 300 ng; 51 ± 17%, P < 0.01 from baseline, n = 4). In sum, IL-1R activation, both systemically and spinally, undermines pLTF after LPS-induced systemic inflammation, but IL-1R activation is not sufficient to abolish plasticity. Understanding the inflammatory signaling inhibiting respiratory plasticity is crucial to developing treatment strategies utilizing respiratory plasticity to promote breathing during ventilatory control disorders. NEW & NOTEWORTHY This study gives novel insights concerning mechanisms by which systemic inflammation undermines respiratory motor plasticity. We demonstrate that interleukin-1 signaling, both peripherally and centrally, undermines respiratory motor plasticity. However, acute, exogenous interleukin-1 signaling is not sufficient to undermine respiratory motor plasticity.


Subject(s)
Inflammation/metabolism , Motor Neurons/metabolism , Neuronal Plasticity/physiology , Receptors, Interleukin-1/metabolism , Animals , Disease Models, Animal , Hypoxia/metabolism , Lipopolysaccharides/pharmacology , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Male , Motor Neurons/drug effects , Neuronal Plasticity/drug effects , Phrenic Nerve/drug effects , Phrenic Nerve/metabolism , Rats , Rats, Sprague-Dawley , Respiration/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/physiopathology
20.
J Physiol ; 596(8): 1501-1512, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29388230

ABSTRACT

KEY POINTS: Although adenosine 2A (A2A ) receptor activation triggers specific cell signalling cascades, the ensuing physiological outcomes depend on the specific cell type expressing these receptors. Cervical spinal adenosine 2A (A2A ) receptor activation elicits a prolonged facilitation in phrenic nerve activity, which was nearly abolished following intrapleural A2A receptor siRNA injections. A2A receptor siRNA injections selectively knocked down A2A receptors in cholera toxin B-subunit-identified phrenic motor neurons, sparing cervical non-phrenic motor neurons. Collectively, our results support the hypothesis that phrenic motor neurons express the A2A receptors relevant to A2A receptor-induced phrenic motor facilitation. Upregulation of A2A receptor expression in the phrenic motor neurons per se may potentially be a useful approach to increase phrenic motor neuron excitability in conditions such as spinal cord injury. ABSTRACT: Cervical spinal adenosine 2A (A2A ) receptor activation elicits a prolonged increase in phrenic nerve activity, an effect known as phrenic motor facilitation (pMF). The specific cervical spinal cells expressing the relevant A2A receptors for pMF are unknown. This is an important question since the physiological outcome of A2A receptor activation is highly cell type specific. Thus, we tested the hypothesis that the relevant A2A receptors for pMF are expressed in phrenic motor neurons per se versus non-phrenic neurons of the cervical spinal cord. A2A receptor immunostaining significantly colocalized with NeuN-positive neurons (89 ± 2%). Intrapleural siRNA injections were used to selectively knock down A2A receptors in cholera toxin B-subunit-labelled phrenic motor neurons. A2A receptor knock-down was verified by a ∼45% decrease in A2A receptor immunoreactivity within phrenic motor neurons versus non-targeting siRNAs (siNT; P < 0.05). There was no evidence for knock-down in cervical non-phrenic motor neurons. In rats that were anaesthetized, subjected to neuromuscular blockade and ventilated, pMF induced by cervical (C3-4) intrathecal injections of the A2A receptor agonist CGS21680 was greatly attenuated in siA2A (21%) versus siNT treated rats (147%; P < 0.01). There were no significant effects of siA2A on phrenic burst frequency. Collectively, our results support the hypothesis that phrenic motor neurons express the A2A receptors relevant to A2A receptor-induced pMF.


Subject(s)
Motor Neurons/metabolism , Phrenic Nerve/metabolism , Receptor, Adenosine A2A/metabolism , Action Potentials , Adenosine A2 Receptor Agonists/pharmacology , Animals , Cholera Toxin/pharmacology , Male , Motor Neurons/drug effects , Motor Neurons/physiology , Phrenic Nerve/cytology , Phrenic Nerve/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...