Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.158
Filter
1.
J Cell Mol Med ; 28(9): e18342, 2024 May.
Article in English | MEDLINE | ID: mdl-38693852

ABSTRACT

Urothelial carcinoma (UC) urgently requires new therapeutic options. Histone deacetylases (HDAC) are frequently dysregulated in UC and constitute interesting targets for the development of alternative therapy options. Thus, we investigated the effect of the second generation HDAC inhibitor (HDACi) quisinostat in five UC cell lines (UCC) and two normal control cell lines in comparison to romidepsin, a well characterized HDACi which was previously shown to induce cell death and cell cycle arrest. In UCC, quisinostat led to cell cycle alterations, cell death induction and DNA damage, but was well tolerated by normal cells. Combinations of quisinostat with cisplatin or the PARP inhibitor talazoparib led to decrease in cell viability and significant synergistic effect in five UCCs and platinum-resistant sublines allowing dose reduction. Further analyses in UM-UC-3 and J82 at low dose ratio revealed that the mechanisms included cell cycle disturbance, apoptosis induction and DNA damage. These combinations appeared to be well tolerated in normal cells. In conclusion, our results suggest new promising combination regimes for treatment of UC, also in the cisplatin-resistant setting.


Subject(s)
Apoptosis , Histone Deacetylase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors , Urinary Bladder Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , DNA Damage/drug effects , Drug Synergism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urologic Neoplasms/drug therapy , Urologic Neoplasms/pathology
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731844

ABSTRACT

More than 20% of metastatic prostate cancer carries genomic defects involving DNA damage repair pathways, mainly in homologous recombination repair-related genes. The recent approval of olaparib has paved the way to precision medicine for the treatment of metastatic prostate cancer with PARP inhibitors in this subset of patients, especially in the case of BRCA1 or BRCA2 pathogenic/likely pathogenic variants. In face of this new therapeutic opportunity, many issues remain unsolved. This narrative review aims to describe the relationship between homologous recombination repair deficiency and prostate cancer, the techniques used to determine homologous recombination repair status in prostate cancer, the crosstalk between homologous recombination repair and the androgen receptor pathway, the current evidence on PARP inhibitors activity in metastatic prostate cancer also in homologous recombination repair-proficient tumors, as well as emerging mechanisms of resistance to PARP inhibitors. The possibility of combination therapies including a PARP inhibitor is an attractive option, and more robust data are awaited from ongoing phase II and phase III trials outlined in this manuscript.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms , Recombinational DNA Repair , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Neoplasm Metastasis , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , Phthalazines/therapeutic use , Phthalazines/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Piperazines
3.
Nat Commun ; 15(1): 4292, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769345

ABSTRACT

Deficiencies in the BRCA1 tumor suppressor gene are the main cause of hereditary breast and ovarian cancer. BRCA1 is involved in the Homologous Recombination DNA repair pathway and, together with BARD1, forms a heterodimer with ubiquitin E3 activity. The relevance of the BRCA1/BARD1 ubiquitin E3 activity for tumor suppression and DNA repair remains controversial. Here, we observe that the BRCA1/BARD1 ubiquitin E3 activity is not required for Homologous Recombination or resistance to Olaparib. Using TULIP2 methodology, which enables the direct identification of E3-specific ubiquitination substrates, we identify substrates for BRCA1/BARD1. We find that PCNA is ubiquitinated by BRCA1/BARD1 in unperturbed conditions independently of RAD18. PCNA ubiquitination by BRCA1/BARD1 avoids the formation of ssDNA gaps during DNA replication and promotes continuous DNA synthesis. These results provide additional insight about the importance of BRCA1/BARD1 E3 activity in Homologous Recombination.


Subject(s)
BRCA1 Protein , DNA Replication , Phthalazines , Piperazines , Proliferating Cell Nuclear Antigen , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Proliferating Cell Nuclear Antigen/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Phthalazines/pharmacology , Piperazines/pharmacology , Homologous Recombination , Female , HEK293 Cells , Cell Line, Tumor , DNA/metabolism
4.
BMC Med ; 22(1): 199, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755585

ABSTRACT

BACKGROUND: The prospective phase III multi-centre L-MOCA trial (NCT03534453) has demonstrated the encouraging efficacy and manageable safety profile of olaparib maintenance therapy in the Asian (mainly Chinese) patients with platinum-sensitive relapsed ovarian cancer (PSROC). In this study, we report the preplanned exploratory biomarker analysis of the L-MOCA trial, which investigated the effects of homologous recombination deficiency (HRD) and programmed cell death ligand 1 (PD-L1) expression on olaparib efficacy. METHODS: HRD status was determined using the ACTHRD assay, an enrichment-based targeted next-generation sequencing assay. PD-L1 expression was assessed by SP263 immunohistochemistry assay. PD-L1 expression positivity was defined by the PD-L1 expression on ≥ 1% of immune cells. Kaplan-Meier method was utilised to analyse progression-free survival (PFS). RESULTS: This exploratory biomarker analysis included 225 patients and tested HRD status [N = 190; positive, N = 125 (65.8%)], PD-L1 expression [N = 196; positive, N = 56 (28.6%)], and BRCA1/2 mutation status (N = 219). The HRD-positive patients displayed greater median PFS than the HRD-negative patients [17.9 months (95% CI: 14.5-22.1) versus 9.2 months (95% CI: 7.5-13.8)]. PD-L1 was predominantly expressed on immune cells. Positive PD-L1 expression on immune cells was associated with shortened median PFS in the patients with germline BRCA1/2 mutations [14.5 months (95% CI: 7.4-18.2) versus 22.2 months (95% CI: 18.3-NA)]. Conversely, positive PD-L1 expression on immune cells was associated with prolonged median PFS in the patients with wild-type BRCA1/2 [20.9 months (95% CI: 13.9-NA) versus 8.3 months (95% CI: 6.7-13.8)]. CONCLUSIONS: HRD remained an effective biomarker for enhanced olaparib efficacy in the Asian patients with PSROC. Positive PD-L1 expression was associated with decreased olaparib efficacy in the patients with germline BRCA1/2 mutations but associated with improved olaparib efficacy in the patients with wild-type BRCA1/2. TRIAL REGISTRATION: NCT03534453. Registered at May 23, 2018.


Subject(s)
B7-H1 Antigen , Biomarkers, Tumor , Maintenance Chemotherapy , Ovarian Neoplasms , Phthalazines , Piperazines , Humans , Female , Phthalazines/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Piperazines/therapeutic use , Biomarkers, Tumor/genetics , Middle Aged , Maintenance Chemotherapy/methods , Aged , Adult , Prospective Studies , Neoplasm Recurrence, Local/drug therapy , BRCA2 Protein/genetics , Antineoplastic Agents/therapeutic use , BRCA1 Protein/genetics , Homologous Recombination
5.
Sci Rep ; 14(1): 7519, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589490

ABSTRACT

Homologous recombination (HR) repairs DNA damage including DNA double-stranded breaks and alterations in HR-related genes results in HR deficiency. Germline alteration of HR-related genes, such as BRCA1 and BRCA2, causes hereditary breast and ovarian cancer (HBOC). Cancer cells with HR deficiency are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors and DNA-damaging agents. Thus, accurately evaluating HR activity is useful for diagnosing HBOC and predicting the therapeutic effects of anti-cancer agents. Previously, we developed an assay for site-specific HR activity (ASHRA) that can quantitatively evaluate HR activity and detect moderate HR deficiency. HR activity in cells measured by ASHRA correlates with sensitivity to the PARP inhibitor, olaparib. In this study, we applied ASHRA to lymphoblastoid cells and xenograft tumor tissues, which simulate peripheral blood lymphocytes and tumor tissues, respectively, as clinically available samples. We showed that ASHRA could be used to detect HR deficiency in lymphoblastoid cells derived from a BRCA1 pathogenic variant carrier. Furthermore, ASHRA could quantitatively measure the HR activity in xenograft tumor tissues with HR activity that was gradually suppressed by inducible BRCA1 knockdown. The HR activity of xenograft tumor tissues quantitatively correlated with the effect of olaparib. Our data suggest that ASHRA could be a useful assay for diagnosing HBOC and predicting the efficacy of PARP inhibitors.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Ovarian Neoplasms , Piperazines , Humans , Female , Homologous Recombination , BRCA1 Protein/genetics , Phthalazines/pharmacology , Phthalazines/therapeutic use , Antineoplastic Agents/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Poly(ADP-ribose) Polymerases/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , DNA/therapeutic use
6.
PLoS One ; 19(4): e0301271, 2024.
Article in English | MEDLINE | ID: mdl-38573891

ABSTRACT

OBJECTIVE: To assess the cost-effectiveness and budget impact of olaparib as a maintenance therapy in platinum-responsive, metastatic pancreatic cancer patients harboring a germline BRCA1/2 mutation, using the Swiss context as a model. METHODS: Based on data from the POLO trial, published literature and local cost data, we developed a partitioned survival model of olaparib maintenance including full costs for BRCA1/2 germline testing compared to FOLFIRI maintenance chemotherapy and watch-and-wait. We calculated the incremental cost-effectiveness ratio (ICER) for the base case and several scenario analyses and estimated 5-year budget impact. RESULTS: Comparing olaparib with watch-and wait and maintenance chemotherapy resulted in incremental cost-effectiveness ratios of CHF 2,711,716 and CHF 2,217,083 per QALY gained, respectively. The 5-year costs for the olaparib strategy in Switzerland would be CHF 22.4 million, of which CHF 11.4 million would be accounted for by germline BRCA1/2 screening of the potentially eligible population. This would amount to a budget impact of CHF 15.4 million (USD 16.9 million) versus watch-and-wait. CONCLUSIONS: Olaparib is not a cost-effective maintenance treatment option. Companion diagnostics are an equally important cost driver as the drug itself.


Subject(s)
Ovarian Neoplasms , Pancreatic Neoplasms , Piperazines , Female , Humans , BRCA1 Protein/genetics , Ovarian Neoplasms/genetics , Platinum/therapeutic use , BRCA2 Protein/genetics , Phthalazines/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Germ Cells/pathology , Cost-Benefit Analysis
7.
PLoS One ; 19(4): e0302130, 2024.
Article in English | MEDLINE | ID: mdl-38625917

ABSTRACT

PARP inhibitors have been developed as anti-cancer agents based on synthetic lethality in homologous recombination deficient cancer cells. However, resistance to PARP inhibitors such as olaparib remains a problem in clinical use, and the mechanisms of resistance are not fully understood. To investigate mechanisms of PARP inhibitor resistance, we established a BRCA1 knockout clone derived from the pancreatic cancer MIA PaCa-2 cells, which we termed C1 cells, and subsequently isolated an olaparib-resistant C1/OLA cells. We then performed RNA-sequencing and pathway analysis on olaparib-treated C1 and C1/OLA cells. Our results revealed activation of cell signaling pathway related to NAD+ metabolism in the olaparib-resistant C1/OLA cells, with increased expression of genes encoding the NAD+ biosynthetic enzymes NAMPT and NMNAT2. Moreover, intracellular NAD+ levels were significantly higher in C1/OLA cells than in the non-olaparib-resistant C1 cells. Upregulation of intracellular NAD+ levels by the addition of nicotinamide also induced resistance to olaparib and talazoparib in C1 cells. Taken together, our findings suggest that upregulation of intracellular NAD+ is one of the factors underlying the acquisition of PARP inhibitor resistance.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Piperazines , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , NAD , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Phthalazines/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , BRCA1 Protein
8.
JAMA Netw Open ; 7(4): e245552, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38592722

ABSTRACT

Importance: Testing for homologous recombination deficiency is required for the optimal treatment of high-grade epithelial ovarian cancer. The search for accurate biomarkers is ongoing. Objective: To investigate whether progression-free survival (PFS) and overall survival (OS) of patients with high-grade epithelial ovarian cancer treated with maintenance olaparib or placebo differed between patients with a tumor BRCA-like genomic profile and patients without a tumor BRCA-like profile. Design, Setting, and Participants: This cohort study was a secondary analysis of the PAOLA-1 randomized clinical trial that compared olaparib plus bevacizumab with placebo plus bevacizumab as maintenance treatment in patients with advanced high-grade ovarian cancer after a good response to first-line platinum with taxane chemotherapy plus bevacizumab, irrespective of germline or tumor BRCA1/2 mutation status. All patients with available tumor DNA were included in the analysis. The current analysis tested for an interaction between BRCA-like status and olaparib treatment on survival outcomes. The original trial was conducted between July 2015 and September 2017; at the time of data extraction for analysis in March 2022, a median follow-up of 54.1 months (IQR, 28.5-62.2 months) and a total follow-up time of 21 711 months was available, with 336 PFS and 245 OS events. Exposures: Tumor homologous recombination deficiency was assessed using the BRCA-like copy number aberration profile classifier. Myriad MyChoice CDx was previously measured. The trial was randomized between the olaparib and bevacizumab and placebo plus bevacizumab groups. Main Outcomes and Measures: This secondary analysis assessed hazard ratios (HRs) of olaparib vs placebo among biomarker strata and tested for interaction between BRCA-like status and olaparib treatment on PFS and OS, using Cox proportional hazards regression. Results: A total of 469 patients (median age, 60 [range 26-80] years) were included in this study. The patient cohort consisted of women with International Federation of Gynaecology and Obstetrics stage III (76%) high-grade serous (95%) ovarian cancer who had no evaluable disease or complete remission at initial or interval debulking surgery (76%). Thirty-one percent of the tumor samples (n = 138) harbored a pathogenic BRCA mutation, and BRCA-like classification was performed for 442 patients. Patients with a BRCA-like tumor had a longer PFS after olaparib treatment than after placebo (36.4 vs 18.6 months; HR, 0.49; 95% CI, 0.37-0.65; P < .001). No association of olaparib with PFS was found in patients with a non-BRCA-like tumor (17.6 vs 16.6 months; HR, 1.02; 95% CI, 0.68-1.51; P = .93). The interaction was significant (P = .004), and HRs and P values (for interaction) were similar in the relevant subgroups, OS, and multivariable analyses. Conclusions and Relevance: In this secondary analysis of the PAOLA-1 randomized clinical trial, patients with a BRCA-like tumor, but not those with a non-BRCA-like tumor, had a significantly longer survival after olaparib plus bevacizumab treatment than placebo plus bevacizumab treatment. Thus, the BRCA1-like classifier could be used as a biomarker for olaparib plus bevacizumab as a maintenance treatment.


Subject(s)
Carcinoma , Ovarian Neoplasms , Phthalazines , Piperazines , Pregnancy , Humans , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Bevacizumab/therapeutic use , BRCA1 Protein/genetics , Cohort Studies , BRCA2 Protein/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Genomics , Biomarkers
9.
Cancer Med ; 13(7): e7149, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572951

ABSTRACT

BACKGROUND: Poly (ADP-ribose) polymerase (PARP) inhibitors have been increasingly used in the treatment of ovarian cancer, with BRCA positivity and homologous recombination deficiency (HRD) being common biomarkers used for predicting their efficacy. However, given the limitations of these biomarkers, new ones need to be explored. METHODS: This retrospective study included 181 ovarian cancer patients who received olaparib or niraparib at two independent hospitals in Japan between May 2018 and December 2022. Clinical information and blood sampling data were collected. Patient characteristics, treatment history, and predictability of treatment duration based on blood data before treatment initiation were examined. RESULTS: High-grade serous carcinoma, BRCA positivity, HRD, and maintenance therapy after recurrence treatment were observed more frequently in the olaparib group than in the niraparib group. The most common reasons for treatment interruption were anemia, fatigue, and nausea in the olaparib group and thrombocytopenia in the niraparib group. Regarding response to olaparib treatment, complete response to the most recent treatment, maintenance therapy after the first chemotherapy, high-grade serous carcinoma, and germline BRCA positivity were observed significantly more frequently among responders than among non-responders. Furthermore, neutrophil counts were significantly higher among responders than among non-responders. CONCLUSIONS: Inflammation-related blood data, such as neutrophil count, obtained at the initial pre-treatment visit might serve as potential predictors for prolonged olaparib treatment. While this study offers valuable insights into potential indicators for prolonged olaparib treatment, it underscores the need for more expansive research to strengthen our understanding of PARP inhibitors and optimize treatment strategies in ovarian cancer.


Subject(s)
Antineoplastic Agents , Carcinoma , Ovarian Neoplasms , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Japan , Ribose/therapeutic use , Retrospective Studies , Mutation , Antineoplastic Agents/adverse effects , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Biomarkers , Poly(ADP-ribose) Polymerases , Carcinoma/drug therapy , Phthalazines/adverse effects
10.
Cancer Lett ; 589: 216820, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38574883

ABSTRACT

One in three Triple Negative Breast Cancer (TNBC) is Homologous Recombination Deficient (HRD) and susceptible to respond to PARP inhibitor (PARPi), however, resistance resulting from functional HR restoration is frequent. Thus, pharmacologic approaches that induce HRD are of interest. We investigated the effectiveness of CDK-inhibition to induce HRD and increase PARPi sensitivity of TNBC cell lines and PDX models. Two CDK-inhibitors (CDKi), the broad range dinaciclib and the CDK12-specific SR-4835, strongly reduced the expression of key HR genes and impaired HR functionality, as illustrated by BRCA1 and RAD51 nuclear foci obliteration. Consequently, both CDKis showed synergism with olaparib, as well as with cisplatin and gemcitabine, in a range of TNBC cell lines and particularly in olaparib-resistant models. In vivo assays on PDX validated the efficacy of dinaciclib which increased the sensitivity to olaparib of 5/6 models, including two olaparib-resistant and one BRCA1-WT model. However, no olaparib response improvement was observed in vivo with SR-4835. These data support that the implementation of CDK-inhibitors could be effective to sensitize TNBC to olaparib as well as possibly to cisplatin or gemcitabine.


Subject(s)
Antineoplastic Agents , Piperazines , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Cisplatin/pharmacology , Cisplatin/therapeutic use , Gemcitabine , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Phthalazines/pharmacology , Phthalazines/therapeutic use , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cell Line, Tumor
11.
Cells ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667288

ABSTRACT

As the treatment landscape for prostate cancer gradually evolves, the frequency of treatment-induced neuroendocrine prostate cancer (NEPC) and double-negative prostate cancer (DNPC) that is deficient for androgen receptor (AR) and neuroendocrine (NE) markers has increased. These prostate cancer subtypes are typically refractory to AR-directed therapies and exhibit poor clinical outcomes. Only a small range of NEPC/DNPC models exist, limiting our molecular understanding of this disease and hindering our ability to perform preclinical trials exploring novel therapies to treat NEPC/DNPC that are urgently needed in the clinic. Here, we report the development of the CU-PC01 PDX model that represents AR-negative mCRPC with PTEN/RB/PSMA loss and CTNN1B/TP53/BRCA2 genetic variants. The CU-PC01 model lacks classic NE markers, with only focal and/or weak expression of chromogranin A, INSM1 and CD56. Collectively, these findings are most consistent with a DNPC phenotype. Ex vivo and in vivo preclinical studies revealed that CU-PC01 PDX tumours are resistant to mCRPC standard-of-care treatments enzalutamide and docetaxel, mirroring the donor patient's treatment response. Furthermore, short-term CU-PC01 tumour explant cultures indicate this model is initially sensitive to PARP inhibition with olaparib. Thus, the CU-PC01 PDX model provides a valuable opportunity to study AR-negative mCRPC biology and to discover new treatment avenues for this hard-to-treat disease.


Subject(s)
Piperazines , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Animals , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Mice , Xenograft Model Antitumor Assays , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/therapeutic use , Neoplasm Metastasis , Nitriles/pharmacology , Disease Models, Animal , Benzamides/pharmacology , Phthalazines/pharmacology , Phthalazines/therapeutic use
12.
Sci Rep ; 14(1): 9598, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671063

ABSTRACT

Allergic conjunctivitis (AC) is the most common form of allergic eye disease and an increasingly prevalent condition. Topical eye drop treatments are the usual approach for managing AC, although their impact on the ocular surface is not frequently investigated. The aim of this study was to perform a comparative physicochemical characterization, and in vitro biological evaluations in primary conjunctival and corneal epithelial cells of the new multidose preservative-free bilastine 0.6% and main commercially available eye drops. MTT assay was used to measure cell viability; oxidative stress was analyzed with a ROS-sensitive probe; and apoptosis was evaluated monitoring caspase 3/7 activation. Differences in pH value, osmolarity, viscosity and phosphate levels were identified. Among all formulations, bilastine exhibited pH, osmolarity and viscosity values closer to tear film (7.4, 300 mOsm/l and ~ 1.5-10 mPa·s, respectively), and was the only phosphates-free solution. Single-dose ketotifen did not induce ROS production, and single-dose azelastine and bilastine only induced a mild increase. Bilastine and single-dose ketotifen and azelastine showed high survival rates attributable to the absence of preservative in its formulation, not inducing caspase-3/7-mediated apoptosis after 24 h. Our findings support the use of the new bilastine 0.6% for treating patients with AC to preserve and maintain the integrity of the ocular surface.


Subject(s)
Apoptosis , Benzimidazoles , Caspase 3 , Cell Survival , Ophthalmic Solutions , Preservatives, Pharmaceutical , Ophthalmic Solutions/pharmacology , Humans , Preservatives, Pharmaceutical/pharmacology , Cell Survival/drug effects , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Caspase 3/metabolism , Apoptosis/drug effects , Piperidines/pharmacology , Oxidative Stress/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Conjunctiva/drug effects , Conjunctiva/metabolism , Conjunctiva/pathology , Caspase 7/metabolism , Reactive Oxygen Species/metabolism , Conjunctivitis, Allergic/drug therapy , Conjunctivitis, Allergic/pathology , Conjunctivitis, Allergic/metabolism , Phthalazines/pharmacology , Osmolar Concentration , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Cells, Cultured , Viscosity
13.
Cancer Treat Rev ; 126: 102726, 2024 May.
Article in English | MEDLINE | ID: mdl-38613872

ABSTRACT

INTRODUCTION: Metastatic castration-resistant prostate cancer (mCRPC) remains incurable and develops from biochemically recurrent PC treated with androgen deprivation therapy (ADT) following definitive therapy for localized PC, or from metastatic castration-sensitive PC (mCSPC). In the mCSPC setting, treatment intensification of ADT plus androgen receptor (AR)-signaling inhibitors (ARSIs), with or without chemotherapy, improves outcomes vs ADT alone. Despite multiple phase 3 trials demonstrating a survival benefit of treatment intensification in PC, there remains high use of ADT monotherapy in real-world clinical practice. Prior studies indicate that co-inhibition of AR and poly(ADP-ribose) polymerase (PARP) may result in enhanced benefit in treating tumors regardless of alterations in DNA damage response genes involved either directly or indirectly in homologous recombination repair (HRR). Three recent phase 3 studies evaluated the combination of a PARP inhibitor (PARPi) with an ARSI as first-line treatment for mCRPC: TALAPRO-2, talazoparib plus enzalutamide; PROpel, olaparib plus abiraterone acetate and prednisone (AAP); and MAGNITUDE, niraparib plus AAP. Results from these studies have led to the recent approval in the United States of talazoparib plus enzalutamide for the treatment of mCRPC with any HRR alteration, and of both olaparib and niraparib indicated in combination with AAP for the treatment of mCRPC with BRCA alterations. SUMMARY: Here, we review the newly approved PARPi plus ARSI treatments within the context of the mCRPC treatment landscape, provide an overview of practical considerations for the combinations in clinical practice, highlight the importance of HRR testing, and discuss the benefits of treatment intensification for patients with mCRPC.


Subject(s)
Androgen Receptor Antagonists , Antineoplastic Combined Chemotherapy Protocols , Nitriles , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Male , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Androgen Receptor Antagonists/therapeutic use , Nitriles/therapeutic use , Piperazines/therapeutic use , Piperazines/administration & dosage , Phthalazines/therapeutic use , Phenylthiohydantoin/therapeutic use , Phenylthiohydantoin/analogs & derivatives , United States , Receptors, Androgen/genetics , Benzamides/therapeutic use , Piperidines/therapeutic use , Indazoles/therapeutic use , Signal Transduction/drug effects , Recombinational DNA Repair/drug effects
14.
Exp Cell Res ; 438(1): 114036, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38614421

ABSTRACT

Ovarian cancer is the leading cause of gynecologic cancer death. Among the most innovative anti-cancer approaches, the genetic concept of synthetic lethality is that mutations in multiple genes work synergistically to effect cell death. Previous studies found that although vaccinia-related kinase-1 (VRK1) associates with DNA damage repair proteins, its underlying mechanisms remain unclear. Here, we found high VRK1 expression in ovarian tumors, and that VRK1 depletion can significantly promote apoptosis and cell cycle arrest. The effect of VRK1 knockdown on apoptosis was manifested by increased DNA damage, genomic instability, and apoptosis, and also blocked non-homologous end joining (NHEJ) by destabilizing DNA-PK. Further, we verified that VRK1 depletion enhanced sensitivity to a PARP inhibitor (PARPi), olaparib, promoting apoptosis through DNA damage, especially in ovarian cancer cell lines with high VRK1 expression. Proteins implicated in DNA damage responses are suitable targets for the development of new anti-cancer therapeutic strategies, and their combination could represent an alternative form of synthetic lethality. Therefore, normal protective DNA damage responses are impaired by combining olaparib with elimination of VRK1 and could be used to reduce drug dose and its associated toxicity. In summary, VRK1 represents both a potential biomarker for PARPi sensitivity, and a new DDR-associated therapeutic target, in ovarian cancer.


Subject(s)
Apoptosis , DNA Damage , DNA-Activated Protein Kinase , Intracellular Signaling Peptides and Proteins , Ovarian Neoplasms , Phthalazines , Poly(ADP-ribose) Polymerase Inhibitors , Protein Serine-Threonine Kinases , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , DNA-Activated Protein Kinase/metabolism , DNA-Activated Protein Kinase/genetics , Apoptosis/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , DNA Damage/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Phthalazines/pharmacology , Cell Line, Tumor , Piperazines/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Genomic Instability/drug effects
15.
Eur Rev Med Pharmacol Sci ; 28(4): 1423-1432, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38436176

ABSTRACT

OBJECTIVE: Endoscopic evaluation becomes difficult when excessive secretion/hypersalivation occurs in the upper airway. Intranasal corticosteroids and antihistamines reduce symptoms of rhinorrhea and nasal congestion. For this reason, in our study, we aimed to examine the effects of mometasone furoate and azelastine on both the amount of secretion and upper airway obstruction in terms of possible benefits during drug-induced sleep endoscopy (DISE). PATIENTS AND METHODS: A total of 92 patients participated in the study [69 (75%) were males and 23 (25%) were females]. Three groups in Group 1 used intranasal mometasone furoate for 30 days, Group 2 used intranasal azelastine for 30 days, and Group 3 did not use any nasal spray for 30 days. Then, DISE was performed on all patients on the 30th day. Upper airway obstructions detected in DISE were interpreted according to the VOTE classification. Furthermore, the amount of secretion and patients' tolerance levels observed during DISE were also assessed. RESULTS: Multilevel obstruction was detected in 94.5% of all patients participating in the study. Tolerance was poor in 18 (19.5%) of the patients participating in the study. Better DISE tolerance was determined in the female gender. DISE tolerance was also better in underweight and normal-weight patients (BMI < 25). CONCLUSIONS: This study first investigated nasal mometasone furoate and azelastine on DISE. This study showed that prior use of nasal mometasone furoate or azelastine before DISE did not affect the amount of secretion, tolerance level, severity, and configuration of obstruction.


Subject(s)
Endoscopy , Nose , Phthalazines , Male , Humans , Female , Mometasone Furoate , Sleep
16.
Int J Technol Assess Health Care ; 40(1): e14, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38439629

ABSTRACT

BACKGROUND: Olaparib targets the DNA repair pathways and has revolutionized the management of metastatic castration resistant prostate cancer (mCRPC). Treatment with the drug should be guided by genetic testing; however, published economic evaluations did not consider olaparib and genetic testing as codependent technologies. This study aims to assess the cost-effectiveness of BRCA germline testing to inform olaparib treatment in mCRPC. METHODS: We conducted a cost-utility analysis of germline BRCA testing-guided olaparib treatment compared to standard care without testing from an Australian health payer perspective. The analysis applied a decision tree to indicate the germline testing or no testing strategy. A Markov multi-state transition approach was used for patients within each strategy. The model had a time horizon of 5 years. Costs and outcomes were discounted at an annual rate of 5 percent. Decision uncertainty was characterized using probabilistic and scenario analyses. RESULTS: Compared to standard care, BRCA testing-guided olaparib treatment was associated with an incremental cost of AU$7,841 and a gain of 0.06 quality-adjusted life-years (QALYs). The incremental cost-effectiveness ratio (ICER) was AU$143,613 per QALY. The probability of BRCA testing-guided treatment being cost effective at a willingness-to-pay threshold of AU$100,000 per QALY was around 2 percent; however, the likelihood for cost-effectiveness increased to 66 percent if the price of olaparib was reduced by 30 percent. CONCLUSION: This is the first study to evaluate germline genetic testing and olaparib treatment as codependent technologies in mCRPC. Genetic testing-guided olaparib treatment may be cost-effective with significant discounts on olaparib pricing.


Subject(s)
Phthalazines , Piperazines , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Cost-Benefit Analysis , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Australia , Germ Cells
17.
Chem Biol Interact ; 393: 110958, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38493911

ABSTRACT

Poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors, such as Olaparib, have been pivotal in treating BRCA-deficient ovarian cancer. However, their efficacy is limited in over 40% of BRCA-deficient patients, with acquired resistance posing new clinical challenges. To address this, we employed bioinformatics methods to identify key genes impacting Olaparib sensitivity in ovarian cancer. Through comprehensive analysis of public databases including GEO, CPTAC, Kaplan Meier Plotter, and CCLE, we identified CRABP2 as significantly upregulated at both mRNA and protein levels in ovarian cancer, correlating with poor prognosis and decreased Olaparib sensitivity. Using colony formation and CCK-8 assays, we confirmed that CRABP2 knockdown in OVCAR3 and TOV112D cells enhanced sensitivity to Olaparib. Additionally, 4D label-free quantitative proteomics analysis, GSEA, and GO/KEGG analysis revealed CRABP2's involvement in regulating oxidation signals. Flow cytometry, colony formation assays, and western blotting demonstrated that CRABP2 knockdown promoted ROS production by activating Caspase-8, thereby augmenting Olaparib sensitivity and inhibiting ovarian cancer cell proliferation. Moreover, in xenograft models, CRABP2 knockdown significantly suppressed tumorigenesis and enhanced Olaparib sensitivity, with the effect being reversed upon Caspase-8 knockdown. These findings suggest that CRABP2 may modulate Olaparib sensitivity in ovarian cancer through the Caspase-8/ROS axis, highlighting its potential as a target for Olaparib sensitization.


Subject(s)
Ovarian Neoplasms , Phthalazines , Piperazines , Female , Humans , Apoptosis , Caspase 8/genetics , Caspase 8/metabolism , Cell Line, Tumor , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Phthalazines/pharmacology , Phthalazines/therapeutic use , Piperazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/metabolism , Reactive Oxygen Species/metabolism
18.
J Investig Med High Impact Case Rep ; 12: 23247096241240176, 2024.
Article in English | MEDLINE | ID: mdl-38504422

ABSTRACT

Gastric cancer ranks as the fifth leading cause of global cancer incidences, exhibiting varied prevalence influenced by geographical, ethnic, and lifestyle factors, as well as Helicobacter pylori infection. The ATM gene on chromosome 11q22 is vital for genomic stability as an initiator of the DNA damage response, and mutations in this gene have been associated with various cancers. Poly ADP-ribose polymerase (PARP) inhibitors, such as olaparib, have shown efficacy in cancers with homologous recombination repair deficiencies, notably in those with ATM mutations. Here, we present a case of a 66-year-old patient with germline ATM-mutated metastatic gastric cancer with very high CA 19-9 (48 000 units/mL) who demonstrated an exceptional response to the addition of olaparib to chemo-immunotherapy and subsequent olaparib maintenance monotherapy for 12 months. CA 19-9 was maintained at low level for 18 months. Despite the failure of a phase II clinical trial on olaparib in gastric cancer (NCT01063517) to meet its primary endpoint, intriguing findings emerged in the subset of ATM-mutated patients, who exhibited notable improvements in overall survival. Our case underscores the potential clinical utility of olaparib in germline ATM-mutated gastric cancer and emphasizes the need for further exploration through larger clinical trials. Ongoing research and clinical trials are essential for optimizing the use of PARP inhibitors, identifying biomarkers, and advancing personalized treatment strategies for gastric cancer.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Phthalazines , Piperazines , Stomach Neoplasms , Humans , Aged , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Helicobacter pylori/metabolism , Germ Cells/metabolism , Germ Cells/pathology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
20.
Nat Commun ; 15(1): 1985, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443333

ABSTRACT

Most patients with advanced ovarian cancer (AOC) ultimately relapse after platinum-based chemotherapy. Combining bevacizumab, olaparib, and durvalumab likely drives synergistic activity. This open-label phase 2 study (NCT04015739) aimed to assess activity and safety of this triple combination in female patients with relapsed high-grade AOC following prior platinum-based therapy. Patients were treated with olaparib (300 mg orally, twice daily), the bevacizumab biosimilar FKB238 (15 mg/kg intravenously, once-every-3-weeks), and durvalumab (1.12 g intravenously, once-every-3-weeks) in nine French centers. The primary endpoint was the non-progression rate at 3 months for platinum-resistant relapse or 6 months for platinum-sensitive relapse per RECIST 1.1 and irRECIST. Secondary endpoints were CA-125 decline with CA-125 ELIMination rate constant K (KELIM-B) per CA-125 longitudinal kinetics over 100 days, progression free survival and overall survival, tumor response, and safety. Non-progression rates were 69.8% (90%CI 55.9%-80.0%) at 3 months for platinum-resistant relapse patients (N = 41), meeting the prespecified endpoint, and 43.8% (90%CI 29.0%-57.4%) at 6 months for platinum-sensitive relapse (N = 33), not meeting the prespecified endpoint. Median progression-free survival was 4.1 months (95%CI 3.5-5.9) and 4.9 months (95%CI 2.9-7.0) respectively. Favorable KELIM-B was associated with better survival. No toxic deaths or major safety signals were observed. Here we show that further investigation of this triple combination may be considered in AOC patients with platinum-resistant relapse.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Ovarian Neoplasms , Female , Humans , Antibodies, Monoclonal , Bevacizumab/therapeutic use , Carcinoma, Ovarian Epithelial , Chronic Disease , Ovarian Neoplasms/drug therapy , Phthalazines , Piperazines , Platinum , Recurrence , Antineoplastic Combined Chemotherapy Protocols/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...