Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.472
Filter
1.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731608

ABSTRACT

In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 µM and 20-300 µM with a detection limit of 0.1 µM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.


Subject(s)
Colorimetry , Copper , Glutathione , Hydrogen Peroxide , Nanostructures , Glutathione/analysis , Glutathione/chemistry , Colorimetry/methods , Copper/chemistry , Nanostructures/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Porosity , Oxidation-Reduction , Phthalic Acids/chemistry , Humans , Benzidines/chemistry , Limit of Detection
2.
ACS Appl Mater Interfaces ; 16(17): 21450-21462, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38649157

ABSTRACT

Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degeneration. Unfortunately, currently available clinical drugs are mainly analgesics and cannot alleviate the development of OA. Kartogenin (KGN) has been found to promote the differentiation of bone marrow mesenchymal stem cells (BMSCs) into chondrocytes for the treatment of cartilage damage in early OA. However, KGN, as a small hydrophobic molecule, is rapidly cleared from the synovial fluid after intra-articular injection. This study synthesized a KGN-loaded nanocarrier based on PLGA/polydopamine core/shell structure to treat OA. The fluorescence signal of KGN@PLGA/PDA-PEG-E7 nanoparticles lasted for 4 weeks, ensuring long-term sustained release of KGN from a single intra-articular injection. In addition, the polyphenolic structure of PDA enables it to effectively scavenge reactive oxygen species, and the BMSC-targeting peptide E7 (EPLQLKM) endows KGN@PLGA/PDA-PEG-E7 NPs with an effective affinity for BMSCs. As a result, the KGN@PLGA/PDA-PEG-E7 nanoparticles could effectively induce cartilage in vitro and protect the cartilage and subchondral bone in a rat ACLT model. This therapeutic strategy could also be extended to the delivery of other drugs, targeting other tissues to treat joint diseases.


Subject(s)
Anilides , Indoles , Mesenchymal Stem Cells , Nanoparticles , Osteoarthritis , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers , Rats, Sprague-Dawley , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Animals , Rats , Injections, Intra-Articular , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Indoles/chemistry , Indoles/pharmacology , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Male , Drug Carriers/chemistry , Humans
3.
Sci Rep ; 14(1): 7944, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575598

ABSTRACT

In recent years, the presence and migration of PAEs in packaging materials and consumer products has become a serious concern. Based on this concern, the aim of our study is to determine the possible migration potential and speed of PAEs in benthic fish stored in vacuum packaging, as well as to monitor the storage time and type as well as polyethylene (PE) polymer detection.As a result of the analysis performed by µ-Raman spectroscopy, 1 microplastic (MP) of 6 µm in size was determined on the 30th day of storage in whiting fish muscle and the polymer type was found to be Polyethylene (PE) (low density polyethylene: LDPE). Depending on the storage time of the packaging used in the vacuum packaging process, it has been determined that its chemical composition is affected by temperature and different types of polymers are formed. 10 types of PAEs were identified in the packaging material and stored flesh fish: DIBP, DBP, DPENP, DHEXP, BBP, DEHP, DCHP, DNOP, DINP and DDP. While the most dominant PAEs in the packaging material were determined as DEHP, the most dominant PAEs in fish meat were recorded as BBP and the lowest as DMP. The findings provide a motivating model for monitoring the presence and migration of PAEs in foods, while filling an important gap in maintaining a safe food chain.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Animals , Diethylhexyl Phthalate/analysis , Plastics , Vacuum , Phthalic Acids/chemistry , Polyethylene/analysis , Polymers , Dibutyl Phthalate , Esters/analysis , China
4.
Environ Pollut ; 349: 123917, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583794

ABSTRACT

Phthalate esters (PAEs) are plasticizers widely used in the industry and easily released into the environment, posing a serious threat to human health. Molecularly imprinted polymers (MIPs) are important as selective adsorbents for the removal of PAEs. In this study, three kinds of mussel-inspired MIPs for the removal of PAEs were first prepared with gallic acid (GA), hexanediamine (HD), tannic acid (TA), and dopamine (DA) under mild conditions. The adsorption results showed that the MIP with low cost derived from GA and HD (GAHD-MIP) obtained the highest adsorption capacity among these materials. Furthermore, 97.43% of equilibrium capacity could be reached within the first 5 min of adsorption. Especially, the dummy template of diallyl phthalate (DAP) with low toxicity was observed to be more suitable to prepare MIPs than dibutyl phthalate (DBP), although DBP was the target of adsorption. The adsorption process was in accordance with the pseudo-second-order kinetics model. In the isotherm analysis, the adsorption behavior agreed with the Freundlich model. Additionally, the material maintained high adsorption performance after 7 cycles of regeneration tests. The GAHD-MIP adsorbents in this study, with low cost, rapid adsorption equilibrium, green raw materials, and low toxicity dummy template, provide a valuable reference for the design and development of new MIPs.


Subject(s)
Dibutyl Phthalate , Gallic Acid , Molecularly Imprinted Polymers , Water Pollutants, Chemical , Adsorption , Dibutyl Phthalate/chemistry , Water Pollutants, Chemical/chemistry , Gallic Acid/chemistry , Molecularly Imprinted Polymers/chemistry , Phthalic Acids/chemistry , Kinetics , Water Purification/methods
5.
Acta Biomater ; 179: 220-233, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38554890

ABSTRACT

An effective treatment for the irregular partial-thickness cartilage defect in the early stages of osteoarthritis (OA) is lacking. Cartilage tissue engineering is effective for treating full-thickness cartilage defects with limited area. In this study, we designed an injectable multifunctional poly(lactic-co-glycolic acid) (PLGA) microsphere to repair partial-thickness cartilage defects. The microsphere was grafted with an E7 peptide after loading the microsphere with kartogenin (KGN) and modifying the outer layer through dopamine self-polymerization. The microsphere could adhere to the cartilage defect, recruit synovial mesenchymal stem cells (SMSCs) in situ, and stimulate their differentiation into chondrocytes after injection into the articular cavity. Through in vivo and in vitro experiments, we demonstrated the ability of multifunctional microspheres to adhere to cartilage matrix, recruit SMSCs, and promote their differentiation into cartilage. Following treatment, the cartilage surface of the model group with partial-thickness cartilage defect showed smooth recovery, and the glycosaminoglycan content remained normal; the untreated control group showed significant progression of OA. The microsphere, a framework for cartilage tissue engineering, promoted the expression of SMSCs involved in cartilage repair while adapting to cell migration and growth. Thus, for treating partial-thickness cartilage defects in OA, this innovative carrier system based on stem cell therapy can potentially improve therapeutic outcomes. STATEMENT OF SIGNIFICANCE: Mesenchymal stem cells (MSCs) therapy is effective in the repair of cartilage injury. However, because of the particularity of partial-thickness cartilage injury, it is difficult to recruit enough seed cells in situ, and there is a lack of suitable scaffolds for cell migration and growth. Here, we developed polydopamine surface-modified PLGA microspheres (PMS) containing KGN and E7 peptides. The adhesion ability of the microspheres is facilitated by the polydopamine layer wrapped in them; thus, the microspheres can adhere to the injured cartilage and recruit MSCs, thereby promoting their differentiation into chondrocytes and accomplishing cartilage repair. The multifunctional microspheres can be used as a safe and potential method to treat partial-thickness cartilage defects in OA.


Subject(s)
Anilides , Mesenchymal Stem Cells , Microspheres , Polylactic Acid-Polyglycolic Acid Copolymer , Animals , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Rabbits , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cell Differentiation/drug effects , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Cartilage, Articular/pathology , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , Injections , Extracellular Matrix/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Tissue Engineering/methods
6.
J Chem Inf Model ; 64(8): 3290-3301, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38497727

ABSTRACT

Exploring the global energy landscape of relatively large molecules at the quantum level is a challenging problem. In this work, we report the coupling of a nonredundant conformational space exploration method, namely, the robotics-inspired iterative global exploration and local optimization (IGLOO) algorithm, with the quantum-chemical density functional tight binding (DFTB) potential. The application of this fast and efficient computational approach to three close-sized molecules of the phthalate family (DBP, BBP, and DEHP) showed that they present different conformational landscapes. These differences have been rationalized by making use of descriptors based on distances and dihedral angles. Coulomb interactions, steric hindrance, and dispersive interactions have been found to drive the geometric properties. A strong correlation has been evidenced between the two dihedral angles describing the side-chain orientation of the phthalate molecules. Our approach identifies low-energy minima without prior knowledge of the potential energy surface, paving the way for future investigations into transition paths and states.


Subject(s)
Algorithms , Molecular Conformation , Phthalic Acids , Phthalic Acids/chemistry , Thermodynamics , Stochastic Processes , Density Functional Theory , Models, Molecular
7.
Bioorg Chem ; 146: 107255, 2024 May.
Article in English | MEDLINE | ID: mdl-38457955

ABSTRACT

Monoaminooxidases (MAOs) are important targets for drugs used in the treatment of neurological and psychiatric disorders and particularly on Parkinson's Disease (PD). Compounds containing a trans-stilbenoid skeleton have demonstrated good selective and reversible MAO-B inhibition. Here, twenty-two (Z)-3-benzylidenephthalides (benzalphthalides, BPHs) displaying a trans-stilbenoid skeleton have been synthesised and evaluated as inhibitors of the MAO-A and MAO-B isoforms. Some BPHs have selectively inhibited MAO-B, with IC50 values ranging from sub-nM to µM. The most potent compound with IC50 = 0.6 nM was the 3',4'-dichloro-BPH 16, which showed highly selective and reversible MAO-B inhibitory activity. Furthermore, the most selective BPHs displayed a significant protection against the apoptosis, and mitochondrial toxic effects induced by 6-hydroxydopamine (6OHDA) on SH-SY5Y cells, used as a cellular model of PD. The results of virtual binding studies on the most potent compounds docked in MAO-B and MAO-A were in agreement with the potencies and selectivity indexes found experimentally. Additionally, related to toxicity risks, drug-likeness and ADME properties, the predictions found for the most relevant BPHs in this research were within those ranges established for drug candidates.


Subject(s)
Neuroblastoma , Parkinson Disease , Stilbenes , Humans , Molecular Docking Simulation , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemistry , Parkinson Disease/drug therapy , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Structure-Activity Relationship , Benzyl Compounds/chemical synthesis , Benzyl Compounds/chemistry , Benzyl Compounds/pharmacology
8.
Environ Sci Pollut Res Int ; 31(13): 20689-20697, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38393574

ABSTRACT

Poly(ethylene terephthalate) (PET) is a very valuable and beneficial material for industrial purposes, with various different applications. Due to the high annual production volume of over 50 million tons worldwide and the indiscriminate disposal by consumers, the polymers accumulate in the environment, causing negative effects on various ecosystems. Biodegradation via suitable enzymes represents a promising approach to combat the plastic waste issue so validated methods are required to measure the efficiency and efficacy of these enzymes. PETase and MHETase from Ideonella sakaiensis are suitable enzymes needed in combination to completely degrade PET into its environmentally friendly monomers. In this project, we compare and combine a previously described bulk absorbance measurement method with a newly established 1H NMR analysis method of the PET degradation products mono(2-hydroxyethyl) terephthalic acid, bis(2-hydroxyethyl) terephthalic acid and terephthalic acid. Both were optimized regarding different solvents, pH values and drying processes. The accuracy of the measurements can be confirmed with sensitivity limits of 2.5-5 µM for the absorption method and 5-10 µM for the 1H NMR analysis. The combination of the described methods therefore allows a quantitative analysis by using bulk absorption coupled with a qualitative analysis through 1H NMR. The methods established in our work can potentially contribute to the development of suitable recycling strategies of PET using recombinant enzymes.


Subject(s)
Hydrolases , Phthalic Acids , Hydrolases/chemistry , Ecosystem , Proton Magnetic Resonance Spectroscopy , Phthalic Acids/chemistry , Polyethylene Terephthalates/chemistry
9.
Chemosphere ; 346: 140571, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303388

ABSTRACT

This study investigates the mechanism behind the oxidation di-(2-ethylhexyl) phthalate (DEHP) in marine sediment by coupling sulfite using biochar prepared from sorghum distillery residue (SDRBC). The rationale for this investigation stems from the need to seek effective methods for DEHP-laden marine sediment remediation. The aim is to assess the feasibility of sulfite-based advanced oxidation processes for treating hazardous materials such as DEHP containing sediment. To this end, the sediment in question was treated with 2.5 × 10-5 M of sulfite and 1.7 g L-1 of SDRBC700 at acidic pH. Additionally, the study demonstrated that the combination of SDRBC/sulfite with a bacterial system enhances DEHP removal. Thermostilla bacteria were enriched, highlighting their role in sediment treatment. This study concludes that sulfite-associated sulfate radicals-driven carbon advanced oxidation process (SR-CAOP) offers sustainable sediment pretreatment through the SDRBC/sulfite-mediated microbial consortium, in which the SO3•- and 1O2 were responsible for DEHP degradation. SDRBC/sulfite offers an effective and environmentally friendly method for removing DEHP. Further, these results can be targeted at addressing industry problems related to sediment treatment.


Subject(s)
Charcoal , Diethylhexyl Phthalate , Microbiota , Phthalic Acids , Sorghum , Diethylhexyl Phthalate/metabolism , Sorghum/metabolism , Phthalic Acids/chemistry , Geologic Sediments
10.
Environ Res ; 248: 118234, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38272296

ABSTRACT

This investigation aimed to scrutinize the level of phthalate esters (PEs) in the landfill leachate of a coastal city in the north of the Persian Gulf and the sensitive ecosystem (soil and water) around it. Soil (two depths) and water samples were prepared from 5 stations in wet and dry seasons. The studied landfill leachate contained 114-303 µg/L of phthalates. The highest concentration of phthalates was related to bis (2-ethylhexyl) phthalate (3257 ng/g) in the wet season at surface soil (0-5 cm) in the landfill site, while the lowest one (6 ng/g) belonged to dimethyl phthalate at sub-surface soil at 700 m from the landfill in the dry season. A significant change in the level of Σ6PEs in the dry (303 µg/L) and wet (114 µg/L) seasons (P ≤ 0.05) was observed for water samples. The PE concentrations in wet times were higher in all soil depths than in dry times. With increasing depth, the content of phthalates decreased in all studied environments. A direct relationship was observed between the phthalates concentration and the pH value of leachate/water and soil. The PEs concentration was linked to electrical conductivity (leachate: R2 = 0.65, P < 0.01 and surface soil: R2 = 0.77, P < 0.05) and the soil organic content. The ecological risk of di-n-butyl phthalate, benzyl butyl phthalate, bis (2-ethylhexyl) phthalate, and di-n-octyl phthalate in the wet season was greater than one. The results showed that significant levels of phthalate esters are released from landfills to the surrounding environment, which requires adequate measures to maintain the health of the ecosystem and nearby residents.


Subject(s)
Phthalic Acids , Water Pollutants, Chemical , Water , Water Pollutants, Chemical/analysis , Esters , Soil/chemistry , Iran , Ecosystem , Phthalic Acids/chemistry , Waste Disposal Facilities
11.
Anal Methods ; 16(3): 420-426, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38165136

ABSTRACT

The efficient extraction of phthalic acid esters (PAEs) is challenging due to their extremely low concentration, complicated matrices and hydrophilicity. Herein, hollow microspheres, as an ideal coating, possess significant potential for solid-phase microextraction (SPME) due to their fascinating properties. In this study, multiwalled carbon nanotube hollow microspheres (MWCNT-HMs) were utilized as a fiber coating for the SPME of PAEs from tea beverages. MWCNT-HMs were obtained by dissolving the polystyrene (PS) cores with organic solvents. Interestingly, MWCNT-HMs well maintain the morphology of the MWCNTs@PS precursors. The layer-by-layer (LBL) assembly of MWCNTs on PS microsphere templates was achieved through electrostatic interactions. Six PAEs, di-ethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DOP), were selected as target analytes for assessing the efficiency of the coating for SPME. The stirring rate, sample solution pH and extraction time were optimized by using the Box-Behnken design. Under optimal working conditions, the proposed MWCNT-HMs/SPME was coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) to achieve high enrichment factors (118-2137), wide linearity (0.0004-10 µg L-1), low limits of detection (0.00011-0.0026 µg L-1) and acceptable recovery (80.2-108.5%) for the detection of PAEs. Therefore, the MWCNT-HM coated fibers are promising alternatives in the SPME method for the sensitive detection of PAEs at trace levels in tea beverages.


Subject(s)
Nanotubes, Carbon , Phthalic Acids , Solid Phase Microextraction/methods , Microspheres , Gas Chromatography-Mass Spectrometry/methods , Tandem Mass Spectrometry , Phthalic Acids/analysis , Phthalic Acids/chemistry , Beverages/analysis , Tea
12.
J Hazard Mater ; 464: 132965, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37979420

ABSTRACT

Poly(butylene adipate-co-terephthalate) (PBAT) is among the most widely applied synthetic polyesters that are utilized in the packaging and agricultural industries, but the accumulation of PBAT wastes has posed a great burden to ecosystems. Using renewable enzymes to decompose PBAT is an eco-friendly solution to tackle this problem. Recently, we demonstrated that cutinase is the most effective PBAT-degrading enzyme and that an engineered cutinase termed TfCut-DM could completely decompose PBAT film to terephthalate (TPA). Here, we report crystal structures of a variant of leaf compost cutinase in complex with soluble fragments of PBAT, including BTa and TaBTa. In the TaBTa complex, one TPA moiety was located at a polymer-binding site distal to the catalytic center that has never been experimentally validated. Intriguingly, the composition of the distal TPA-binding site shows higher diversity relative to the one proximal to the catalytic center in various cutinases. We thus modified the distal TPA-binding site of TfCut-DM and obtained variants that exhibit higher activity. Notably, the time needed to completely degrade the PBAT film to TPA was shortened to within 24 h by TfCut-DM Q132Y (5813 mol per mol protein). Taken together, the structural information regarding the substrate-binding behavior of PBAT-degrading enzymes could be useful guidance for direct enzyme engineering.


Subject(s)
Phthalic Acids , Polymers , Polymers/chemistry , Ecosystem , Polyesters/chemistry , Phthalic Acids/chemistry
13.
Ecotoxicol Environ Saf ; 268: 115686, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976928

ABSTRACT

As one of the most important phthalates, di-isononyl phthalate (DINP) has been widely used as a common plasticizer in the food and personal care products sectors. In our previous study, we found that DINP can induce autophagy of ovarian granulosa cells; while the underlying mechanism is unclear. In the study, we showed that DINP exposure could induce autophagy of ovarian granulosa cells and KGN cells, accompanied with the increase in the mRNA and protein level of DDIT4. Furthermore, overexpression of DDIT4 were shown to induce autophagy of KGN cells; while knockdown of DDIT4 inhibited DINP-induced autophagy, implying that DDIT4 played an important role in DINP-induced autophagy of ovarian granulosa cells. There were three putative binding sites of transcription factor ATF4 in the promoter region of DDIT4 gene, suggesting that DDIT4 might be regulated by ATF4. Herein, we found that overexpression of ATF4 could upregulate the expression of DDIT4 in KGN cells, while knockdown of ATF4 inhibited its expression. Subsequently, ATF4 was identified to bind to the promoter region of DDIT4 gene and promote its transcription. The expression of ATF4 was also increased in the DINP-exposed granulosa cells, and ATF4 overexpression promoted autophagy of KGN cells; whereas knockdown of ATF4 alleviated DINP-induced upregulation of DDIT4 and autophagy of the cells. Taken together, DINP triggered autophagy of ovarian granulosa cells through activating ATF4/DDIT4 signals.


Subject(s)
Gene Expression Regulation , Phthalic Acids , Female , Humans , Phthalic Acids/chemistry , Autophagy/genetics , Granulosa Cells
14.
Molecules ; 28(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38005350

ABSTRACT

Phthalic acid esters (PAEs) are a class of chemicals widely used as plasticizers. These compounds, considered toxic, do not bond to the polymeric matrix of plastic and can, therefore, migrate into the surrounding environment, posing a risk to human health. The primary source of human exposure is food, which can become contaminated during cultivation, production, and packaging. Therefore, it is imperative to control and regulate this exposure. This review covers the analytical methods used for their determination in two economically significant products: olive oil and wine. Additionally, it provides a summary and analysis of information regarding the characteristics, toxicity, effects on human health, and current regulations pertaining to PAEs in food. Various approaches for the extraction, purification, and quantification of these analytes are highlighted. Solvent and sorbent-based extraction techniques are reviewed, as are the chromatographic separation and other methods currently applied in the analysis of PAEs in wines and olive oils. The analysis of these contaminants is challenging due to the complexities of the matrices and the widespread presence of PAEs in analytical laboratories, demanding the implementation of appropriate strategies.


Subject(s)
Phthalic Acids , Wine , Humans , Olive Oil/analysis , Wine/analysis , Esters/chemistry , Phthalic Acids/chemistry
15.
Biotechnol J ; 18(12): e2300119, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37594123

ABSTRACT

Poly(ethylene terephthalate) (PET) is one of the world's most widely used polyester plastics. Due to its chemical stability, PET is extremely difficult to hydrolyze in a natural environment. Recent discoveries in new polyester hydrolases and breakthroughs in enzyme engineering strategies have inspired enormous research on biorecycling of PET. This study summarizes our research efforts toward large-scale, efficient, and economical biodegradation of post-consumer waste PET, including PET hydrolase selection and optimization, high-yield enzyme production, and high-capacity enzymatic degradation of post-consumer waste PET. First, genes encoding PETase and MHETase from Ideonella sakaiensis and the ICCG variant of leaf-branch compost cutinase (LCCICCG ) were codon-optimized and expressed in Escherichia coli BL21(DE3) for high-yield production. To further lower the enzyme production cost, a pelB leader sequence was fused to LCCICCG so that the enzyme can be secreted into the medium to facilitate recovery. To help bind the enzyme on the hydrophobic surface of PET, a substrate-binding module in a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (PBM) was fused to the C-terminus of LCCICCG . The resulting four different LCCICCG variants (LCC, PelB-LCC, LCC-PBM, and PelB-LCC-PBM), together with PETase and MHETase, were compared for PET degradation efficiency. A fed-batch fermentation process was developed to produce the target enzymes up to 1.2 g L-1 . Finally, the best enzyme, PelB-LCC, was selected and used for the efficient degradation of 200 g L-1 recycled PET in a well-controlled, stirred-tank reactor. The results will help develop an economical and scalable biorecycling process toward a circular PET economy.


Subject(s)
Phthalic Acids , Polyethylene Terephthalates , Polyethylene Terephthalates/chemistry , Hydrolases/chemistry , Phthalic Acids/chemistry , Phthalic Acids/metabolism , Ethylenes
16.
Environ Sci Pollut Res Int ; 30(33): 80154-80161, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37294490

ABSTRACT

Understanding the distribution of di(2-ethylhexyl) phthalate (DEHP) is necessary for future risk evaluation of DEHP in agricultural soils. This study used 14C-labeled DEHP to examine its volatilization, mineralization, extractable residues, and non-extractable residues (NERs) incubated in Chinese typical red and black soil with/without Brassica chinensis L. Results showed that after incubated for 60 days, 46.3% and 95.4% of DEHP were mineralized or transformed into NERs in red and black soil, respectively. The distribution of DEHP in humic substances as NER descended in order: humin > fulvic acids > humic acids. DEHP in black soil was more bioavailable, with 6.8% of initial applied radioactivity left as extractable residues at the end of incubation when compared with red soil (54.5%). Planting restrained the mineralization of DEHP by 18.5% and promoted the extractable residues of DEHP by 1.5% for black soil, but no such restrain was observed in red soil. These findings provide valuable information for understanding the distribution of DEHP in different soils and develop the understanding for the risk assessments of PAEs in typical soils.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Soil Pollutants , Soil/chemistry , Soil Pollutants/analysis , Phthalic Acids/chemistry
17.
Int J Biol Macromol ; 243: 125252, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37295700

ABSTRACT

Ideonella sakaiensis is the bacterium that can survive by degrading polyethylene terephthalate (PET) plastic, and terephthalic acid (TPA) binding protein (IsTBP) is an essential periplasmic protein for uptake of TPA into the cytosol for complete degradation of PET. Here, we demonstrated that IsTBP has remarkably high specificity for TPA among 33 monophenolic compounds and two 1,6-dicarboxylic acids tested. Structural comparisons with 6-carboxylic acid binding protein (RpAdpC) and TBP from Comamonas sp. E6 (CsTphC) revealed the key structural features that contribute to high TPA specificity and affinity of IsTBP. We also elucidated the molecular mechanism underlying the conformational change upon TPA binding. In addition, we developed the IsTBP variant with enhanced TPA sensitivity, which can be expanded for the use of TBP as a biosensor for PET degradation.


Subject(s)
Burkholderiales , Comamonas , Phthalic Acids , Phthalic Acids/chemistry , Hydrolases/chemistry
18.
J Chromatogr A ; 1703: 464101, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37271083

ABSTRACT

In order to better identify the hazards of pollutants, developing the analytical methods that can sensitively detect and precisely monitor the content of trace pollutants has been the constant pursuit. In this paper, a new solid phase microextraction coating-ionic liquid/metal organic framework (IL/MOF) was obtained through the IL-induced strategy and used for the solid phase microextraction (SPME) process. IL was introduced into metal-organic framework (MOF) cage based on the anion of ionic liquid could interact strongly with the zirconium nodes of UiO-66-NH2. The introduction of IL not only increased the stability of composite, the hydrophobicity of IL also changed the environment of MOF channel, providing the hydrophobic effect to the targets. The confinement effect of IL effectively improved the extraction performance of parent MOF and the extraction performance of synthesized IL/UiO-66-NH2 for phthalates (PAEs) were 1.3-3.0 times that of parent UiO-66-NH2. Thanks to the strong interaction force (hydrogen bonding interaction, π-π stacking, hydrophobic interaction force), the IL/UiO-66-NH2-coated fiber coupled with gas chromatography-mass spectrometer showed a wide linear ranges (1-5000 ng L-1) with good correlation (R2, 0.9855-0.9987), lower detection limit (0.2-0.4 ng L-1) and satisfactory recoveries (95.3-119.3%) for PAEs. This article is dedicated to provide another way to improve the extraction performance of material.


Subject(s)
Environmental Pollutants , Ionic Liquids , Metal-Organic Frameworks , Organometallic Compounds , Phthalic Acids , Metal-Organic Frameworks/chemistry , Phthalic Acids/chemistry , Solid Phase Microextraction/methods
19.
Mar Environ Res ; 188: 105973, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37062112

ABSTRACT

Plastic litter might contain phthalates that can be transferred to marine environment or can be introduced into the marine food chain. Phthalic acid is the final product of phthalate decomposition in marine organisms. Here we used NMR spectroscopy to determine and quantify phthalic acid and dimethyl phthalate in fish muscles. Spike-and-recovery experiments were carried out to confirm assignment of phthalates resonance signals in NMR spectra and to evaluate the method specificity, accuracy, and linearity. The LOQ and LOD of the rapid 1H NMR experiment with a standard setting were respectively 23.0 and 8.0 mg of phthalic acid in kg of fish muscles. Phthalic acid was detected in 13 out of 113 Atlantic cod and none in farmed Atlantic salmon from Norwegian sea.


Subject(s)
Gadus morhua , Phthalic Acids , Animals , Phthalic Acids/chemistry , Plastics , Muscles , Magnetic Resonance Spectroscopy
20.
Anal Methods ; 15(16): 1985-1997, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37018054

ABSTRACT

Phthalic acid esters (PAEs) are a group of organic compounds that show vulnerability effects in different stages of human development. In this work, two sensitive and efficient impedimetric biosensors (IBs) were introduced and their interactions with four PAEs, namely dibutyl phthalate (DBP), dimethyl phthalate (DMP), di(2-ethylhexyl) phthalate (DEHP), and dicyclohexyl phthalate (DCHP), in aqueous solutions with these biosensors were separately investigated via electrochemical impedance spectroscopy (EIS). The surface of a copper electrode was modified by azolla fern dried powder (AZ) and magnetite-modified azolla nanocomposites (MAZ NCs) to form an azolla-based impedimetric biosensor (AZIB) and magnetite azolla nanocomposite-based impedimetric nanobiosensor (MAZIB), respectively. Determinations of PAEs with the designed biosensors were conducted based on their blocking effect on the biosensor surface to ferrous ions oxidation. After each impedimetric measurement, the electrode surface was covered again with the modifier. Nyquist plots were obtained and indicated that the charge-transfer resistance (RCT) values of the bare electrode, AZIB, and MAZIB without injection of PAEs were 468.8, 438.7, and 285.1 kΩ, respectively. After the separate injection of DBP, DMP, DEHP, and DCHP (3 µg L-1) on the surface of AZIB and MAZIB, RCT values were obtained as 563.9, 588.5, 548.7, and 570.1 kΩ for AZIB and 878.2, 1219.2, 754.3, and 814.7 kΩ for MAZIB, respectively. It was observed that the PAE blockers with a smaller structure provided better point-by-point coverage of the surface, which led to a bigger shift in RCT. The linear relationship between the EIS responses and each PAE concentration was investigated in the range of 0.1-1000 µg L-1. The limit of detection (LOD) and limit of quantification (LOQ) values were obtained in the ranges of 0.003-0.005 µg L-1 and 0.010-0.016 µg L-1 for AZIB and 0.008-0.009 µg L-1 and 0.027-0.031 µg L-1 for MAZIB, respectively. The results showed that these biosensors can be used to determine PAEs in real aqueous samples with good relative recoveries ranging from 93.0-97.7% (RSD < 2.58%) for AZIB and 93.3-99.3% (RSD < 2.45%) for MAZIB. The results confirmed that these impedimetric biosensors offer high sensitivity and performance for the determination of trace PAEs in aqueous samples.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Humans , Ferrosoferric Oxide , Esters/chemistry , Phthalic Acids/chemistry , Dibutyl Phthalate
SELECTION OF CITATIONS
SEARCH DETAIL
...