Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anticancer Agents Med Chem ; 19(5): 667-676, 2019.
Article in English | MEDLINE | ID: mdl-30734686

ABSTRACT

BACKGROUND: It was recently demonstrated that the phthalimide N-(4-methyl-phenyl)-4- methylphthalimide (MPMPH-1) has important effects against acute and chronic pain in mice, with a mechanism of action correlated to adenylyl cyclase inhibition. Furthermore, it was also demonstrated that phthalimide derivatives presented antiproliferative and anti-tumor effects. Considering the literature data, the present study evaluated the effects of MPMPH-1 on breast cancer bone metastasis and correlated painful symptom, and provided additional toxicological information about the compound and its possible metabolites. METHODS: In silico toxicological analysis was supported by in vitro and in vivo experiments to demonstrate the anti-tumor and anti-hypersensitivity effects of the compound. RESULTS: The data obtained with the in silico toxicological analysis demonstrated that MPMPH-1 has mutagenic potential, with a low to moderate level of confidence. The mutagenicity potential was in vivo confirmed by micronucleus assay. MPMPH-1 treatments in the breast cancer bone metastasis model were able to prevent the osteoclastic resorption of bone matrix. Regarding cartilage, degradation was considerably reduced within the zoledronic acid group, while in MPMPH-1, chondrocyte multiplication was observed in random areas, suggesting bone regeneration. Additionally, the repeated treatment of mice with MPMPH-1 (10 mg/kg, i.p.), once a day for up to 36 days, significantly reduces the hypersensitivity in animals with breast cancer bone metastasis. CONCLUSION: Together, the data herein obtained show that MPMPH-1 is relatively safe, and significantly control the cancer growth, allied to the reduction in bone reabsorption and stimulation of bone and cartilage regeneration. MPMPH-1 effects may be linked, at least in part, to the ability of the compound to interfere with adenylylcyclase pathway activation.


Subject(s)
Antineoplastic Agents/therapeutic use , Bone Neoplasms/drug therapy , Breast Neoplasms/pathology , Phthalimides/therapeutic use , Animals , Antineoplastic Agents/toxicity , Bone Neoplasms/secondary , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Phthalimides/toxicity
2.
An Acad Bras Cienc ; 87(1): 313-30, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25651156

ABSTRACT

Eleven phthalimide derivatives were evaluated with regards to their antiproliferative activity on tumor and normal cells and possible toxic effects. Cytotoxic analyses were performed against murine tumors (Sarcoma 180 and B-16/F-10 cells) and peripheral blood mononuclear cells (PBMC) using MTT and Alamar Blue assays. Following, the investigation of cytotoxicity was executed by flow cytometry analysis and antitumoral and toxicological potential by in vivo techniques. The molecules 3b, 3c, 4 and 5 revealed in vitro cytotoxicity against Sarcoma 180, B-16/F-10 and PBMC. Since compound 4 was the most effective derivative, it was chosen to detail the mechanism of action after 24, 48 and 72 h exposure (22.5 and 45 µM). Sarcoma 180 cells treated with compound 4 showed membrane disruption, DNA fragmentation and mitochondrial depolarization in a time- and dose-dependent way. Compounds 3c, 4 and 5 (50 mg/kg/day) did not inhibit in vivo tumor growth. Compound 4-treated animals exhibited an increase in total leukocytes, lymphocytes and spleen relative weight, a decreasing in neutrophils and hyperplasia of spleen white pulp. Treated animals presented reversible histological changes. Molecule 4 had in vitro antiproliferative action possibly triggered by apoptosis, reversible toxic effects on kidneys, spleen and livers and exhibited immunostimulant properties that can be explored to attack neoplasic cells.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Leukocytes, Mononuclear/drug effects , Phthalimides/pharmacology , Animals , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Mice , Phthalimides/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL