Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
1.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891921

ABSTRACT

The involvement of the microRNA miR165a in the light-dependent mechanisms of regulation of target genes in maize (Zea mays) has been studied. The light-induced change in the content of free miR165a was associated with its binding by the AGO10 protein and not with a change in the rate of its synthesis from the precursor. The use of knockout Arabidopsis plants for the phytochrome A and B genes demonstrated that the presence of an active form of phytochrome B causes an increase in the level of the RNA-induced silencing miR165a complex, which triggers the degradation of target mRNAs. The two fractions of vesicles from maize leaves, P40 and P100 that bind miR165a, were isolated by ultracentrifugation. The P40 fraction consisted of larger vesicles of the size >0.170 µm, while the P100 fraction vesicles were <0.147 µm. Based on the quantitative PCR data, the predominant location of miR165a on the surface of extracellular vesicles of both fractions was established. The formation of the active form of phytochrome upon the irradiation of maize plants with red light led to a redistribution of miR165a, resulting in an increase in its proportion inside P40 vesicles and a decrease in P100 vesicles.


Subject(s)
Light , MicroRNAs , Phytochrome , Plant Leaves , Signal Transduction , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/radiation effects , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/radiation effects , Phytochrome/metabolism , Phytochrome/genetics , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/radiation effects , Phytochrome A/metabolism , Phytochrome A/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Phytochrome B/metabolism , Phytochrome B/genetics
2.
Nat Plants ; 10(5): 798-814, 2024 May.
Article in English | MEDLINE | ID: mdl-38714768

ABSTRACT

Phytochrome A (phyA) is the plant far-red (FR) light photoreceptor and plays an essential role in regulating photomorphogenic development in FR-rich conditions, such as canopy shade. It has long been observed that phyA is a phosphoprotein in vivo; however, the protein kinases that could phosphorylate phyA remain largely unknown. Here we show that a small protein kinase family, consisting of four members named PHOTOREGULATORY PROTEIN KINASES (PPKs) (also known as MUT9-LIKE KINASES), directly phosphorylate phyA in vitro and in vivo. In addition, TANDEM ZINC-FINGER/PLUS3 (TZP), a recently characterized phyA-interacting protein required for in vivo phosphorylation of phyA, is also directly phosphorylated by PPKs. We reveal that TZP contains two intrinsically disordered regions in its amino-terminal domain that undergo liquid-liquid phase separation (LLPS) upon light exposure. The LLPS of TZP promotes colocalization and interaction between PPKs and phyA, thus facilitating PPK-mediated phosphorylation of phyA in FR light. Our study identifies PPKs as a class of protein kinases mediating the phosphorylation of phyA and demonstrates that the LLPS of TZP contributes significantly to more production of the phosphorylated phyA form in FR light.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome A , Phosphorylation , Phytochrome A/metabolism , Phytochrome A/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Phase Separation
3.
Plant J ; 118(5): 1423-1438, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402588

ABSTRACT

This study investigates photoreceptor's role in the adaption of photosynthetic apparatus to high light (HL) intensity by examining the response of tomato wild type (WT) (Solanum lycopersicum L. cv. Moneymaker) and tomato mutants (phyA, phyB1, phyB2, cry1) plants to HL. Our results showed a photoreceptor-dependent effect of HL on the maximum quantum yield of photosystem II (Fv/Fm) with phyB1 exhibiting a decrease, while phyB2 exhibiting an increase in Fv/Fm. HL resulted in an increase in the efficient quantum yield of photosystem II (ΦPSII) and a decrease in the non-photochemical quantum yields (ΦNPQ and ΦN0) solely in phyA. Under HL, phyA showed a significant decrease in the energy-dependent quenching component of NPQ (qE), while phyB2 mutants showed an increase in the state transition (qT) component. Furthermore, ΔΔFv/Fm revealed that PHYB1 compensates for the deficit of PHYA in phyA mutants. PHYA signaling likely emerges as the dominant effector of PHYB1 and PHYB2 signaling within the HL-induced signaling network. In addition, PHYB1 compensates for the role of CRY1 in regulating Fv/Fm in cry1 mutants. Overall, the results of this research provide valuable insights into the unique role of each photoreceptor and their interplay in balancing photon energy and photoprotection under HL condition.


Subject(s)
Light , Photosystem II Protein Complex , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/radiation effects , Solanum lycopersicum/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Photosynthesis/physiology , Phytochrome B/metabolism , Phytochrome B/genetics , Photoreceptors, Plant/metabolism , Photoreceptors, Plant/genetics , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , Phytochrome A/metabolism , Phytochrome A/genetics
4.
Plant Physiol Biochem ; 208: 108458, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408395

ABSTRACT

This study investigated the effect of light intensity and signaling on the regulation of far-red (FR)-induced alteration in photosynthesis. The low (LL: 440 µmol m-2 s-1) and high (HL: 1135 µmol m-2 s-1) intensity of white light with or without FR (LLFR: 545 µmol m-2 s-1 including 115 µmol m-2 s-1; HLFR: 1254 µmol m-2 s-1 + 140 µmol m-2 s-1) was applied on the tomato cultivar (Solanum Lycopersicon cv. Moneymaker) and mutants of phytochrome A (phyA) and phytochrome B (phyB1, and phyB2). Both light intensity and FR affected plant morphological traits, leaf biomass, and flowering time. Irrespective of genotype, flowering was delayed by LLFR and accelerated by HLFR compared to the corresponding light intensity without FR. In LLFR, a reduced energy flux through the electron transfer chain along with a reduced energy dissipation per reaction center improved the maximum quantum yield of PSII, irrespective of genotype. HLFR increased net photosynthesis and gas exchange properties in a genotype-dependent manner. FR-dependent regulation of hormones was affected by light signaling. It appeared that PHYB affected the levels of abscisic acid and salicylic acid while PHYA took part in the regulation of CK in FR-exposed plants. Overall, light intensity and signaling of FR influenced plants' photosynthesis and growth by altering electron transport, gas exchange, and changes in the level of endogenous hormones.


Subject(s)
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genetics , Arabidopsis/metabolism , Phytochrome B/genetics , Phytochrome A/genetics , Phytochrome A/metabolism , Photosynthesis , Hormones
5.
Plant Cell Environ ; 47(5): 1513-1525, 2024 May.
Article in English | MEDLINE | ID: mdl-38251425

ABSTRACT

The DNA damage response avoids mutations into dividing cells. Here, we analysed the role of photoreceptors on the restriction of root growth imposed by genotoxic agents and its relationship with cell viability and performance of meristems. Comparison of root growth of Arabidopsis WT, phyA-211, phyB-9, and phyA-211phyB-9 double mutants unveiled a critical role for phytochrome A (PhyA) in protecting roots from genotoxic stress, regeneration and cell replenishment in the meristematic zone. PhyA was located on primary root tips, where it influences genes related to the repair of DNA, including ERF115 and RAD51. Interestingly, phyA-211 mutants treated with zeocin failed to induce the expression of the repressor of cell cycle MYB3R3, which correlated with expression of the mitotic cyclin CycB1, suggesting that PhyA is required for safeguarding the DNA integrity during cell division. Moreover, the growth of the primary roots of PhyA downstream component HY5 and root growth analyses in darkness suggest that cell viability and DNA damage responses within root meristems may act independently from light and photomorphogenesis. These data support novel roles for PhyA as a key player for stem cell niche maintenance and DNA damage responses, which are critical for proper root growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Death , DNA/metabolism , DNA Repair/genetics , Light , Meristem/genetics , Meristem/metabolism , Mutation , Phytochrome/metabolism , Phytochrome A/genetics , Phytochrome A/metabolism , Phytochrome B/metabolism
6.
J Integr Plant Biol ; 66(1): 103-120, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38088490

ABSTRACT

In order to flower in the appropriate season, plants monitor light and temperature changes and alter downstream pathways that regulate florigen genes such as Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS T (FT). In Arabidopsis, FT messenger RNA levels peak in the morning and evening under natural long-day conditions (LDs). However, the regulatory mechanisms governing morning FT induction remain poorly understood. The morning FT peak is absent in typical laboratory LDs characterized by high red:far-red light (R:FR) ratios and constant temperatures. Here, we demonstrate that ZEITLUPE (ZTL) interacts with the FT repressors TARGET OF EATs (TOEs), thereby repressing morning FT expression in natural environments. Under LDs with simulated sunlight (R:FR = 1.0) and daily temperature cycles, which are natural LD-mimicking environmental conditions, FT transcript levels in the ztl mutant were high specifically in the morning, a pattern that was mirrored in the toe1 toe2 double mutant. Low night-to-morning temperatures increased the inhibitory effect of ZTL on morning FT expression by increasing ZTL protein levels early in the morning. Far-red light counteracted ZTL activity by decreasing its abundance (possibly via phytochrome A (phyA)) while increasing GIGANTEA (GI) levels and negatively affecting the formation of the ZTL-GI complex in the morning. Therefore, the phyA-mediated high-irradiance response and GI play pivotal roles in morning FT induction. Our findings suggest that the delicate balance between low temperature-mediated ZTL activity and the far-red light-mediated functions of phyA and GI offers plants flexibility in fine-tuning their flowering time by controlling FT expression in the morning.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Temperature , Red Light , Transcription Factors/metabolism , Flowers/physiology , Phytochrome A/metabolism , Gene Expression Regulation, Plant , Light , Mutation
7.
Plant Physiol ; 194(1): 391-407, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37738410

ABSTRACT

Exposure of dark-grown etiolated seedlings to light triggers the transition from skotomorphogenesis/etiolation to photomorphogenesis/de-etiolation. In the life cycle of plants, de-etiolation is essential for seedling development and plant survival. The mobilization of soluble sugars (glucose [Glc], sucrose, and fructose) derived from stored carbohydrates and lipids to target organs, including cotyledons, hypocotyls, and radicles, underpins de-etiolation. Therefore, dynamic carbohydrate biochemistry is a key feature of this phase transition. However, the molecular mechanisms coordinating carbohydrate status with the cellular machinery orchestrating de-etiolation remain largely opaque. Here, we show that the Glc sensor HEXOKINASE 1 (HXK1) interacts with GROWTH REGULATOR FACTOR5 (GRF5), a transcriptional activator and key plant growth regulator, in Arabidopsis (Arabidopsis thaliana). Subsequently, GRF5 directly binds to the promoter of phytochrome A (phyA), encoding a far-red light (FR) sensor/cotyledon greening inhibitor. We demonstrate that the status of Glc within dark-grown etiolated cotyledons determines the de-etiolation of seedlings when exposed to light irradiation by the HXK1-GRF5-phyA molecular module. Thus, following seed germination, accumulating Glc within dark-grown etiolated cotyledons stimulates a HXK1-dependent increase of GRF5 and an associated decrease of phyA, triggering the perception, amplification, and relay of HXK1-dependent Glc signaling, thereby facilitating the de-etiolation of seedlings following light irradiation. Our findings, therefore, establish how cotyledon carbohydrate signaling under subterranean darkness is sensed, amplified, and relayed, determining the phase transition from skotomorphogenesis to photomorphogenesis on exposure to light irradiation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Seedlings/metabolism , Cotyledon/metabolism , Etiolation , Glucose/metabolism , Light , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phytochrome A/metabolism , Gene Expression Regulation, Plant
8.
PLoS Genet ; 19(5): e1010779, 2023 05.
Article in English | MEDLINE | ID: mdl-37216398

ABSTRACT

Integration of light and phytohormones is essential for plant growth and development. FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT 1 (JAR1) participates in phytochrome A (phyA)-mediated far-red (FR) light signaling in Arabidopsis and is a jasmonate (JA)-conjugating enzyme for the generation of an active JA-isoleucine. Accumulating evidence indicates that FR and JA signaling integrate with each other. However, the molecular mechanisms underlying their interaction remain largely unknown. Here, the phyA mutant was hypersensitive to JA. The double mutant fin219-2phyA-211 showed a synergistic effect on seedling development under FR light. Further evidence revealed that FIN219 and phyA antagonized with each other in a mutually functional demand to modulate hypocotyl elongation and expression of light- and JA-responsive genes. Moreover, FIN219 interacted with phyA under prolonged FR light, and MeJA could enhance their interaction with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) in the dark and FR light. FIN219 and phyA interaction occurred mainly in the cytoplasm, and they regulated their mutual subcellular localization under FR light. Surprisingly, the fin219-2 mutant abolished the formation of phyA nuclear bodies under FR light. Overall, these data identified a vital mechanism of phyA-FIN219-COP1 association in response to FR light, and MeJA may allow the photoactivated phyA to trigger photomorphogenic responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Phytochrome A/genetics , Phytochrome A/metabolism , Hypocotyl/genetics , Hypocotyl/metabolism , Arabidopsis Proteins/metabolism , Phytochrome/genetics , Mutation , Gene Expression Regulation, Plant
9.
Plant Cell ; 35(8): 2997-3020, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37119239

ABSTRACT

Soil salinity is one of the most detrimental abiotic stresses affecting plant survival, and light is a core environmental signal regulating plant growth and responses to abiotic stress. However, how light modulates the plant's response to salt stress remains largely obscure. Here, we show that Arabidopsis (Arabidopsis thaliana) seedlings are more tolerant to salt stress in the light than in the dark, and that the photoreceptors phytochrome A (phyA) and phyB are involved in this tolerance mechanism. We further show that phyA and phyB physically interact with the salt tolerance regulator SALT OVERLY SENSITIVE2 (SOS2) in the cytosol and nucleus, and enhance salt-activated SOS2 kinase activity in the light. Moreover, SOS2 directly interacts with and phosphorylates PHYTOCHROME-INTERACTING FACTORS PIF1 and PIF3 in the nucleus. Accordingly, PIFs act as negative regulators of plant salt tolerance, and SOS2 phosphorylation of PIF1 and PIF3 decreases their stability and relieves their repressive effect on plant salt tolerance in both light and dark conditions. Together, our study demonstrates that photoactivated phyA and phyB promote plant salt tolerance by increasing SOS2-mediated phosphorylation and degradation of PIF1 and PIF3, thus broadening our understanding of how plants adapt to salt stress according to their dynamic light environment.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Phytochrome/genetics , Phytochrome/metabolism , Phosphorylation , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Salt Tolerance/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Phytochrome A/metabolism , Phytochrome B/metabolism , Light , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
10.
New Phytol ; 239(1): 208-221, 2023 07.
Article in English | MEDLINE | ID: mdl-37084001

ABSTRACT

In natural long days, the florigen gene FLOWERING LOCUS T (FT) shows a bimodal expression pattern with morning and dusk peaks in Arabidopsis. This pattern differs from the one observed in the laboratory, and little is known about underlying mechanisms. A red : far-red (R : FR) ratio difference between sunlight and fluorescent light causes this FT pattern mismatch. We showed that bimodal FT expression patterns were induced in a day longer than 14 h with sunlight R : FR (= c. 1) conditions. By circadian gating experiments, we found that cumulative exposure of R : FR-adjusted light (R : FR ratio was adjusted to 1 with FR supplement) spanning from the afternoon to the next morning required full induction of FT in the morning. Conversely, only 2 h of R : FR adjustment in the late afternoon was sufficient for FT induction at dusk. We identified that phytochrome A (phyA) is required for the morning FT expression in response to the R : FR adjustment on the previous day. As a part of this mechanism, we showed that PHYTOCHROME-INTERACTING FACTOR 7 contributes to FT regulation. Our results suggest that phyA-mediated high-irradiance response and the external coincidence mechanism contribute to morning FT induction under natural long-day conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Light , Photoperiod , Flowers/genetics , Flowers/metabolism , Phytochrome A/metabolism , Gene Expression , Gene Expression Regulation, Plant
12.
Plant Physiol ; 192(2): 1449-1465, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36869668

ABSTRACT

Plants can sense the shade from neighboring plants by detecting a reduction of the red:far-red light (R:FR) ratio. Phytochrome B (phyB) is the primary photoreceptor that perceives shade light and regulates jasmonic acid (JA) signaling. However, the molecular mechanisms underlying phyB and JA signaling integration in shade responses remain largely unknown. Here, we show the interaction of phyB and FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT1 (JAR1) in a functional demand manner in Arabidopsis (Arabidopsis thaliana) seedling development. Genetic evidence and interaction studies indicated that phyB and FIN219 synergistically and negatively regulate shade-induced hypocotyl elongation. Moreover, phyB interacted with various isoforms of FIN219 under high and low R:FR light. Methyl jasmonate (MeJA) treatment, FIN219 mutation, and PHYBOE digalactosyldiacylglycerol synthase1-1 (dgd1-1) plants, which show increased levels of JA, altered the patterns of phyB-associated nuclear speckles under the same conditions. Surprisingly, PHYBOE dgd1-1 showed a shorter hypocotyl phenotype than its parental mutants under shade conditions. Microarray assays using PHYBOE and PHYBOE fin219-2 indicated that PHYB overexpression substantially affects defense response-related genes under shade light and coregulates expression of auxin-responsive genes with FIN219. Thus, our findings reveal that phyB substantially crosstalks with JA signaling through FIN219 to modulate seedling development under shade light.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Hypocotyl , Light , Mutation/genetics , Nuclear Speckles , Phytochrome/metabolism , Phytochrome A/genetics , Phytochrome A/metabolism , Phytochrome B/genetics , Phytochrome B/metabolism
13.
Plant Cell ; 35(5): 1513-1531, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36747478

ABSTRACT

Plant roots possess remarkable regenerative potential owing to their ability to replenish damaged or lost stem cells. ETHYLENE RESPONSE FACTOR 115 (ERF115), one of the key molecular elements linked to this potential, plays a predominant role in the activation of regenerative cell divisions. However, the downstream operating molecular machinery driving wound-activated cell division is largely unknown. Here, we biochemically and genetically identified the GRAS-domain transcription factor SCARECROW-LIKE 5 (SCL5) as an interaction partner of ERF115 in Arabidopsis thaliana. Although nonessential under control growth conditions, SCL5 acts redundantly with the related PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) and SCL21 transcription factors to activate the expression of the DNA-BINDING ONE FINGER 3.4 (DOF3.4) transcription factor gene. DOF3.4 expression is wound-inducible in an ERF115-dependent manner and, in turn, activates D3-type cyclin expression. Accordingly, ectopic DOF3.4 expression drives periclinal cell division, while its downstream D3-type cyclins are essential for the regeneration of a damaged root. Our data highlight the importance and redundant roles of the SCL5, SCL21, and PAT1 transcription factors in wound-activated regeneration processes and pinpoint DOF3.4 as a key downstream element driving regenerative cell division.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Phytochrome A/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Division , Transcription Factors/genetics , Transcription Factors/metabolism , Cyclins/metabolism , Signal Transduction/genetics , Plant Roots/metabolism , Gene Expression Regulation, Plant/genetics
14.
Plant Physiol ; 192(1): 409-425, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36760164

ABSTRACT

Emission of scent volatiles by flowers is important for successful pollination and consequently, reproduction. Petunia (Petunia hybrida) floral scent is formed mainly by volatile products of the phenylpropanoid pathway. We identified and characterized a regulator of petunia scent production: the GRAS protein PHENYLPROPANOID EMISSION-REGULATING SCARECROW-LIKE (PES). Its expression increased in petals during bud development and was highest in open flowers. Overexpression of PES increased the production of floral volatiles, while its suppression resulted in scent reduction. We showed that PES upregulates the expression of genes encoding enzymes of the phenylpropanoid and shikimate pathways in petals, and of the core regulator of volatile biosynthesis ODORANT1 by activating its promoter. PES is an ortholog of Arabidopsis (Arabidopsis thaliana) PHYTOCHROME A SIGNAL TRANSDUCTION 1, involved in physiological responses to far-red (FR) light. Analyses of the effect of nonphotosynthetic irradiation (low-intensity FR light) on petunia floral volatiles revealed FR light as a scent-activating factor. While PHYTOCHROME A regulated scent-related gene expression and floral scent production under FR light, the influence of PES on volatile production was not limited by FR light conditions.


Subject(s)
Arabidopsis , Petunia , Petunia/genetics , Petunia/metabolism , Odorants , Phytochrome A/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers
15.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768431

ABSTRACT

Extensive research has been conducted for decades to elucidate the molecular and regulatory mechanisms for phytochrome-mediated light signaling in plants. As a result, tens of downstream signaling components that physically interact with phytochromes are identified, among which negative transcription factors for photomorphogenesis, PHYTOCHROME-INTERACTING FACTORs (PIFs), are well known to be regulated by phytochromes. In addition, phytochromes are also shown to inactivate an important E3 ligase complex consisting of CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSORs OF phyA-105 (SPAs). This inactivation induces the accumulation of positive transcription factors for plant photomorphogenesis, such as ELONGATED HYPOCOTYL 5 (HY5). Although many downstream components of phytochrome signaling have been studied thus far, it is not fully elucidated which intrinsic activity of phytochromes is necessary for the regulation of these components. It should be noted that phytochromes are autophosphorylating protein kinases. Recently, the protein kinase activity of phytochrome A (phyA) has shown to be important for its function in plant light signaling using Avena sativa phyA mutants with reduced or increased kinase activity. In this review, we highlight the function of phyA as a protein kinase to explain the regulation of plant photoresponses by phyA.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Phytochrome A/genetics , Phytochrome A/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Phytochrome/genetics , Phytochrome/metabolism , Plants/genetics , Plants/metabolism , Protein Kinases/metabolism , Transcription Factors/metabolism , Light , Gene Expression Regulation, Plant
16.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675076

ABSTRACT

Drought stress is a severe environmental issue that threatens agriculture at a large scale. PHYTOCHROMES (PHYs) are important photoreceptors in plants that control plant growth and development and are involved in plant stress response. The aim of this study was to identify the role of PHYs in the tomato cv. 'Moneymaker' under drought conditions. The tomato genome contains five PHYs, among which mutant lines in tomato PHYA and PHYB (B1 and B2) were used. Compared to the WT, phyA and phyB1B2 mutants exhibited drought tolerance and showed inhibition of electrolyte leakage and malondialdehyde accumulation, indicating decreased membrane damage in the leaves. Both phy mutants also inhibited oxidative damage by enhancing the expression of reactive oxygen species (ROS) scavenger genes, inhibiting hydrogen peroxide (H2O2) accumulation, and enhancing the percentage of antioxidant activities via DPPH test. Moreover, expression levels of several aquaporins were significantly higher in phyA and phyB1B2, and the relative water content (RWC) in leaves was higher than the RWC in the WT under drought stress, suggesting the enhancement of hydration status in the phy mutants. Therefore, inhibition of oxidative damage in phyA and phyB1B2 mutants may mitigate the harmful effects of drought by preventing membrane damage and conserving the plant hydrostatus.


Subject(s)
Phytochrome , Solanum lycopersicum , Phytochrome A/genetics , Phytochrome A/metabolism , Solanum lycopersicum/genetics , Drought Resistance , Hydrogen Peroxide/metabolism , Phytochrome/metabolism , Mutation , Gene Expression Regulation, Plant , Phytochrome B/genetics , Phytochrome B/metabolism
17.
J Integr Plant Biol ; 65(4): 888-894, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36394421

ABSTRACT

In Arabidopsis, although studies have demonstrated that phytochrome A (phyA) and phyB are involved in blue light signaling, how blue light-activated phytochromes modulate the activity of the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-SUPPRESSOR OF PHYA-105 (SPA1) E3 complex remains largely unknown. Here, we show that phyA responds to early and weak blue light, whereas phyB responds to sustainable and strong blue light. Activation of both phyA and phyB by blue light inhibits SPA1 activity. Specifically, blue light irradiation promoted the nuclear import of both phytochromes to stimulate their binding to SPA1, abolishing SPA1's interaction with LONG HYPOCOTYL 5 (HY5) to release HY5, which promoted seedling photomorphogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Phytochrome/genetics , Phytochrome/metabolism , Arabidopsis Proteins/metabolism , Light , Phytochrome A/genetics , Phytochrome A/metabolism , Cell Cycle Proteins/metabolism
18.
Proc Natl Acad Sci U S A ; 119(41): e2208708119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191205

ABSTRACT

Photoperiod is an important environmental cue. Plants can distinguish the seasons and flower at the right time through sensing the photoperiod. Soybean is a sensitive short-day crop, and the timing of flowering varies greatly at different latitudes, thus affecting yields. Soybean cultivars in high latitudes adapt to the long day by the impairment of two phytochrome genes, PHYA3 and PHYA2, and the legume-specific flowering suppressor, E1. However, the regulating mechanism underlying phyA and E1 in soybean remains largely unknown. Here, we classified the regulation of the E1 family by phyA2 and phyA3 at the transcriptional and posttranscriptional levels, revealing that phyA2 and phyA3 regulate E1 by directly binding to LUX proteins, the critical component of the evening complex, to regulate the stability of LUX proteins. In addition, phyA2 and phyA3 can also directly associate with E1 and its homologs to stabilize the E1 proteins. Therefore, phyA homologs control the core flowering suppressor E1 at both the transcriptional and posttranscriptional levels, to double ensure the E1 activity. Thus, our results disclose a photoperiod flowering mechanism in plants by which the phytochrome A regulates LUX and E1 activity.


Subject(s)
Photoperiod , Phytochrome , Flowers/physiology , Gene Expression Regulation, Plant , Phytochrome/genetics , Phytochrome/metabolism , Phytochrome A/genetics , Phytochrome A/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine max/metabolism
19.
Plant Cell ; 34(8): 2907-2924, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35543486

ABSTRACT

To enhance plant fitness under natural conditions, the circadian clock is synchronized and entrained by light via photoreceptors. In turn, the circadian clock exquisitely regulates the abundance and activity of photoreceptors via largely uncharacterized mechanisms. Here we show that the clock regulator TIME FOR COFFEE (TIC) controls the activity of the far-red light photoreceptor phytochrome A (phyA) at multiple levels in Arabidopsis thaliana. Null mutants of TIC displayed dramatically increased sensitivity to light irradiation with respect to hypocotyl growth, especially to far-red light. RNA-sequencing demonstrated that TIC and phyA play largely opposing roles in controlling light-regulated gene expression at dawn. Additionally, TIC physically interacts with the transcriptional repressor TOPLESS (TPL), which was associated with the significantly increased PHYA transcript levels in the tic-2 and tpl-1 mutants. Moreover, TIC interacts with phyA in the nucleus, thereby affecting phyA protein turnover and the formation of phyA nuclear speckles following light irradiation. Genetically, phyA was found to act downstream of TIC in regulating far red light-inhibited growth. Taken together, these findings indicate that TIC acts as a major negative regulator of phyA by integrating transcriptional and post-translational mechanisms at multiple levels.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Tics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Hypocotyl , Light , Phytochrome/genetics , Phytochrome/metabolism , Phytochrome A/genetics , Phytochrome A/metabolism , Phytochrome B/genetics , Phytochrome B/metabolism
20.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35163602

ABSTRACT

Heat stress (HS) is a prevalent negative factor affecting plant growth and development, as it is predominant worldwide and threatens agriculture on a large scale. PHYTOCHROMES (PHYs) are photoreceptors that control plant growth and development, and the stress signaling response partially interferes with their activity. PHYA, B1, and B2 are the most well-known PHY types in tomatoes. Our study aimed to identify the role of tomato 'Money Maker' phyA and phyB1B2 mutants in stable and fluctuating high temperatures at different growth stages. In the seed germination and vegetative growth stages, the phy mutants were HS tolerant, while during the flowering stage the phy mutants revealed two opposing roles depending on the HS exposure period. The response of the phy mutants to HS during the fruiting stage showed similarity to WT. The most obvious stage that demonstrated phy mutants' tolerance was the vegetative growth stage, in which a high degree of membrane stability and enhanced water preservation were achieved by the regulation of stomatal closure. In addition, both mutants upregulated the expression of heat-responsive genes related to heat tolerance. In addition to lower malondialdehyde accumulation, the phyA mutant enhanced proline levels. These results clarified the response of tomato phyA and phyB1B2 mutants to HS.


Subject(s)
Heat-Shock Response , Mutation , Phytochrome A/metabolism , Phytochrome B/metabolism , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Phytochrome A/genetics , Phytochrome B/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...