Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 898
Filter
1.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675529

ABSTRACT

It is well known that daidzein has various significant medicinal values and health benefits, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, cholesterol lowering, neuroprotective, cardioprotective and so on. To our disappointment, poor solubility, low permeability and inferior bioavailability seriously limit its clinical application and market development. To optimize the solubility, permeability and bioavailability of daidzein, the cocrystal of daidzein and piperazine was prepared through a scientific and reasonable design, which was thoroughly characterized by single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Combining single-crystal X-ray diffraction analysis with theoretical calculation, detailed structural information on the cocrystal was clarified and validated. In addition, a series of evaluations on the pharmacogenetic properties of the cocrystal were investigated. The results indicated that the cocrystal of daidzein and piperazine possessed the favorable stability, increased solubility, improved permeability and optimized bioavailability of daidzein. Compared with the parent drug, the formation of cocrystal, respectively, resulted in 3.9-, 3.1-, 4.9- and 60.8-fold enhancement in the solubility in four different media, 4.8-fold elevation in the permeability and 3.2-fold in the bioavailability of daidzein. Targeting the pharmaceutical defects of daidzein, the surprising elevation in the solubility, permeability and bioavailability of daidzein was realized by a clever cocrystal strategy, which not only devoted assistance to the market development and clinical application of daidzein but also paved a new path to address the drug-forming defects of insoluble drugs.


Subject(s)
Biological Availability , Isoflavones , Permeability , Piperazine , Solubility , Isoflavones/chemistry , Isoflavones/pharmacokinetics , Piperazine/chemistry , Crystallization , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Animals , Crystallography, X-Ray , Calorimetry, Differential Scanning , Humans
2.
Biomed Pharmacother ; 174: 116484, 2024 May.
Article in English | MEDLINE | ID: mdl-38565058

ABSTRACT

A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aß1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aß1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 µM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aß, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid beta-Peptides , Benzothiazoles , Cholinesterase Inhibitors , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Amyloid beta-Peptides/metabolism , Acetylcholinesterase/metabolism , Mice , Male , Humans , Piperazines/pharmacology , Piperazines/chemistry , Scopolamine , Piperazine/pharmacology , Piperazine/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Molecular Dynamics Simulation , Computer Simulation , Disease Models, Animal , Maze Learning/drug effects
3.
Bioorg Med Chem ; 104: 117698, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38552597

ABSTRACT

Serotonin reuptake inhibition combined with the action targeting 5-hydroxytryptamine receptor subtypes can serve as a potential target for the development of antidepressant drugs. Herein a series of new aralkyl piperazines and piperidines were designed and synthesized by the structural modifications of the previously discovered aralkyl piperidine compound 1, targeting SSRI/5-HT1A/5-HT7. The results exhibited that compound 5a showed strong binding to 5-HT1A and 5-HT7 (Ki of 0.46 nM, 2.7 nM, respectively) and a high level of serotonin reuptake inhibition (IC50 of 1.9 nM), all of which were significantly elevated compared to 1. In particular, compound 5a showed weaker inhibitory activity against hERG than 1, and demonstrated good stability in liver microsomes in vitro. The preliminary screening using FST indicated that orally administered 5a, at a high dose, could reduce immobility time in mice markedly, indicating potential antidepressant activity.


Subject(s)
Selective Serotonin Reuptake Inhibitors , Serotonin , Mice , Animals , Piperazine/pharmacology , Serotonin/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Piperidines/pharmacology , Piperazines/chemistry , Receptor, Serotonin, 5-HT1A
4.
Chemosphere ; 355: 141763, 2024 May.
Article in English | MEDLINE | ID: mdl-38522672

ABSTRACT

The fluoroquinolones ciprofloxacin, danofloxacin, enoxacin, levofloxacin and lomefloxacin, occur in water bodies worldwide and therefore pose a threat to the aquatic environment. Advanced purification procedures, such as electrochemical oxidation, may act as a remedy since they contribute to eliminating contaminants and prevent micropollutants from entering open water bodies. By electrochemical treatment in a micro-flow reactor equipped with a boron-doped diamond (BDD) electrode, the fluoroquinolones were efficiently degraded. A total of 15 new products were identified using high-performance high-resolution chromatography coupled with high-resolution multifragmentation mass spectrometry. The ecotoxicity of the emerging transformation products was estimated through in silico quantitative structure activity relationship analysis. Almost all transformation products were predicted less ecotoxic than the initial compounds. The fluoroquinolone degradation followed three major mechanisms depending on the voltage during the electrochemical oxidation. At approximately 1 V, the reactions started with the elimination of molecular hydrogen from the piperazine moiety. At approx. 1.25 V, methyl and methylene groups were eliminated. At 1.5 V, hydroxyl radicals, generated at the BDD electrode, led to substitution at the piperazine ring. This novel finding of the three reactions depending on voltage contributes to the mechanistic understanding of electrochemical oxidation as potential remedy against fluoroquinolones in the aquatic environment.


Subject(s)
Ciprofloxacin , Water Pollutants, Chemical , Ciprofloxacin/chemistry , Levofloxacin/analysis , Enoxacin/analysis , Diamond/chemistry , Fluoroquinolones/analysis , Piperazine , Oxidation-Reduction , Electrodes , Water , Water Pollutants, Chemical/analysis
5.
Chem Biol Drug Des ; 103(3): e14499, 2024 03.
Article in English | MEDLINE | ID: mdl-38444047

ABSTRACT

In this paper, we report the synthesis of quinoxaline-isoxazole-piperazine conjugates. The anticancer activity was evaluated against three human cancer cell lines, including MCF-7 (breast), HepG-2 (liver), and HCT-116 (colorectal). The outcomes of the tested compounds 5d, 5e, and 5f have shown more potent activity when compared to the standard drug erlotinib. In a cell survivability test (MCF-10A), three potent compounds (5d, 5e, and 5f) were evaluated against the normal breast cell line, although neither of them displayed any significant cytotoxicity with IC50 values greater than 84 µM. Furthermore, the compounds 5d, 5e, and 5f were tested for tyrosine kinase EGFR inhibitory action using erlotinib as the reference drug and compound 5e was shown to be more potent in inhibiting the tyrosine kinase EGFR than sorafenib. In addition to this, molecular docking studies of compounds 5d, 5e, and 5f demonstrated that these compounds had more EGFR-binding interactions. The potent compounds 5d, 5e, and 5f were subjected to in silico pharmacokinetic assessment by SWISS, ADME, and pkCSM. While the compounds 5d, 5e, and 5f followed Lipinski, Veber, Egan, and Muegge rules without any deviation.


Subject(s)
Antineoplastic Agents , Quinoxalines , Humans , Molecular Docking Simulation , Erlotinib Hydrochloride/pharmacology , Quinoxalines/pharmacology , Antineoplastic Agents/pharmacology , Isoxazoles , Piperazine , Protein-Tyrosine Kinases , ErbB Receptors
6.
Angew Chem Int Ed Engl ; 63(20): e202401324, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38499463

ABSTRACT

We report the discovery and biosynthesis of new piperazine alkaloids-arizonamides, and their derived compounds-arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non-heme iron enzymes, ParF and ParG, for core skeleton construction. ParF has a dual function facilitating 2,3-alkene formation of helvamide, as a substrate for ParG, and oxidative cleavage of piperazine. Notably, ParG exhibits catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. A key amino acid residue Phe67 was characterized to control the formation of the constrained arizonamide B backbone by ParG.


Subject(s)
Alkaloids , Alkaloids/chemistry , Alkaloids/metabolism , Alkaloids/biosynthesis , Piperazines/chemistry , Piperazines/metabolism , Iron/chemistry , Iron/metabolism , Cyclization , Biocatalysis , Molecular Structure , Spiro Compounds/chemistry , Spiro Compounds/metabolism , Oxidation-Reduction , Piperazine/chemistry , Piperazine/metabolism
7.
J Am Chem Soc ; 146(8): 5204-5214, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38358897

ABSTRACT

We report piperazine-fused six-membered-cyclic disulfides as redox substrates that unlock best-in-class bioreduction probes for live cell biology, since their self-immolation after reduction is unprecedentedly rapid. We develop scalable, diastereomerically pure, six-step syntheses that access four key cis- and trans-piperazine-fused cyclic dichalcogenides without chromatography. Fluorogenic redox probes using the disulfide piperazines are activated >100-fold faster than the prior art monoamines, allowing us to deconvolute reduction and cyclization rates during activation. The cis- and trans-fused diastereomers have remarkably different reductant specificities, which we trace back to piperazine boat/chair conformation effects: the cis-fused disulfide C-DiThia is activated only by strong vicinal dithiol reductants, but the trans-disulfide T-DiThia is activated even by moderate concentrations of monothiols such as GSH. Thus, in cellular applications, cis-disulfide probes selectively report on the reductive activity of the powerful thioredoxin proteins, while trans-disulfides are rapidly but promiscuously reactive. Finally, we showcase late-stage diversifications of the piperazine-disulfides, promising their broad applicability as redox-cleavable cores for probes and prodrugs that interface powerfully with cellular thiol/disulfide redox biology, for solid phase synthesis and purification, and for stimulus-responsive linkers in bifunctional reagents and antibody-drug conjugates - in addition to their dithiols' potential as high-performance reducing agents.


Subject(s)
Disulfides , Sulfhydryl Compounds , Disulfides/chemistry , Sulfhydryl Compounds/chemistry , Cross-Linking Reagents , Piperazine , Thioredoxins/metabolism , Oxidation-Reduction , Biology
8.
Drug Dev Res ; 85(1): e22153, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349258

ABSTRACT

An innovative series of N-substituted piperazine-linked imidazothiazole derivatives 7(a-x) were synthesized, and their antitubercular effectiveness was evaluated. A three-step reaction sequence involving the condensation of 1,3-dichloroacetone and thiourea, coupling with substituted piperazines to give the intermediates 5(a-d) and cyclization with substituted α-bromoacetophenones produced the desired imidazothiazole derivatives 7(a-x) in excellent yields. In vitro screening of new derivatives against Mycobacterium tuberculosis H37Rv resulted in 7k (minimum inhibitory concentration [MIC]: 0.78 µg/mL) and 7g and 7h (MIC: 1.56 µg/mL) as potent hit compounds. Further, the docking studies of the promising compounds 7k, 7g, and 7h revealed that the best molecular interactions are with the DprE1 in complex with sulfonyl PBTZ of M. tuberculosis as the target protein (PDB ID: 6G83).


Subject(s)
Mycobacterium tuberculosis , Piperazine/pharmacology , Piperazines/pharmacology , Antitubercular Agents/pharmacology , Thiazoles/pharmacology
9.
Int J Biol Macromol ; 261(Pt 2): 129689, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272428

ABSTRACT

Piperazine functionalized Schiff bases 4(a-c) were synthesized by a condensation reaction which were thoroughly characterized by using various spectroscopic techniques like 1H NMR, 13C NMR, IR and mass spectrometry. X-ray crystallography was used to analyse synthesized compound 4b. The sensing capability of 4b was investigated towards the tetravalent form of the zirconium ion among other metal ions. The limit of detection and the association constant, were calculated to be 56.4 × 10-8 M and 5.36 × 105 M-1 respectively. The inclusion of additional metal ions had no effect on the selectivity of sensor 4b. The binding mechanism was clarified using 1HNMR spectroscopy, which was further verified computationally, using DFT. Also, the seed germination experiments were performed and effect of compound 4b was analyzed on the seedlings of Zea Mays. An investigation into molecular docking study using (5HQX) protein revealed that it had inhibitory effects on cytokinin oxidase. The protein and ligand effectively associate, as indicated by the lower binding energy of -9.69 kcal/mol. Therefore, compound 4b can act as a good, powerful inhibitor against cytokinin oxidase.


Subject(s)
Antioxidants , Zea mays , Piperazine , Molecular Docking Simulation , Antioxidants/pharmacology , Copper/chemistry , Schiff Bases/chemistry , Ions
10.
Bioorg Chem ; 143: 107082, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199142

ABSTRACT

The multi-target directed ligand (MTDL) discovery has been gaining immense attention in the development of therapeutics for Alzheimer's disease (AD). The strategy has been evolved as an auspicious approach suitable to combat the heterogeneity and the multifactorial nature of AD. Therefore, multi-targetable chalcone derivatives bearing N-aryl piperazine moiety were designed, synthesized, and evaluated for the treatment of AD. All the synthesized compounds were screened for thein vitro activityagainst acetylcholinesterase (AChE), butylcholinesterase (BuChE), ß-secretase-1 (BACE-1), and inhibition of amyloid ß (Aß) aggregation. Amongst all the tested derivatives, compound 41bearing unsubstituted benzylpiperazine fragment and para-bromo substitution at the chalcone scaffold exhibited balanced inhibitory profile against the selected targets. Compound 41 elicited favourable permeation across the blood-brain barrier in the PAMPA assay. The molecular docking and dynamics simulation studies revealed the binding mode analysis and protein-ligand stability ofthe compound with AChE and BACE-1. Furthermore,itameliorated cognitive dysfunctions and signified memory improvement in thein-vivobehavioural studies (scopolamine-induced amnesia model). Theex vivobiochemical analysis of mice brain homogenates established the reduced AChE and increased ACh levels. The antioxidant activity of compound 41 was accessed with the determination of catalase (CAT) and malondialdehyde (MDA) levels. The findings suggested thatcompound 41, containing a privileged chalcone scaffold, can act as a lead molecule for developing AD therapeutics.


Subject(s)
Alzheimer Disease , Chalcone , Chalcones , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Chalcones/chemistry , Acetylcholinesterase/metabolism , Piperazine/pharmacology , Molecular Docking Simulation , Ligands , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Piperazines/pharmacology , Structure-Activity Relationship , Drug Design
11.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256142

ABSTRACT

To reduce the mortality and morbidity associated with cancer, new cancer theranostics are in high demand and are an emerging area of research. To achieve this goal, we report the synthesis and characterization of piperazine-linked 1,8-naphthalimide-arylsulfonyl derivatives (SA1-SA7). These compounds were synthesized in good yields following a two-step protocol and characterized using multiple analytical techniques. In vitro cytotoxicity and fluorescent cellular imaging of the compounds were assessed against non-cancerous fibroblast (3T3) and breast cancer (4T1) cell lines. Although the former study indicated the safe nature of the compounds (viability = 82-95% at 1 µg/mL), imaging studies revealed that the designed probes had good membrane permeability and could disperse in the whole cell cytoplasm. In silico studies, including molecular docking, molecular dynamics (MD) simulation, and ADME/Tox results, indicated that the compounds had the ability to target CAIX-expressing cancers. These findings suggest that piperazine-linked 1,8-naphthalimide-arylsulfonyl derivatives are potential candidates for cancer theranostics and a valuable backbone for future research.


Subject(s)
Naphthalimides , Neoplasms , Humans , Molecular Docking Simulation , Piperazine , Molecular Imaging
12.
Bioorg Med Chem ; 98: 117562, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38184947

ABSTRACT

In this report, a library consisting of three sets of indole-piperazine derivatives was designed through the molecular hybridization approach. In total, fifty new hybrid compounds (T1-T50) were synthesized and screened for antitubercular activity against Mycobacterium tuberculosis H37Rv strain (ATCC-27294). Five (T36, T43, T44, T48 and T49) among fifty compounds exhibited significant inhibitory potency with the MIC of 1.6 µg/mL, which is twofold more potent than the standard first-line TB drug Pyrazinamide and equipotent with Isoniazid. N-1,2,3-triazolyl indole-piperazine derivatives displayed improved inhibition activity as compared to the simple and N-benzyl indole-piperazine derivatives. In addition, the observed activity profile of indole-piperazines was similar to standard anti-TB drugs (isoniazid and pyrazinamide) against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa strains, demonstrating the compounds' selectivity towards the Mycobacterium tuberculosis H37Rv strain. All the active anti-TB compounds are proved to be non-toxic (with IC50 > 300 µg/mL) as verified through the toxicity evaluation against VERO cell lines. Additionally, molecular docking studies against two target enzymes (Inh A and CYP121) were performed to validate the activity profile of indole-piperazine derivatives. Further, in silico-ADME prediction and pharmacokinetic parameters indicated that these compounds have good oral bioavailability.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Molecular Docking Simulation , Isoniazid/pharmacology , Pyrazinamide , Piperazines/pharmacology , Triazoles/pharmacology , Triazoles/metabolism , Piperazine , Structure-Activity Relationship , Mycobacterium tuberculosis/metabolism , Indoles/pharmacology , Microbial Sensitivity Tests
13.
Bioorg Med Chem Lett ; 100: 129620, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38280655

ABSTRACT

Six amino derivatives of xanthone were obtained via chemical synthesis. Biochemical studies revealed their SIRT2 inhibitory activity ranging from 48.5 % (compound 4, 5-chloro-2-((4-(3-methoxyphenyl)piperazin-1-yl)methyl)-9H-xanthen-9-one hydrochloride) to 93.2 % (compound 3, 5-chloro-2-(((2-methoxyphenethyl)amino)methyl)-9H-xanthen-9-one hydrochloride). The structure-activity analysis showed favourable properties of secondary amines relative to tertiary piperazine derivatives. The tested compounds do not possess additional SIRT1 activating activity and no antioxidant activity (DPPH in vitro assay). Comprehensive analysis of the lipophilicity of the obtained compounds was also performed. For compound 3 potential molecular targets and similar active compounds were predicted in order to facilitate further research in this group of compounds.


Subject(s)
Sirtuin 2 , Xanthones , Piperazine , Xanthones/pharmacology , Xanthones/chemistry , Structure-Activity Relationship
14.
Med Chem ; 20(1): 17-29, 2024.
Article in English | MEDLINE | ID: mdl-37815177

ABSTRACT

Despite extensive research in the field of drug discovery and development, still there is a need to develop novel molecular entities. Literature reveals a substantial heterocyclic nucleus named, piperazine, which shows an immense therapeutic voyage. For several decades, molecules having the piperazine nucleus have entered the market as a drug exhibiting biological potential. It was known to possess antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardioprotective, and anti-inflammatory activity with a specific basis for structural activity relationship. Thus, it is regarded as a key structural feature in most of the already available therapeutic drugs in the market. Reports also suggest that the extensive utilization of these currently available drugs having a piperazine nucleus shows increasing tolerance significantly day by day. In addition to this, various other factors like solubility, low bioavailability, cost-effectiveness, and imbalance between pharmacokinetics and pharmacodynamics profile limit their utilization. Focusing on that issues, various structural modification studies were performed on the piperazine moiety to develop new derivatives/analogs to overcome the problems associated with available marketed drugs. Thus, this review article aims to gain insight into the number of structural modifications at the N-1 and N-4 positions of the piperazine scaffold. This SAR approach may prove to be the best way to overcome the above-discussed drawbacks and lead to the design of drug molecules with better efficacy and affinity. Hence, there is an urgent need to focus on the structural features of this scaffold which paves further work for deeper exploration and may help medicinal chemists as well as pharmaceutical industries.


Subject(s)
Drug Discovery , Piperazine , Structure-Activity Relationship
15.
Eur J Med Chem ; 264: 115969, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38039787

ABSTRACT

The persistence of drug resistance poses a significant obstacle to the advancement of efficacious malaria treatments. The remarkable efficacy displayed by 1,2,3-triazole-based compounds against Plasmodium falciparum highlights the potential of triazole conjugates, with diverse pharmacologically active structures, as potential antimalarial agents. We aimed to synthesize 7-dichloroquinoline-triazole conjugates and their structure-activity relationship (SAR) derivatives to investigate their anti-plasmodial activity. Among them, QP11, featuring a m-NO2 substitution, demonstrated efficacy against both chloroquine-sensitive and -resistant parasite strains. QP11 selectively inhibited FP2, a cysteine protease involved in hemoglobin degradation, and showed synergistic effects when combined with chloroquine. Additionally, QP11 hindered hemoglobin degradation and hemozoin formation within the parasite. Metabolic stability studies indicated high stability of QP11, making it a promising antimalarial candidate. In vivo evaluation using a murine malaria model demonstrated QP11's efficacy in eradicating parasite growth without neurotoxicity, presenting it as a promising compound for novel antimalarial development.


Subject(s)
Antimalarials , Malaria , Animals , Mice , Antimalarials/chemistry , Piperazine/pharmacology , Triazoles/chemistry , Chloroquine/pharmacology , Malaria/drug therapy , Plasmodium falciparum , Hemoglobins/metabolism , Hemoglobins/pharmacology , Hemoglobins/therapeutic use
16.
Pest Manag Sci ; 80(3): 1026-1038, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37842924

ABSTRACT

BACKGROUND: Plant bacterial infections and plant viruses seriously affect the yield and quality of crops. Based on the various activities of tryptanthrin, a series of tryptanthrin analogues bearing F and piperazine moieties were designed, synthesized, and evaluated for their biological activities against three plant bacteria and tobacco mosaic virus (TMV). RESULTS: Bioassay results indicated that compounds 6a-6l displayed excellent antibacterial activities in vitro and 6a-6c and 6g exhibited better antiviral activities against TMV than commercial ribavirin. In particular, 6b showed the most effect on Xanthomonas oryzae pv. oryzae (Xoo) with a half-maximal effective concentration (EC50 ) of 1.26 µg mL-1 , compared with the commercial pesticide bismerthiazol (BT; EC50 = 34.3 µg mL-1 ) and thiodiazole copper (TC; EC50 = 73.3 µg mL-1 ). Meanwhile, 6a also had the best antiviral activity at 500 µg mL-1 for curative, protection, and inactivation purposes, compared with ribavirin in vivo. CONCLUSION: Compound 6b could cause changes in bacterial morphology, induce the accumulation of reactive oxygen species, promote apoptosis of bacterial cells, inhibit the formation of biofilm, and block the growth of Xoo cells. Proteomic analysis revealed major differences in the bacterial secretory system pathways T2SS and T6SS, which inhibited membrane transport. Molecular docking revealed that 6a and 6g could interact with TMV coat protein preventing virus assembly. These results suggest that tryptanthrin analogues bearing F and piperazine moieties could be promising candidate agents for antibacterial and antiviral use in agricultural production. © 2023 Society of Chemical Industry.


Subject(s)
Oryza , Quinazolines , Tobacco Mosaic Virus , Xanthomonas , Ribavirin/metabolism , Ribavirin/pharmacology , Molecular Docking Simulation , Piperazine/metabolism , Piperazine/pharmacology , Proteomics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Plant Diseases , Structure-Activity Relationship
17.
Int J Mol Sci ; 24(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069364

ABSTRACT

Breast cancer is the most common type of cancer in women. Although current treatments can increase patient survival, they are rarely curative when the disease is advanced (metastasis). Therefore, there is an urgent need to develop new cytotoxic drugs with a high selectivity toward cancer cells. Since repurposing approved drugs for cancer therapy has been a successful strategy in recent years, in this study, we screened a library of antiviral piperazine-derived compounds as anticancer agents. The compounds included a piperazine ring and aryl urea functions, which are privileged structures present in several anti-breast cancer drugs. The selective cytotoxic activity of a set of thirty-four 4-acyl-2-substituted piperazine urea derivatives against MCF7 breast cancer cells and MCF 10A normal breast cells was determined. Compounds 31, 32, 35, and 37 showed high selective anticancer activity against breast cancer cells and were also tested against another common type of cancer, non-small cell lung cancer (A549 lung cancer cells versus MRC-5 lung normal cells). Compounds 35 and 37 also showed selectivity against lung cancer cells. These results suggest that compounds 35 and 37 may be promising hit compounds for the development of new anticancer agents.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Female , Humans , Breast Neoplasms/drug therapy , Drug Repositioning , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Piperazine/pharmacology , Piperazine/chemistry , Urea/pharmacology , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Cell Proliferation , Molecular Structure , MCF-7 Cells
18.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139243

ABSTRACT

Thiazole and piperazine are two important heterocyclic rings that play a prominent role in nature and have a broad range of applications in agricultural and medicinal chemistry. Herein, we report the parallel synthesis of a library of diverse piperazine-tethered thiazole compounds. The reaction of piperazine with newly generated 4-chloromethyl-2-amino thiazoles led to the desired piperazine thiazole compounds with high purities and good overall yields. Using a variety of commercially available carboxylic acids, the parallel synthesis of a variety of disubstituted 4-(piperazin-1-ylmethyl)thiazol-2-amine derivatives is described. the screening of the compounds led to the identification of antiplasmodial compounds that exhibited interesting antimalarial activity, primarily against the Plasmodium falciparum chloroquine-resistant Dd2 strain. The hit compound 2291-61 demonstrated an antiplasmodial EC50 of 102 nM in the chloroquine-resistant Dd2 strain and a selectivity of over 140.


Subject(s)
Antimalarials , Antimalarials/chemistry , Piperazine , Thiazoles/chemistry , Chloroquine/pharmacology , Chloroquine/chemistry , Plasmodium falciparum
19.
Microb Pathog ; 184: 106369, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37778705

ABSTRACT

Historically, the piperazine moiety has been demonstrated to possess pharmacophoric properties, and has subsequently been incorporated in many drugs that have antitumor, antimalarial, antiviral, antibacterial and antifungal properties. Derivatives of eugenol and dihydroeugenol have also been reported as being bioactive compounds. This study reports the synthesis of a range of eugenol/dihydroeugenol - piperazine derivatives which have been tested as antimicrobial compounds against Gram positive, Gram negative and rapid-growing mycobacteria (RGM). The rationale employed in the design of the structural pattern of these new derivatives, provides useful insights into the structure-activity relationships (SAR) of the series. Antimicrobial activity tests were extremely encouraging, with the majority of the synthesised compounds being more active than eugenol and dihydroeugenol starting materials. The antimicrobial potential was most notable against the Gram-negative species K. pneumoniae and P. aeruginosa, but there was also significant performance against the Gram-positive strains S. epidermidis and S. aureus and the Rapidly Growing Mycobacteria (RGM) strains tested. Tests using the synthesised compounds against multidrug-resistance clinical (MDR) isolates also showed high activity. The biofilm inhibition tests using M. fortuitum showed that all evaluated derivatives were able to inhibit biofilm formation even at low concentrations. In terms of structural-activity relationships; the results generated by this study demonstrate that the compounds with bulky substituents on the piperazine subunit were much more active than those with less bulky groups, or no groups. Importantly, the derivatives with a sulfonamide side chain were the most potent compounds. A further observation was that those compounds with a para-substituted benzenesulfonamide ring stand out, regardless of whether this substituent is a donor or an electron-withdrawing group.


Subject(s)
Anti-Infective Agents , Eugenol , Eugenol/pharmacology , Piperazine/pharmacology , Staphylococcus aureus , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nontuberculous Mycobacteria
20.
Eur J Med Chem ; 261: 115863, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37837672

ABSTRACT

In pursuance of our efforts to expand the scope of novel antileishmanial entities, a series of thirty-five quinoline-piperazine/pyrrolidine, and other heterocyclic amine derivatives were synthesized via a molecular hybridization approach and examined against intracellular amastigotes of luciferase-expressing Leishmania donovani. The preliminary in vitro screening suggests that twelve compounds in the series exhibited better inhibition against amastigote form with good IC50 values ranging from 2.09 to 8.89 µM and lesser cytotoxicity in contrast to the standard drug miltefosine (IC50 9.25 ± 0.17 µM). Based on the satisfactory selectivity index (SI), two compounds were tested for in vivo leishmanicidal efficacy against Leishmania donovani/golden hamster model. Compounds 33 and 46 have shown significant inhibition of 56.32%, and 49.29%, respectively, in vivo screening at a daily dose of 50 mg/kg for 5 days. The pharmacokinetic results confirmed that 33 and 46 have satisfactory IP exposure with adequate parameters. Collectively, Compound 33 was identified as the most significant potential lead that could be employed as a prototype for future optimizations.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Quinolines , Piperazine , Quinolines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...