Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
J Agric Food Chem ; 72(20): 11360-11368, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38720533

ABSTRACT

In this study, a series of acrylamide derivatives containing trifluoromethylpyridine or piperazine fragments were rationally designed and synthesized. Subsequently, the in vitro antifungal activities of all of the synthesized compounds were evaluated. The findings revealed that compounds 6b, 6c, and 7e exhibited >80% antifungal activity against Phomopsis sp. (Ps) at the concentration of 50 µg/mL. Furthermore, the EC50 values for compounds 6b, 6c, and 7e against Ps were determined to be 4.49, 6.47, and 8.68 µg/mL, respectively, which were better than the positive control with azoxystrobin (24.83 µg/mL). At the concentration of 200 µg/mL, the protective activity of compound 6b against Ps reached 65%, which was comparable to that of azoxystrobin (60.9%). Comprehensive mechanistic studies, including morphological studies with fluorescence microscopy (FM), cytoplasmic leakage, and enzyme activity assays, indicated that compound 6b disrupts cell membrane integrity and induces the accumulation of defense enzyme activity, thereby inhibiting mycelial growth. Therefore, compound 6b serves as a valuable candidate for the development of novel fungicides for plant protection.


Subject(s)
Acrylamide , Drug Design , Fungicides, Industrial , Pyridines , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Acrylamide/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Structure-Activity Relationship , Ascomycota/drug effects , Ascomycota/growth & development , Piperazine/chemistry , Piperazine/pharmacology , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Molecular Structure , Microbial Sensitivity Tests , Plant Diseases/microbiology
2.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675529

ABSTRACT

It is well known that daidzein has various significant medicinal values and health benefits, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, cholesterol lowering, neuroprotective, cardioprotective and so on. To our disappointment, poor solubility, low permeability and inferior bioavailability seriously limit its clinical application and market development. To optimize the solubility, permeability and bioavailability of daidzein, the cocrystal of daidzein and piperazine was prepared through a scientific and reasonable design, which was thoroughly characterized by single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Combining single-crystal X-ray diffraction analysis with theoretical calculation, detailed structural information on the cocrystal was clarified and validated. In addition, a series of evaluations on the pharmacogenetic properties of the cocrystal were investigated. The results indicated that the cocrystal of daidzein and piperazine possessed the favorable stability, increased solubility, improved permeability and optimized bioavailability of daidzein. Compared with the parent drug, the formation of cocrystal, respectively, resulted in 3.9-, 3.1-, 4.9- and 60.8-fold enhancement in the solubility in four different media, 4.8-fold elevation in the permeability and 3.2-fold in the bioavailability of daidzein. Targeting the pharmaceutical defects of daidzein, the surprising elevation in the solubility, permeability and bioavailability of daidzein was realized by a clever cocrystal strategy, which not only devoted assistance to the market development and clinical application of daidzein but also paved a new path to address the drug-forming defects of insoluble drugs.


Subject(s)
Biological Availability , Isoflavones , Permeability , Piperazine , Solubility , Isoflavones/chemistry , Isoflavones/pharmacokinetics , Piperazine/chemistry , Crystallization , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Animals , Crystallography, X-Ray , Calorimetry, Differential Scanning , Humans
3.
Biomed Pharmacother ; 174: 116484, 2024 May.
Article in English | MEDLINE | ID: mdl-38565058

ABSTRACT

A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aß1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aß1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 µM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aß, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid beta-Peptides , Benzothiazoles , Cholinesterase Inhibitors , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Amyloid beta-Peptides/metabolism , Acetylcholinesterase/metabolism , Mice , Male , Humans , Piperazines/pharmacology , Piperazines/chemistry , Scopolamine , Piperazine/pharmacology , Piperazine/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Molecular Dynamics Simulation , Computer Simulation , Disease Models, Animal , Maze Learning/drug effects
4.
Angew Chem Int Ed Engl ; 63(20): e202401324, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38499463

ABSTRACT

We report the discovery and biosynthesis of new piperazine alkaloids-arizonamides, and their derived compounds-arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non-heme iron enzymes, ParF and ParG, for core skeleton construction. ParF has a dual function facilitating 2,3-alkene formation of helvamide, as a substrate for ParG, and oxidative cleavage of piperazine. Notably, ParG exhibits catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. A key amino acid residue Phe67 was characterized to control the formation of the constrained arizonamide B backbone by ParG.


Subject(s)
Alkaloids , Alkaloids/chemistry , Alkaloids/metabolism , Alkaloids/biosynthesis , Piperazines/chemistry , Piperazines/metabolism , Iron/chemistry , Iron/metabolism , Cyclization , Biocatalysis , Molecular Structure , Spiro Compounds/chemistry , Spiro Compounds/metabolism , Oxidation-Reduction , Piperazine/chemistry , Piperazine/metabolism
5.
Int J Mol Sci ; 24(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069364

ABSTRACT

Breast cancer is the most common type of cancer in women. Although current treatments can increase patient survival, they are rarely curative when the disease is advanced (metastasis). Therefore, there is an urgent need to develop new cytotoxic drugs with a high selectivity toward cancer cells. Since repurposing approved drugs for cancer therapy has been a successful strategy in recent years, in this study, we screened a library of antiviral piperazine-derived compounds as anticancer agents. The compounds included a piperazine ring and aryl urea functions, which are privileged structures present in several anti-breast cancer drugs. The selective cytotoxic activity of a set of thirty-four 4-acyl-2-substituted piperazine urea derivatives against MCF7 breast cancer cells and MCF 10A normal breast cells was determined. Compounds 31, 32, 35, and 37 showed high selective anticancer activity against breast cancer cells and were also tested against another common type of cancer, non-small cell lung cancer (A549 lung cancer cells versus MRC-5 lung normal cells). Compounds 35 and 37 also showed selectivity against lung cancer cells. These results suggest that compounds 35 and 37 may be promising hit compounds for the development of new anticancer agents.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Female , Humans , Breast Neoplasms/drug therapy , Drug Repositioning , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Piperazine/pharmacology , Piperazine/chemistry , Urea/pharmacology , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Cell Proliferation , Molecular Structure , MCF-7 Cells
6.
J Agric Food Chem ; 70(36): 10942-10971, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-35675050

ABSTRACT

Piperazine and homopiperazine are well-studied heterocycles in drug design that have found gainful application as scaffolds and terminal elements and for enhancing the aqueous solubility of a molecule. The optimization of drug candidates that incorporate these heterocycles in an effort to refine potency, selectivity, and developability properties has stimulated the design and evaluation of a wide range of bioisosteres that can offer advantage. In this review, we summarize the design and application of bioisosteres of piperazine and homopiperazine that have almost exclusively been in the drug design arena. While there are ∼100 approved drugs that incorporate a piperazine ring, only a single marketed agricultural product is built on this heterocycle. As part of the review, we discuss some of the potential reasons underlying the relatively low level of importance of this heterocycle to the design of agrochemicals and highlight the potential opportunities for their use in contemporary research programs.


Subject(s)
Drug Design , Piperazine/chemistry , Structure-Activity Relationship
7.
J Med Chem ; 65(3): 2107-2121, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35050619

ABSTRACT

Viral entry inhibitors are absent in hepatitis C virus (HCV) treatment regimens although a dozen direct-acting antiviral (DAA) drugs are available now. Based on a previously identified HCV entry inhibitor L0909, chemical space exploration and structure-activity relationship (SAR) studies led to the discovery of a new derived scaffold 2-((4-bisarylmethyl-piperazin-1-yl)methyl)benzonitrile. Several new scaffold derivatives exhibited higher in vitro anti-HCV activity at low nanomolar concentrations compared to L0909. A biological study indicated that the high potency of active derivatives 3d, 3h, and 3i was primarily driven by the inhibitory effect on the virus entry stage. Moreover, an SPR experiment confirmed that this class of derivatives might target the HCV E1 protein. Pharmacokinetic studies indicated that compounds 3d and 3i are orally available and long-lasting in rat plasma after oral administration to rats by a single dose of 15 mg/kg. In conclusion, this work provided a novel 2-((4-bisarylmethyl-piperazin-1-yl)methyl)benzonitrile chemotype deserving further investigation into its antiviral therapeutic potential.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/physiology , Nitriles/chemistry , Administration, Oral , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Cell Line , Drug Design , Half-Life , Humans , Nitriles/metabolism , Nitriles/pharmacokinetics , Nitriles/pharmacology , Piperazine/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Virus Internalization/drug effects
8.
J Med Chem ; 65(3): 2288-2296, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34989568

ABSTRACT

As a master regulator of neurogenesis, the orphan nuclear receptor tailless homologue (TLX, NR2E1) maintains neuronal stem cell homeostasis by acting as a transcriptional repressor of tumor suppressor genes. It is hence considered as an appealing target for the treatment of neurodegenerative diseases, but a lack of potent TLX modulators as tools to probe pharmacological TLX control hinders further validation of its promising potential. Here, we report the development of a potent TLX agonist based on fragment screening, pharmacophore modeling, and fragment fusion. Pharmacophore similarity of a fragment screening hit and the TLX ligand ccrp2 provided a rational basis for fragment linkage, which resulted in several TLX activator scaffolds. Among them, the fused compound 10 evolved as a valuable TLX agonist tool with submicromolar potency and high selectivity over related nuclear receptors, rendering it suitable for functional studies on TLX.


Subject(s)
Drug Design , Orphan Nuclear Receptors/agonists , Animals , Cell Survival/drug effects , Drug Stability , HEK293 Cells , Humans , Ligands , Microsomes, Liver/metabolism , Orphan Nuclear Receptors/metabolism , Piperazine/chemistry , Piperazine/metabolism , Piperazine/pharmacology , Protein Binding , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
9.
Bioorg Chem ; 119: 105581, 2022 02.
Article in English | MEDLINE | ID: mdl-34990933

ABSTRACT

The therapeutic indications for monoamine oxidases A and B (MAO-A and MAO-B) inhibitors that have emerged from biological studies on animal and cellular models of neurological and oncological diseases have focused drug discovery projects upon identifying reversible MAO inhibitors. Screening of our in-house academic compound library identified two hit compounds that inhibit MAO-B with IC50 values in micromolar range. Two series of indole (23 analogues) and 3-(benzyloxy)benzyl)piperazine (16 analogues) MAO-B inhibitors were derived from hits, and screened for their structure-activity relationships. Both series yielded low micromolar selective inhibitors of human MAO-B, namely indole 2 (IC50 = 12.63 ± 1.21 µM) and piperazine 39 (IC50 = 19.25 ± 4.89 µM), which is comparable to selective MAO-B inhibitor isatin (IC50 = 6.10 ± 2.81 µM), yet less potent in comparison to safinamide (IC50 = 0.029 ± 0.002 µM). Selective MAO-B inhibitors 2, 14, 38 and 39 exhibited favourable permeation of the blood-brain barrier and low cytotoxicity in the human neuroblastoma cell line SH-SY5Y.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Piperazine/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Indoles/chemical synthesis , Indoles/chemistry , Mice , Models, Molecular , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Nitrites/analysis , Piperazine/chemical synthesis , Piperazine/chemistry , Structure-Activity Relationship
10.
Eur J Med Chem ; 228: 114026, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34920169

ABSTRACT

Targeting Carbonic Anhydrases (CAs) represents a strategy to treat several diseases, from glaucoma to cancer. To widen the structure-activity relationships (SARs) of our series of piperazines endowed with potent human carbonic anhydrase (hCA) inhibition, a new series of chiral piperazines carrying a (2-hydroxyethyl) group was prepared. The Zn-binding function, the 4-sulfamoylbenzoyl moiety, was connected to one piperazine N-atom, while the other nitrogen was decorated with alkyl substituents. In analogy to the approach used for the synthesis of the previously reported series, the preparation of the new compounds started with (R)- and (S)-aspartic acid. A partial racemization occurred during the synthesis. In order to overcome this problem, other chemical strategies were investigated. The inhibitory activity of the new polar derivatives against four hCAs isoforms I, II, IV and IX using a stopped flow CO2 hydrase assay was determined. Some compounds showed potency in the nanomolar range and a preference for inhibiting hCA IX.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Glaucoma/drug therapy , Molecular Dynamics Simulation , Ophthalmic Solutions/pharmacology , Piperazine/pharmacology , Animals , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glaucoma/metabolism , Glaucoma/pathology , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Male , Molecular Structure , Ophthalmic Solutions/chemical synthesis , Ophthalmic Solutions/chemistry , Piperazine/chemical synthesis , Piperazine/chemistry , Rabbits , Structure-Activity Relationship
11.
ACS Chem Biol ; 16(12): 2752-2756, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34806373

ABSTRACT

The global rise of multidrug resistant infections poses an imminent, existential threat. Numerous pipelines have failed to convert biochemically active molecules into bona fide antibacterials, owing to a lack of chemical material with antibacterial-like physical properties in high-throughput screening compound libraries. Here, we demonstrate scalable design and synthesis of an antibacterial-like solid-phase DNA-encoded library (DEL, 7488 members) and facile hit deconvolution from whole-cell Escherichia coli and Bacillus subtilis cytotoxicity screens. The screen output identified two low-micromolar inhibitors of B. subtilis growth and recapitulated known structure-activity relationships of the fluoroquinolone antibacterial class. This phenotypic DEL screening strategy is also potentially applicable to adherent cells and will broadly enable the discovery and optimization of cell-active molecules.


Subject(s)
Anti-Bacterial Agents , DNA , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Apoptosis/drug effects , Bacillus subtilis/drug effects , Ciprofloxacin/chemistry , DNA/chemistry , Drug Discovery , Escherichia coli/drug effects , Gene Library , High-Throughput Screening Assays , Molecular Structure , Piperazine/chemistry , Structure-Activity Relationship
12.
Bioorg Chem ; 117: 105430, 2021 12.
Article in English | MEDLINE | ID: mdl-34678603

ABSTRACT

Monoamine oxidases (MAOs) have become promising drug targets for the development of central nervous system agents. In recent research, it was shown that numerous piperazine derivatives exhibit hMAO inhibitory activity. Therefore, in this study, a novel series of 1,2,4-triazole-piperazine derivatives (5a-j) were designed, synthesized, characterized, and screened for their hMAO-A and hMAO-B inhibitory activities. When the ADME predictions were examined, it was seen that the pharmacokinetic profiles of all synthesized compounds were appropriate. Compounds 5a, 5b, 5c, and 5e, with H, F, Cl, and NO2 groups on the 4-position of the phenyl ring, respectively, showed important MAO-A inhibitory activity. Compound 5c was found to be the most effective agent among the synthesized compounds with an IC50 value of 0.070 ± 0.002 µM against the MAO-A enzyme. The synthesized compounds appear to support the results of other studies to design MAO inhibitors to obtain more suitable drugs, especially for neurological disorders such as depression and anxiety.


Subject(s)
Drug Design , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Piperazine/pharmacology , Triazoles/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Piperazine/chemistry , Structure-Activity Relationship , Triazoles/chemistry
13.
Bioorg Chem ; 116: 105391, 2021 11.
Article in English | MEDLINE | ID: mdl-34607279

ABSTRACT

The development of novel fluorescent dyes for bio-thiol is of great importance in biological, clinical and pharmaceutical sciences. Given the importance of bio-thiol anticipating in numerous physiological processes, there is a great need to construct fluorescent biosensors with high quality to detect them. Fluorophores, especially those used in bio-system, usually require high-quality properties such as high brightness, good water solubility, bio-compatible and photostability. Herein, we reported a novel fluorescent probe based on piperazine-coumarin scaffold with enhanced brightness and solubility. To further demonstrate the potential clinical applications, we performed living cell fluorescence image and human esophageal carcinoma diagnosis. The result indicated that we were able to distinguish pathological tissue from normal tissue by applying this probe. Thus, we hope this design will be helpful to develop high-quality fluorophores for clinical diagnosis.


Subject(s)
Coumarins/chemistry , Esophageal Neoplasms/diagnostic imaging , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Fluorescent Dyes/chemistry , Piperazine/chemistry , Fluorescent Dyes/chemical synthesis , HEK293 Cells , Humans , Molecular Structure , Solubility , Spectrometry, Fluorescence
14.
Int J Mol Sci ; 22(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681629

ABSTRACT

A series of novel hybrid chalcone N-ethyl-piperazinyl amide derivatives of oleanonic and ursonic acids were synthesized, and their cytotoxic potential was evaluated in vitro against the NCI-60 cancer cell line panel. Compounds 4 and 6 exhibited the highest overall anticancer activity, with GI50 values in some cases reaching nanomolar values. Thus, the two compounds were further assessed in detail in order to identify a possible apoptosis- and antiangiogenic-based mechanism of action induced by the assessed compounds. DAPI staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that up-regulation of pro-apoptotic Bak gene combined with the down-regulation of the pro-survival Bcl-XL and Bcl-2 genes caused altered ratios between the pro-apoptotic and anti-apoptotic proteins' levels, leading to overall induced apoptosis. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, suggesting that compounds may induce apoptotic cell death through targeted anti-apoptotic protein inhibition, as well. Ex vivo determinations showed that both compounds did not significantly alter the angiogenesis process on the tested cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Piperazine/chemistry , Triterpenes/chemistry , Amides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Binding Sites , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Neovascularization, Physiologic/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , Triterpenes/metabolism , Triterpenes/pharmacology , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-X Protein/chemistry , bcl-X Protein/genetics , bcl-X Protein/metabolism
15.
Bioorg Med Chem ; 50: 116462, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34695709

ABSTRACT

Alzheimers disease (AD) is the most prominent neurodegenerative disorder with high medical need. Protein-protein-interactions (PPI) interactions have a critical role in AD where ß-amyloid structures (Aß) build toxic oligomers. Design of disease modifying multi target directed ligand (MTDL) has been performed, which disable PPI on the one hand and on the other hand, act as procognitive antagonists at the histamine H3 receptor (H3R). The synthetized compounds are structurally based on peptidomimetic amino acid-like structures mainly as keto, diketo-, or acyl variations of a piperazine moiety connected to an H3R pharmacophore. Most of them showed low nanomolar affinities at H3R and some with promising affinity to Aß-monomers. The structure-activity relationships (SAR) described offer new possibilities for MTDL with an optimized profile combining symptomatic and potential causal therapeutic approaches in AD.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Histamine H3 Antagonists/pharmacology , Peptidomimetics/pharmacology , Piperazine/pharmacology , Receptors, Histamine H3/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Dose-Response Relationship, Drug , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/chemistry , Humans , Molecular Structure , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Piperazine/chemical synthesis , Piperazine/chemistry , Structure-Activity Relationship
16.
Bioorg Med Chem ; 46: 116385, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34481338

ABSTRACT

In our earlier paper, we described ferulic acid (FA) template based novel series of multifunctional cholinesterase (ChE) inhibitors for the management of AD. This report has further extended the structure-activity relationship (SAR) studies of this series of molecules in a calibrated manner to improve upon the ChEs inhibition and antioxidant property to identify the novel potent multifunctional molecules. To investigate the effect of replacement of phenylpiperazine ring with benzylpiperazine, increase in the linker length between FA and substituted phenyl ring, and replacement of indole moiety with tryptamine on this molecular template, three series of novel molecules were developed. All synthesized compounds were tested for their acetyl and butyryl cholinestrases (AChE and BChE) inhibitory properties. Enzyme inhibition and PAS binding studies identified compound 13b as a lead molecule with potent inhibitor property towards AChE/BChE (AChE IC50 = 0.96 ± 0.14 µM, BChE IC50 = 1.23 ± 0.23 µM) compared to earlier identified lead molecule EJMC-G (AChE IC50 = 5.74 ± 0.13 µM, BChE IC50 = 14.05 ± 0.10 µM, respectively). Molecular docking and dynamics studies revealed that 13b fits well into the active sites of AChE and BChE, forming stable and strong interactions with key residues Trp86, Ser125, Glu202, Trp 286, Phe295, Tyr 337 in AChE, and with Trp 82, Gly115, Tyr128, and Ser287 in BChE. The compound, 13b was found to be three times more potent antioxidant in a DPPH assay (IC50 = 20.25 ± 0.26 µM) over the earlier identified EJMC-B (IC50 = 61.98 ± 0.30 µM) and it also was able to chelate iron. Co-treatment of 13b with H2O2, significantly attenuated and reversed H2O2-induced toxicity in the SH-SY5Y cells. The parallel artificial membrane permeability assay-blood brain barrier (PAMPA-BBB) revealed that 13b could cross BBB efficiently. Finally, the in-vivo efficacy of 13b at dose of 10 mg/kg in scopolamine AD model has been demonstrated. The present study strongly suggests that the naturally inspired multifunctional molecule 13b may behave as a potential novel therapeutic agent for AD management.


Subject(s)
Antioxidants/pharmacology , Biological Products/pharmacology , Cholinesterase Inhibitors/pharmacology , Coumaric Acids/pharmacology , Neuroprotective Agents/pharmacology , Piperazine/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Biphenyl Compounds/antagonists & inhibitors , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Coumaric Acids/chemistry , Dose-Response Relationship, Drug , Horses , Humans , Models, Molecular , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Picrates/antagonists & inhibitors , Piperazine/chemistry , Structure-Activity Relationship
17.
Eur J Med Chem ; 226: 113838, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34571173

ABSTRACT

The P2X7 receptor (P2X7R) stands out among the purinergic receptors due to its strong involvement in the regulation of tumor growth and metastasis formation as well as in innate immune responses and afferent signal transmission. Numerous studies have pointed out the beneficial effects of P2X7R antagonism for the treatment of a variety of cancer types, inflammatory diseases, and chronic pain. Herein we describe the development of novel P2X7R antagonists, incorporating piperazine squaric diamides as a central element. Besides improving the antagonists' potency from pIC50 values of 5.7-7.6, ADME properties (logD7.4 value, plasma protein binding, in vitro metabolic stability) of the generated compounds were investigated and optimized to provide novel P2X7R antagonists with drug-like properties. Furthermore, docking studies revealed the antagonists binding to the allosteric binding pocket in two distinct binding poses, depending on the substitution of the central piperazine moiety.


Subject(s)
Cyclobutanes/pharmacology , Diamide/pharmacology , Piperazine/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X/metabolism , Cyclobutanes/chemical synthesis , Cyclobutanes/chemistry , Diamide/chemical synthesis , Diamide/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Molecular Structure , Piperazine/chemical synthesis , Piperazine/chemistry , Purinergic P2X Receptor Antagonists/chemical synthesis , Purinergic P2X Receptor Antagonists/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
18.
Bioorg Chem ; 115: 105229, 2021 10.
Article in English | MEDLINE | ID: mdl-34364049

ABSTRACT

Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high permeability to Ca2+, which can be activated by low pH, noxious heat and vanilloid compounds such as capsaicin. TRPV1 has been proved to be very important in the process of pain production and is considered to be a highly effective analgesic target. In this work, three series of new piperazine urea TRPV1 antagonists were designed, synthesized and evaluated based on classical TRPV1 antagonists BCTC and GRT12360. Among them, N-(4,6-dimethylpyridin-2-yl)-4-(2-(pyrrolidin-1-yl)benzyl)piperazine-1-carboxamide (5ac) was finally identified, which had excellent TRPV1 antagonistic activity (IC50 (CAP) = 9.80 nM), good bioavailability and did not cause side effects of hyperthermia. In the study of molecular docking, the compound 5ac fitted well with the amino acid residues on rTRPV1 through hydrophobic interaction. Collectively, compound 5ac is an efficient TRPV1 antagonist and can be used as a candidate for the development of analgesic drugs.


Subject(s)
Analgesics/pharmacology , Piperazine/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Urea/pharmacology , Analgesics/chemical synthesis , Analgesics/chemistry , Animals , Capsaicin , Dose-Response Relationship, Drug , Humans , Male , Molecular Structure , Pain/chemically induced , Pain/drug therapy , Piperazine/chemical synthesis , Piperazine/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , TRPV Cation Channels/metabolism , Urea/analogs & derivatives , Urea/chemistry
19.
Bioorg Chem ; 115: 105212, 2021 10.
Article in English | MEDLINE | ID: mdl-34333423

ABSTRACT

Eighteen derivatives of pentacyclic triterpene carboxylic acids (Maslinic acid, Corosolic acid and Asiatic acid) have been prepared by coupling the piperazine complex of l-amino acids at the C-28 site of the parent compounds. The α-glucosidase inhibitory activities of the pristine derivatives were evaluated in vitro. The results indicated that the inhibitory activity of some compounds (15e IC50 = 591 µM, 16e IC50 = 423 µM) was closed to that of the reference acarbose (IC50 = 347 µM) in ethanol-water system. In addition, compound 16e (IC50 = 380 µM) showed superior inhibitory activity than acarbose (IC50 = 493 µM) in the measurement system with DMSO as solvent. The comparison of two different solvent systems showed that the derivatives had better α-glucosidase inhibitory activity in the DMSO system than that of in ethanol-water system. Regrettably, all of the as-synthesized derivatives exhibited inferior α-glucosidase inhibitory activities than those of the parent compounds in both test solvent systems. Furthermore, the result of enzyme kinetics demonstrated that the inhibition mechanism of compound 16e was noncompetitive inhibition with the inhibition constant Ki = 552 µM.


Subject(s)
Amino Acids/pharmacology , Carboxylic Acids/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Pentacyclic Triterpenes/pharmacology , Piperazine/pharmacology , alpha-Glucosidases/metabolism , Amino Acids/chemistry , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Humans , Molecular Structure , Pentacyclic Triterpenes/chemical synthesis , Pentacyclic Triterpenes/chemistry , Piperazine/chemistry , Structure-Activity Relationship
20.
ChemMedChem ; 16(19): 3083-3093, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34223697

ABSTRACT

There is a considerable attention for the development of inhibitors of tyrosinase (TYR) as therapeutic strategy for the treatment of hyperpigmentation disorders in humans. Continuing in our efforts to identify TYR inhibitors, we describe the design, synthesis and pharmacophore exploration of new small molecules structurally characterized by the presence of the 4-fluorobenzylpiperazine moiety as key pharmacophoric feature for the inhibition of TYR from Agaricus bisporus (AbTYR). Our investigations resulted in the discovery of the competitive inhibitor [4-(4-fluorobenzyl)piperazin-1-yl]-(3-chloro-2-nitro-phenyl)methanone 26 (IC50 =0.18 µM) that proved to be ∼100-fold more active than reference compound kojic acid (IC50 =17.76 µM). Notably, compound 26 exerted antimelanogenic effect on B16F10 cells in absence of cytotoxicity. Docking analysis suggested its binding mode into AbTYR and into modelled human TYR.


Subject(s)
Enzyme Inhibitors/pharmacology , Piperazine/pharmacology , Agaricus/enzymology , Animals , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mice , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase , Piperazine/chemical synthesis , Piperazine/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...