Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612511

ABSTRACT

Piscirickettsia salmonis is the pathogen that most affects the salmon industry in Chile. Large quantities of antibiotics have been used to control it. In search of alternatives, we have developed [Cu(NN1)2]ClO4 where NN1 = 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one. The antibacterial capacity of [Cu(NN1)2]ClO4 was determined. Subsequently, the effect of the administration of [Cu(NN1)2]ClO4 on the growth of S. salar, modulation of the immune system and the intestinal microbiota was studied. Finally, the ability to protect against a challenge with P. salmonis was evaluated. The results obtained showed that the compound has an MIC between 15 and 33.9 µg/mL in four isolates. On the other hand, the compound did not affect the growth of the fish; however, an increase in the transcript levels of IFN-γ, IL-12, IL-1ß, CD4, lysozyme and perforin was observed in fish treated with 40 µg/g of fish. Furthermore, modulation of the intestinal microbiota was observed, increasing the genera of beneficial bacteria such as Lactobacillus and Bacillus as well as potential pathogens such as Vibrio and Piscirickettsia. Finally, the treatment increased survival in fish challenged with P. salmonis by more than 60%. These results demonstrate that the compound is capable of protecting fish against P. salmonis, probably by modulating the immune system and the composition of the intestinal microbiota.


Subject(s)
Anti-Infective Agents , Piscirickettsiaceae Infections , Salmo salar , Animals , Copper , Piscirickettsiaceae Infections/drug therapy , Piscirickettsiaceae Infections/veterinary , Anti-Bacterial Agents/pharmacology
2.
J Fish Dis ; 47(6): e13913, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38421380

ABSTRACT

Piscirickettsiosis is the main cause of mortality in salmonids of commercial importance in Chile, which is caused by Piscirickettsia salmonis, a Gram-negative, γ-proteobacteria that can produce biofilm as one of its virulence factors. The Chilean salmon industry uses large amounts of antibiotics to control piscirickettsiosis outbreaks, which has raised concern about its environmental impact and the potential to induce antibiotic resistance. Thus, the use of phytogenic feed additives (PFA) with antibacterial activity emerges as an interesting alternative to antimicrobials. Our study describes the antimicrobial action of an Andrographis paniculate-extracted PFA on P. salmonis planktonic growth and biofilm formation. We observed complete inhibition of planktonic and biofilm growth with 500 and 400 µg/mL of PFA for P. salmonis LF-89 and EM-90-like strains, respectively. Furthermore, 500 µg/mL of PFA was bactericidal for both evaluated bacterial strains. Sub-inhibitory doses of PFA increase the transcript levels of stress (groEL), biofilm (pslD), and efflux pump (acrB) genes for both P. salmonis strains in planktonic and sessile conditions. In conclusion, our results demonstrate the antibacterial effect of PFA against P. salmonis in vitro, highlighting the potential of PFA as an alternative to control Piscirickettsiosis.


Subject(s)
Animal Feed , Biofilms , Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Biofilms/drug effects , Biofilms/growth & development , Piscirickettsia/drug effects , Piscirickettsia/physiology , Fish Diseases/microbiology , Piscirickettsiaceae Infections/veterinary , Piscirickettsiaceae Infections/microbiology , Animals , Animal Feed/analysis , Anti-Bacterial Agents/pharmacology , Dietary Supplements/analysis , Plant Extracts/pharmacology , Diet/veterinary , Chile
3.
J Fish Dis ; 47(1): e13862, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37776076

ABSTRACT

Piscirickettsiosis is the most prevalent bacterial disease affecting seawater salmon in Chilean salmon industry. Antibiotic therapy is the first alternative to counteract infections caused by Piscirickettsia salmonis. The presence of bacterial biofilms on materials commonly used in salmon farming may be critical for understanding the bacterial persistence in the environment. In the present study, the CDC Biofilm Reactor® was used to investigate the effect of sub- and over-MIC of florfenicol on both the pre-formed biofilm and the biofilm formation by P. salmonis under the antibiotic stimuli on Nylon and high-density polyethylene (HDPE) surfaces. This study demonstrated that FLO, at sub- and over-MIC doses, decreases biofilm-embedded live bacteria in the P. salmonis isolates evaluated. However, it was shown that in the P. salmonis Ps007 strain the presence of sub-MIC of FLO reduced its biofilm formation on HDPE surfaces; however, biofilm persists on Nylon surfaces. These results demonstrated that P. salmonis isolates behave differently against FLO and also, depending on the surface materials. Therefore, it remains a challenge to find an effective strategy to control the biofilm formation of P. salmonis, and certainly other marine pathogens that affect the sustainability of the Chilean salmon industry.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Salmonidae , Animals , Polyethylene/pharmacology , Nylons/pharmacology , Fish Diseases/drug therapy , Fish Diseases/prevention & control , Fish Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Salmon , Biofilms , Piscirickettsiaceae Infections/veterinary , Piscirickettsiaceae Infections/microbiology
4.
Sci Rep ; 13(1): 17321, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833268

ABSTRACT

An unbalanced composition of gut microbiota in fish is hypothesized to play a role in promoting bacterial infections, but the synergistic or antagonistic interactions between bacterial groups in relation to fish health are not well understood. We report that pathogenic species in the Piscirickettsia, Aeromonas, Renibacterium and Tenacibaculum genera were all detected in the digesta and gut mucosa of healthy Atlantic salmon without clinical signs of disease. Although Piscirickettsia salmonis (and other pathogens) occurred in greater frequencies of fish with clinical Salmonid Rickettsial Septicemia (SRS), the relative abundance was about the same as that observed in healthy fish. Remarkably, the SRS-positive fish presented with a generalized mid-gut dysbiosis and positive growth associations between Piscirickettsiaceae and members of other taxonomic families containing known pathogens. The reconstruction of metabolic phenotypes based on the bacterial networks detected in the gut and mucosa indicated the synthesis of Gram-negative virulence factors such as colanic acid and O-antigen were over-represented in SRS positive fish. This evidence indicates that cooperative interactions between organisms of different taxonomic families within localized bacterial networks might promote an opportunity for P. salmonis to cause clinical SRS in the farm environment.


Subject(s)
Fish Diseases , Piscirickettsiaceae Infections , Piscirickettsiaceae , Salmo salar , Humans , Animals , Virulence Factors , Fish Diseases/microbiology
5.
ISME J ; 17(12): 2247-2258, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37853183

ABSTRACT

The management of bacterial pathogens remains a key challenge of aquaculture. The marine gammaproteobacterium Piscirickettsia salmonis is the etiological agent of piscirickettsiosis and causes multi-systemic infections in different salmon species, resulting in considerable mortality and substantial commercial losses. Here, we elucidate its global diversity, evolution, and selection during human interventions. Our comprehensive analysis of 73 closed, high quality genome sequences covered strains from major outbreaks and was supplemented by an analysis of all P. salmonis 16S rRNA gene sequences and metagenomic reads available in public databases. Genome comparison showed that Piscirickettsia comprises at least three distinct, genetically isolated species of which two showed evidence for continuing speciation. However, at least twice the number of species exist in marine fish or seawater. A hallmark of Piscirickettsia diversification is the unprecedented amount and diversity of transposases which are particularly active in subgroups undergoing rapid speciation and are key to the acquisition of novel genes and to pseudogenization. Several group-specific genes are involved in surface antigen synthesis and may explain the differences in virulence between strains. However, the frequent failure of antibiotic treatment of piscirickettsiosis outbreaks cannot be explained by horizontal acquisition of resistance genes which so far occurred only very rarely. Besides revealing a dynamic diversification of an important pathogen, our study also provides the data for improving its surveillance, predicting the emergence of novel lineages, and adapting aquaculture management, and thereby contributes towards the sustainability of salmon farming.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Animals , Humans , Piscirickettsia/genetics , Piscirickettsiaceae Infections/veterinary , Piscirickettsiaceae Infections/microbiology , RNA, Ribosomal, 16S/genetics , Fishes , Fish Diseases/microbiology
6.
Fish Shellfish Immunol ; 142: 109127, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813155

ABSTRACT

Piscirickettsia salmonis, an intracellular bacterium in salmon aquaculture, is a big challenge because it is responsible for 54.2% of Atlantic salmon mortalities. In recent years, the high relevance of Alternative Splicing (AS) as a molecular mechanism associated with infectious conditions and host-pathogen interaction processes, especially in host immune activation, has been observed. Several studies have highlighted the role of AS in the host's immune response during viral, bacterial, and endoparasite infection. In the present study, we evaluated AS transcriptome profiles during P. salmonis infection in the two most used study models, SHK-1 cell line and salmon head kidney tissue. First, the SHK-1 cell line was exposed to P. salmonis infection at 0-, 7-, and 14-days post-infection (dpi). Following, total RNA was extracted for Illumina sequencing. On the other hand, RNA-Seq datasets of Atlantic salmon head kidney infected with the same P. salmonis strayingwase used. For both study models, the highest number of differentially alternative splicing (DAS) events was observed at 7 dpi, 16,830 DAS events derived from 9213 DAS genes in SHK-1 cells, and 13,820 DAS events from 7684 DAS genes in salmon HK. Alternative first exon (AF) was the most abundant AS type in the three infection times analyzed, representing 31% in SHK-1 cells and 228.6 in salmon HK; meanwhile, mutually exclusive exon (MX) was the least abundant. Notably, functional annotation of DAS genes in SHK-1 cells infected with P. salmonis showed a high presence of genes related to nucleotide metabolism. In contrast, the salmon head kidney exhibited many GO terms associated with immune response. Our findings reported the role of AS during P. salmonis infection in Atlantic salmon. These studies would contribute to a better understanding of the molecular bases that support the pathogen-host interaction, evidencing the contribution of AS regulating the transcriptional host response.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Salmo salar , Animals , Transcriptome , Salmo salar/genetics , Head Kidney , Alternative Splicing , Piscirickettsia/physiology , Cell Line , Piscirickettsiaceae Infections/genetics , Piscirickettsiaceae Infections/veterinary
7.
Fish Shellfish Immunol ; 139: 108887, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37290611

ABSTRACT

Piscirickettsiosis outbreaks due to Piscirickettsia salmonis occur globally in the Chilean salmon aquaculture generating significant monetary losses in the industry. P. salmonis secretes outer membrane vesicles (OMVs) which are naturally non-replicating and highly immunogenic spherical nanoparticles. P. salmonis OMVs has been shown to induce immune response in zebrafish; however, the immune response induced by these vesicles in salmonids has not been evaluated. In this study, we inoculated Atlantic salmon with 10 and 30 µg doses of P. salmonis OMVs and took samples for 12 days. qPCR analysis indicated an inflammatory response. Thus, the inflammatory genes evaluated were up- or down-regulated at several times in liver, head kidney and spleen. In addition, the liver was the organ most immune-induced, mainly in the 30 µg-dose. Interestingly, co-expression of pro- and anti-inflammatory cytokines was evidenced by the prominent expression of il-10 at day 1 in spleen and also in head kidney on days 3, 6 and 12, while il-10 and tgf-ß were up-regulated on days 3, 6 and 12 in liver. Importantly, we detected the production of IgM against proteins of P. salmonis in the serum collected from immunized fish after 14 days. Thus, 40 and 400 µg OMVs induced the production of highest IgM levels; however, no statistical difference in the immunoglobulin levels produced by these OMVs doses were detected. The current study provides evidence that OMVs released by P. salmonis induced a pro-inflammatory responses and IgM production in S. salar, while regulatory genes were induced in order to regulate their effects and achieve the balance of the inflammatory response.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Salmo salar , Animals , Salmo salar/genetics , Interleukin-10 , Zebrafish , Piscirickettsia/physiology , Immunoglobulin M , Piscirickettsiaceae Infections/veterinary
8.
Fish Shellfish Immunol ; 136: 108711, 2023 May.
Article in English | MEDLINE | ID: mdl-37004895

ABSTRACT

The salmonid rickettsial syndrome (SRS) is a systemic bacterial infection caused by Piscirickettsia salmonis that generates significant economic losses in Atlantic salmon (Salmo salar) aquaculture. Despite this disease's relevance, the mechanisms involved in resistance against P. salmonis infection are not entirely understood. Thus, we aimed at studying the pathways explaining SRS resistance using different approaches. First, we determined the heritability using pedigree data from a challenge test. Secondly, a genome-wide association analysis was performed following a complete transcriptomic profile of fish from genetically susceptible and resistant families within the challenge infection with P. salmonis. We found differentially expressed transcripts related to immune response, pathogen recognition, and several new pathways related to extracellular matrix remodelling and intracellular invasion. The resistant background showed a constrained inflammatory response, mediated by the Arp2/3 complex actin cytoskeleton remodelling polymerization pathway, probably leading to bacterial clearance. A series of biomarkers of SRS resistance, such as the beta-enolase (ENO-ß), Tubulin G1 (TUBG1), Plasmin (PLG) and ARP2/3 Complex Subunit 4 (ARPC4) genes showed consistent overexpression in resistant individuals, showing promise as biomarkers for SRS resistance. All these results together with the differential expression of several long non-coding RNAs show the complexity of the host-pathogen interaction of S. salar and P. salmonis. These results provide valuable information on new models describing host-pathogen interaction and its role in SRS resistance.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Salmo salar , Animals , Salmo salar/genetics , Genome-Wide Association Study , Piscirickettsia/physiology , Transcriptome , Host-Pathogen Interactions , Cytoskeleton
9.
J Fish Dis ; 46(5): 591-596, 2023 May.
Article in English | MEDLINE | ID: mdl-36639965

ABSTRACT

Public health is facing a new challenge due to the increased bacterial resistance to most of the conventional antibacterial agents. Inadequate use of antibiotics in the Chilean aquaculture industry leads to the generation of multidrug resistance bacteria. Many fish pathogenic bacteria produce biofilm upon various sources of stress such as antibiotics, which provides several survival advantages for the bacterial life in community and can constitute a reservoir of pathogens in the marine environment. Being florfenicol a broad-spectrum antibiotic commonly used to treat infections in aquaculture, the aim of this study was to assess whether this antibiotic modulates in vitro the biofilm formation in several isolates of Piscirickettsia salmonis. Standard antibiotic-micro broth 96-flat well plates were used to determinate the minimal inhibitory concentration of florfenicol in eight different P. salmonis isolates. In vitro findings, with P. salmonis growing in the presence and absence of the antibiotic, exhibited a statistically significantly increase (p < .05) in biofilm formation in all the bacterial isolates cultivated with sub-MIC (defined as the half of the minimal inhibitory concentration in the presence of antibiotic) of florfenicol compared with controls (antibiotic-free broth). In conclusion, sub-MIC of florfenicol induced an increased biofilm formation in all P. salmonis isolates tested.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Thiamphenicol , Animals , Fish Diseases/microbiology , Thiamphenicol/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms , Piscirickettsiaceae Infections/microbiology
10.
Front Cell Infect Microbiol ; 12: 1067514, 2022.
Article in English | MEDLINE | ID: mdl-36544910

ABSTRACT

Piscirickettsiosis is a fish disease caused by the Gram-negative bacterium Piscirickettsia salmonis. This disease has a high socio-economic impact on the Chilean salmonid aquaculture industry. The bacterium has a cryptic character in the environment and their main reservoirs are yet unknown. Bacterial biofilms represent a ubiquitous mechanism of cell persistence in diverse natural environments and a risk factor for the pathogenesis of several infectious diseases, but their microbiological significance for waterborne veterinary diseases, including piscirickettsiosis, have seldom been evaluated. This study analyzed the in vitro biofilm behavior of P. salmonis LF-89T (genogroup LF-89) and CA5 (genogroup EM-90) using a multi-method approach and elucidated the potential arsenal of virulence of the P. salmonis LF-89T type strain in its biofilm state. P. salmonis exhibited a quick kinetics of biofilm formation that followed a multi-step and highly strain-dependent process. There were no major differences in enzymatic profiles or significant differences in cytotoxicity (as tested on the Chinook salmon embryo cell line) between biofilm-derived bacteria and planktonic equivalents. The potential arsenal of virulence of P. salmonis LF-89T in biofilms, as determined by whole-transcriptome sequencing and differential gene expression analysis, consisted of genes involved in cell adhesion, polysaccharide biosynthesis, transcriptional regulation, and gene mobility, among others. Importantly, the global gene expression profiles of P. salmonis LF-89T were not enriched with virulence-related genes upregulated in biofilm development stages at 24 and 48 h. An enrichment in virulence-related genes exclusively expressed in biofilms was also undetected. These results indicate that early and mature biofilm development stages of P. salmonis LF-89T were transcriptionally no more virulent than their planktonic counterparts, which was supported by cytotoxic trials, which, in turn, revealed that both modes of growth induced important and very similar levels of cytotoxicity on the salmon cell line. Our results suggest that the aforementioned biofilm development stages do not represent hot spots of virulence compared with planktonic counterparts. This study provides the first transcriptomic catalogue to select specific genes that could be useful to prevent or control the (in vitro and/or in vivo) adherence and/or biofilm formation by P. salmonis and gain further insights into piscirickettsiosis pathogenesis.


Subject(s)
Fish Diseases , Piscirickettsiaceae Infections , Animals , Virulence , Piscirickettsiaceae Infections/veterinary , Piscirickettsiaceae Infections/microbiology , Mass Behavior , Fishes/microbiology , Salmon/microbiology , Biofilms , Fish Diseases/microbiology
11.
Front Immunol ; 13: 1019404, 2022.
Article in English | MEDLINE | ID: mdl-36466828

ABSTRACT

Piscirickettsiosis is the most severe, persistent, and damaging disease that has affected the Chilean salmon industry since its origins in the 1980s. As a preventive strategy for this disease, different vaccines have been developed and used over the last 30 years. However, vaccinated salmon and trout frequently die in the sea cages and the use of antibiotics is still high demonstrating the low efficiency of the available vaccines. The reasons why the vaccines fail so often are still debated, but it could involve different extrinsic and intrinsic factors. Among the extrinsic factors, mainly associated with chronic stress, we can distinguish: 1) biotic including coinfection with sea lice, sealions attacks or harmful algal blooms; 2) abiotic including low oxygen or high temperature; and 3) farm-management factors including overcrowding or chemical delousing treatments. Among the intrinsic factors, we can distinguish: 1) fish-related factors including host's genetic variability (species, population and individual), sex or age; 2) pathogen-related factors including their variability and ability to evade host immune responses; and 3) vaccine-related factors including low immunogenicity and poor matches with the circulating pathogen strain. Based on the available evidence, in order to improve the development and the efficacy of vaccines against P. salmonis we recommend: a) Do not perform efficacy evaluations by intraperitoneal injection of pathogens because they generate an artificial protective immune response, instead cohabitation or immersion challenges must be used; b) Evaluate the diversity of pathogen strains in the field and ensure a good antigenic match with the vaccines; c) Investigate whether host genetic diversity could be improved, e.g. through selection, in favor of better and longer responses to vaccination; d) To reduce the stressful effects at the cage level, controlling the co-infection of pathogens and avoiding fish overcrowding. To date, we do not know the immunological mechanisms by which the vaccines against P. salmonis may or may not generate protection. More studies are required to identify what type of response, cellular or molecular, is required to develop effective vaccines.


Subject(s)
Coinfection , Piscirickettsiaceae Infections , Sea Lions , Vaccines , Animals , Salmon , Trout , Piscirickettsiaceae Infections/prevention & control , Piscirickettsiaceae Infections/veterinary , Seafood
12.
J Fish Dis ; 45(8): 1099-1107, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35543448

ABSTRACT

Research into Piscirickettsia salmonis biofilms on materials commonly used in salmon farming is crucial for understanding its persistence and virulence. We used the CDC Biofilm Reactor to investigate P. salmonis (LF-89 and EM-90) biofilm formation on Nylon, Stainless steel (316L), Polycarbonate and High-Density Polyethylene (HDPE) surfaces. After 144 h of biofilm visualization by scanning confocal laser microscopy under batch growth conditions, Nylon coupons generated the greatest biofilm formation and coverage compared to Stainless steel (316L), Polycarbonate and HDPE. Additionally, P. salmonis biofilm formation on Nylon was significantly greater (p ≤ .01) than Stainless steel (316L), Polycarbonate and HDPE at 288 h. We used Nylon coupons to determine the kinetic parameters of the planktonic and biofilm phases of P. salmonis. The two strains had similar latencies in the planktonic phase; however, LF-89 maximum growth was 2.5 orders of magnitude higher (Log cell ml-1 ). Additionally, LF-89 had a specified growth rate (µmax) of 0.0177 ± 0.006 h-1 and a generation time of 39.2 h. This study contributes to a deeper understanding of the biofilm formation by P. salmonis and elucidates the impact of the biofilm on aquaculture systems.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Animals , Biofilms , Centers for Disease Control and Prevention, U.S. , Fish Diseases/microbiology , Nylons , Piscirickettsiaceae Infections/microbiology , Polyethylene , Stainless Steel , United States
13.
Fish Shellfish Immunol ; 125: 120-127, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35537671

ABSTRACT

The intensive salmon farming is associated with massive outbreaks of infections. The use of antibiotics for their prevention and control is related to damage to the environment and human health. Antimicrobial peptides (AMPs) have been proposed as an alternative to the use of antibiotics for their antimicrobial and immunomodulatory activities. However, one of the main challenges for its massive clinical application is the high production cost and the complexity of chemical synthesis. Thus, recombinant DNA technology offers a more sustainable, scalable, and profitable option. In the present study, using an AMPs function prediction methodology, we designed a chimeric peptide consisting of sequences derived from cathelicidin fused with the immunomodulatory peptide derived from flagellin. The designed peptide, CATH-FLA was produced by recombinant expression using an easy pre-purification system. The chimeric peptide was able to induce IL-1ß and IL-8 expression in Salmo salar head kidney leukocytes, and prevented Piscirickettsia salmonis-induced cytotoxicity in SHK-1 cells. These results suggest that pre-purification of a recombinant AMP-based chimeric peptide designed in silico allow obtaining a peptide with immunomodulatory activity in vitro. This could solve the main obstacle of AMPs for massive clinical applications.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Salmo salar , Animals , Anti-Bacterial Agents , Fish Diseases/microbiology , Fish Diseases/prevention & control , Flagellin , Head Kidney , Piscirickettsia/genetics , Piscirickettsiaceae Infections/veterinary , Salmon
14.
Front Immunol ; 13: 856896, 2022.
Article in English | MEDLINE | ID: mdl-35386699

ABSTRACT

Piscirickettsiosis (SRS) has been the most important infectious disease in Chilean salmon farming since the 1980s. It was one of the first to be described, and to date, it continues to be the main infectious cause of mortality. How can we better understand the epidemiological situation of SRS? The catch-all answer is that the Chilean salmon farming industry must fight year after year against a multifactorial disease, and apparently only the environment in Chile seems to favor the presence and persistence of Piscirickettsia salmonis. This is a fastidious, facultative intracellular bacterium that replicates in the host's own immune cells and antigen-presenting cells and evades the adaptive cell-mediated immune response, which is why the existing vaccines are not effective in controlling it. Therefore, the Chilean salmon farming industry uses a lot of antibiotics-to control SRS-because otherwise, fish health and welfare would be significantly impaired, and a significantly higher volume of biomass would be lost per year. How can the ever-present risk of negative consequences of antibiotic use in salmon farming be balanced with the productive and economic viability of an animal production industry, as well as with the care of the aquatic environment and public health and with the sustainability of the industry? The answer that is easy, but no less true, is that we must know the enemy and how it interacts with its host. Much knowledge has been generated using this line of inquiry, however it remains insufficient. Considering the state-of-the-art summarized in this review, it can be stated that, from the point of view of fish immunology and vaccinology, we are quite far from reaching an effective and long-term solution for the control of SRS. For this reason, the aim of this critical review is to comprehensively discuss the current knowledge on the interaction between the bacteria and the host to promote the generation of more and better measures for the prevention and control of SRS.


Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Animals , Salmon
15.
Fish Shellfish Immunol ; 121: 387-394, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34998987

ABSTRACT

The membrane-anchored and soluble Toll-like Receptor 5 -TLR5M and TLR5S, respectively-from teleost recognize bacterial flagellin and induce the pro-inflammatory cytokines expression in a MyD88-dependent manner such as the TLR5 mammalian orthologous receptor. However, it has not been demonstrated whether the induced signaling pathway by these receptors activate innate effector mechanisms MyD88-dependent in salmonids. Therefore, in this work we study the MyD88 dependence on the induction of TLR5M/TLR5S signaling pathway mediated by flagellin as ligand on the activation of some innate effector mechanisms. The intracellular and extracellular Reactive Oxygen Species (ROS) production and conditioned supernatants production were evaluated in RTS11 cells, while the challenge with Piscirickettsia salmonis was evaluated in SHK-1 cells. Our results demonstrate that flagellin directly stimulates ROS production and indirectly stimulates it through the production of conditioned supernatants, both in a MyD88-dependent manner. Additionally, flagellin stimulation prevents the cytotoxicity induced by infection with P. salmonis in a MyD88-dependent manner. In conclusion we demonstrate that MyD88 is an essential adapter protein in the activation of the TLR5M/TLR5S signaling pathway mediated by flagellin in salmonids, which leads downstream to the induction of innate effector mechanisms, promoting immuno-protection against a bacterial challenge with P. salmonis.


Subject(s)
Fish Proteins , Myeloid Differentiation Factor 88 , Piscirickettsiaceae Infections/veterinary , Salmonidae , Toll-Like Receptor 5 , Animals , Fish Proteins/genetics , Fish Proteins/metabolism , Flagellin , Gene Expression Regulation , Immunity, Innate , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Piscirickettsia/pathogenicity , Piscirickettsiaceae Infections/immunology , Reactive Oxygen Species , Salmonidae/genetics , Salmonidae/immunology , Salmonidae/microbiology , Signal Transduction , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolism
16.
Mar Biotechnol (NY) ; 23(4): 602-614, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34390423

ABSTRACT

Piscirickettsiosis is the most important bacterial disease in the Chilean salmon industry, which has borne major economic losses due to failure to control it. Cells use extracellular vesicles (EVs) as an inter-cellular communicators to deliver several factors (e.g., microRNAs) that may regulate the responses of other cells. However, there is limited knowledge about the identification and characterization of EV-miRNAs in salmonids or the effect of infections on these. In this study, Illumina sequencing technology was used to identify Coho salmon plasma EV-miRNAs upon Piscirickettsia salmonis infection at four different time points. A total of 118 novels and 188 known EV-miRNAs, including key immune teleost miRNAs families (e.g., miR-146, miR-122), were identified. A total of 245 EV-miRNAs were detected as differentially expressed (FDR < 5%) in terms of control, with a clear down-regulation pattern throughout the disease. KEGG enrichment results of EV-miRNAs target genes showed that they were grouped mainly in cellular, stress, inflammation and immune responses. Therefore, it is hypothesized that P. salmonis could potentially benefit from unbalanced modulation response of Coho salmon EV-miRNAs in order to promote a hyper-inflammatory and compromised immune response through the suppression of different key immune host miRNAs during the course of the infection, as indicated by the results of this study.


Subject(s)
Fish Diseases/microbiology , MicroRNAs/metabolism , Oncorhynchus kisutch/metabolism , Piscirickettsiaceae Infections/immunology , Animals , Extracellular Vesicles/metabolism , Fish Diseases/immunology , Gene Expression Regulation , Inflammation , Oncorhynchus kisutch/genetics , Oncorhynchus kisutch/immunology , Piscirickettsia/physiology
17.
Vet Res ; 52(1): 111, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34425904

ABSTRACT

Salmonid rickettsial septicaemia (SRS) is a contagious disease caused by Piscirickettsia salmonis, an intracellular bacterium. SRS causes an estimated economic loss of $700 million USD to the Chilean industry annually. Vaccination and antibiotic therapy are the primary prophylactic and control measures used against SRS. Unfortunately, commercially available SRS vaccines have not been shown to have a significant effect on reducing mortality. Most vaccines contain whole inactivated bacteria which results in decreased efficacy due to the limited ability of the vaccine to evoke a cellular mediated immune response that can eliminate the pathogen or infected cells. In addition, SRS vaccine efficacy has been evaluated primarily with Salmo salar (Atlantic salmon). Vaccine studies using Oncorhynchus mykiss (rainbow trout) are scarce, despite SRS being the leading cause of infectious death for this species. In this study, we evaluate an injectable vaccine based on P. salmonis proteoliposome; describing the vaccine security profile, capacity to induce specific anti-P. salmonis IgM and gene expression of immune markers related to T CD8 cell-mediated immunity. Efficacy was determined by experimental challenge with P. salmonis intraperitoneally. Our findings indicate that a P. salmonis proteoliposome-based vaccine is able to protect O. mykiss against challenge with a P. salmonis Chilean isolate and causes a specific antibody response. The transcriptional profile suggests that the vaccine is capable of inducing cellular immunity. This study provides new insights into O. mykiss protection and the immune response induced by a P. salmonis proteoliposome-based vaccine.


Subject(s)
Bacterial Vaccines/administration & dosage , Fish Diseases/prevention & control , Oncorhynchus mykiss , Piscirickettsiaceae Infections/veterinary , Proteolipids/therapeutic use , Sepsis/veterinary , Vaccination/veterinary , Animals , Chile , Fish Diseases/microbiology , Piscirickettsia/immunology , Piscirickettsiaceae Infections/microbiology , Piscirickettsiaceae Infections/prevention & control , Sepsis/microbiology , Sepsis/prevention & control
18.
Dev Comp Immunol ; 123: 104125, 2021 10.
Article in English | MEDLINE | ID: mdl-34087290

ABSTRACT

The intraperitoneal route is favored for administration of inactivated and attenuated vaccines in Atlantic salmon. Nevertheless, the immune responses in the teleost peritoneal cavity (PerC) are still incompletely defined. In this study, we investigated the B cell responses after intraperitoneal Piscirickettsia salmonis (P. salmonis) challenge of Atlantic salmon, focusing on the local PerC response versus responses in the lymphatic organs: spleen and head kidney. We observed a major increase of leukocytes, total IgM antibody secreting cells (ASC), and P. salmonis-specific ASC in the PerC at 3- and 6-weeks post infection (wpi). The increase in ASC frequency was more prominent in the spleen and PerC compared to the head kidney during the observed 6 wpi. The serum antibody response included P. salmonis-specific antibodies and non-specific antibodies recognizing the non-related bacterial pathogen Yersinia ruckeri and the model antigen TNP-KLH. Finally, we present evidence that supports a putative role for the adipose tissue in the PerC immune response.


Subject(s)
Antibody-Producing Cells/immunology , B-Lymphocyte Subsets/immunology , Fish Diseases/immunology , Peritoneal Cavity/physiology , Piscirickettsia/physiology , Piscirickettsiaceae Infections/immunology , Salmo salar/immunology , Adipose Tissue/immunology , Animals , Antibodies, Bacterial/blood , Cross Reactions , Fish Proteins/metabolism , Immunity, Humoral , Immunoglobulin M/metabolism , Yersinia ruckeri/immunology
19.
Article in English | MEDLINE | ID: mdl-34087760

ABSTRACT

Skeletal muscle is the most abundant tissue in teleosts and is essential for movement and metabolism. Recently, it has been described that skeletal muscle can express and secrete immune-related molecules during pathogen infection. However, the role of this tissue during infection is poorly understood. To determine the immunocompetence of fish skeletal muscle, juvenile rainbow trout (Oncorhynchus mykiss) were challenged with Piscirickettsia salmonis strain LF-89. P. salmonis is the etiological agent of piscirickettsiosis, a severe disease that has caused major economic losses in the aquaculture industry. This gram-negative bacterium produces a chronic systemic infection that involves several organs and tissues in salmonids. Using high-throughput RNA-seq, we found that 60 transcripts were upregulated in skeletal muscle, mostly associated with inflammatory response and positive regulation of interleukin-8 production. Conversely, 141 transcripts were downregulated in association with muscle filament sliding and actin filament-based movement. To validate these results, we performed in vitro experiments using rainbow trout myotubes. In myotubes coincubated with P. salmonis strain LF-89 at an MOI of 50, we found increased expression of the proinflammatory cytokine il1b and the pattern recognition receptor tlr5s 8 and 12 h after infection. These results demonstrated that fish skeletal muscle is an immunologically active organ that can implement an early immunological response against P. salmonis.


Subject(s)
Fish Diseases/immunology , Inflammation/immunology , Muscle, Skeletal/immunology , Oncorhynchus mykiss/immunology , Piscirickettsia/physiology , Piscirickettsiaceae Infections/immunology , Transcriptome , Animals , Aquaculture , Fish Diseases/genetics , Fish Diseases/microbiology , Gene Expression Profiling , Inflammation/genetics , Inflammation/microbiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/microbiology , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/microbiology , Piscirickettsiaceae Infections/microbiology
20.
Vet Immunol Immunopathol ; 237: 110240, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33962313

ABSTRACT

Salmonids are a species of high commercial value in Chilean aquaculture, where muscle is the final product of the industry. Fish can be affected by stress during intensive cultures, increasing susceptibility to infections. Recently, we reported that muscle is an important focus of immune reactions. However, studies have shown the immunosuppressive effect of stress only in lymphoid organs, and few studies have been conducted on muscle and immunity. Hence, we determine the effects of cortisol on the immune-like response of fish myotubes challenged with Piscirickettsia salmonis by three trials. First, rainbow trout primary culture of muscle was cultured and treated with cortisol (100 ng/mL) for 3 and 4 h. Second, myotubes were challenged with P. salmonis (MOI 50) for 4, 6 and 8 h. And third, muscle cell cultures were pretreated with cortisol and then challenged with P. salmonis. The mRNA levels of glucocorticoid pathway and innate immunity were evaluated by qPCR. Cortisol increased the klf15 levels and downregulated the innate immune-related tlr5m gene and antimicrobial peptides. P. salmonis challenge upregulated several immune-related genes. Finally, cortisol pretreatment followed by P. salmonis challenge differentially modulated stress- and immune-related genes. These data suggest that fish muscle cells possess an intrinsic immune response and are differentially regulated by cortisol, which could lead to bacterial outbreaks in muscle under stress conditions.


Subject(s)
Fish Diseases/immunology , Hydrocortisone/immunology , Muscle Fibers, Skeletal/immunology , Oncorhynchus mykiss/immunology , Piscirickettsia/immunology , Piscirickettsiaceae Infections/veterinary , Animals , Cells, Cultured , Gene Expression Regulation , Immunity, Innate/genetics , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/microbiology , Oncorhynchus mykiss/genetics , Piscirickettsiaceae Infections/genetics , Piscirickettsiaceae Infections/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...