Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 476
Filter
1.
Parasit Vectors ; 17(1): 192, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654385

ABSTRACT

BACKGROUND: Infection with Angiostrongylus cantonensis (AC) in humans or mice can lead to severe eosinophilic meningitis or encephalitis, resulting in various neurological impairments. Developing effective neuroprotective drugs to improve the quality of life in affected individuals is critical. METHODS: We conducted a Gene Ontology enrichment analysis on microarray gene expression (GSE159486) in the brains of AC-infected mice. The expression levels of melanin-concentrating hormone (MCH) were confirmed through real-time quantitative PCR (RT-qPCR) and immunofluorescence. Metabolic parameters were assessed using indirect calorimetry, and mice's energy metabolism was evaluated via pathological hematoxylin and eosin (H&E) staining, serum biochemical assays, and immunohistochemistry. Behavioral tests assessed cognitive and motor functions. Western blotting was used to measure the expression of synapse-related proteins. Mice were supplemented with MCH via nasal administration. RESULTS: Postinfection, a marked decrease in Pmch expression and the encoded MCH was observed. Infected mice exhibited significant weight loss, extensive consumption of sugar and white fat tissue, reduced movement distance, and decreased speed, compared with the control group. Notably, nasal administration of MCH countered the energy imbalance and dyskinesia caused by AC infection, enhancing survival rates. MCH treatment also increased the expression level of postsynaptic density protein 95 (PSD95) and microtubule-associated protein-2 (MAP2), as well as upregulated transcription level of B cell leukemia/lymphoma 2 (Bcl2) in the cortex. CONCLUSIONS: Our findings suggest that MCH improves dyskinesia by reducing loss of synaptic proteins, indicating its potential as a therapeutic agent for AC infection.


Subject(s)
Angiostrongylus cantonensis , Energy Metabolism , Hypothalamic Hormones , Melanins , Pituitary Hormones , Strongylida Infections , Animals , Female , Male , Mice , Brain/drug effects , Brain/metabolism , Brain/parasitology , Brain/pathology , Hypothalamic Hormones/metabolism , Hypothalamic Hormones/pharmacology , Melanins/metabolism , Melanins/pharmacology , Pituitary Hormones/metabolism , Pituitary Hormones/pharmacology , Strongylida Infections/pathology
2.
Biol Sex Differ ; 15(1): 33, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570844

ABSTRACT

Recent preclinical research exploring how neuropeptide transmitter systems regulate motivated behavior reveal the increasing importance of sex as a critical biological variable. Neuropeptide systems and their central circuits both contribute to sex differences in a range of motivated behaviors and regulate sex-specific behaviors. In this short review, we explore the current research of how sex as a biological variable influences several distinct motivated behaviors that are modulated by the melanin-concentrating hormone (MCH) neuropeptide system. First, we review how MCH regulates feeding behavior within the context of energy homeostasis differently between male and female rodents. Then, we focus on MCH's role in lactation as a sex-specific process within the context of energy homeostasis. Next, we discuss the sex-specific effects of MCH on maternal behavior. Finally, we summarize the role of MCH in drug-motivated behaviors. While these topics are traditionally investigated from different scientific perspectives, in this short review we discuss how these behaviors share commonalities within the larger context of motivated behaviors, and that sex differences discovered in one area of research may impact our understanding in another. Overall, our review highlights the need for further research into how sex differences in energy regulation associated with reproduction and parental care contribute to regulating motivated behaviors.


Subject(s)
Hypothalamic Hormones , Melanins , Neuropeptides , Female , Male , Animals , Sex Characteristics , Hypothalamic Hormones/pharmacology , Hypothalamic Hormones/physiology , Pituitary Hormones/pharmacology , Pituitary Hormones/physiology
3.
Int J Neuropsychopharmacol ; 27(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38135278

ABSTRACT

BACKGROUND: Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that projects throughout the central nervous system, including the noradrenergic locus coeruleus (LC). Our previous study suggested that MCH/MCH receptor 1 (MCHR1) in the LC may be involved in the regulation of depression. The present study investigated whether the role of MCH/MCHR1 in the LC in depression-like behaviors is associated with the regulation of norepinephrine. METHOD: Chronic unpredictable stress (CUS) and an acute intra-LC microinjection of MCH induced depression-like behaviors in rats. The MCHR1 antagonist SNAP-94847 was also microinjected in the LC in rats that were suffering CUS or treated with MCH. The sucrose preference, forced swim, and locomotor tests were used for behavioral evaluation. Immunofluorescence staining, enzyme-linked immunosorbent assay, western blot, and high-performance liquid chromatography with electrochemical detection were used to explore the mechanism of MCH/MCHR1 in the regulation of depression-like behaviors. RESULTS: CUS induced an abnormal elevation of MCH levels and downregulated MCHR1 in the LC, which was highly correlated with the formation of depression-like behaviors. SNAP-94847 exerted antidepressant effects in CUS-exposed rats by normalizing tyrosine hydroxylase, dopamine ß hydroxylase, and norepinephrine in the LC. An acute microinjection of MCH induced depression-like behaviors through its action on MCHR1. MCHR1 antagonism in the LC significantly reversed the MCH-induced downregulation of norepinephrine production by normalizing MCHR1-medicated cAMP-PKA signaling. CONCLUSIONS: Our study confirmed that the MCH/MCHR1 system in the LC may be involved in depression-like behaviors by downregulating norepinephrine production. These results improve our understanding of the pathogenesis of depression that is related to the MCH/MCHR1 system in the LC.


Subject(s)
Hypothalamic Hormones , Locus Coeruleus , Rats , Animals , Depression/chemically induced , Depression/drug therapy , Norepinephrine , Hypothalamic Hormones/metabolism , Pituitary Hormones/pharmacology , Melanins/pharmacology
4.
Front Neuroendocrinol ; 70: 101069, 2023 07.
Article in English | MEDLINE | ID: mdl-37149229

ABSTRACT

Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.


Subject(s)
Hypothalamic Hormones , Hypothalamic Hormones/metabolism , Hypothalamic Hormones/pharmacology , Pituitary Hormones/pharmacology , Pituitary Hormones/physiology , Neurons/metabolism , Melanins/pharmacology , Melanins/physiology , Hypothalamus/metabolism , Glutamic Acid/pharmacology , Glutamic Acid/physiology , Neurotransmitter Agents , gamma-Aminobutyric Acid
5.
J Neuroimmunol ; 353: 577522, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33601128

ABSTRACT

Repository corticotropin injection (RCI), a complex mixture of adrenocorticotropic hormone (ACTH) analogs and other pituitary peptides, has been found to suppress key aspects of gene expression and cellular function in human B lymphocytes in vitro. The present studies reveal that neither individual POMC peptides (α-MSH, ACTH1-39, ACTH1-24, ß-endorphin) nor other related pituitary neuropeptides are sufficient to elicit these effects, even though specific receptors capable of transmitting signals from these peptides are expressed by human B cells. RCI's direct effects on human B cells may require complementary signals from multiple components of the preparation.


Subject(s)
B-Lymphocytes/drug effects , Neuropeptides/pharmacology , Pituitary Hormones/pharmacology , Adult , Aged , Animals , Cells, Cultured , Female , Humans , In Vitro Techniques , Male , Middle Aged , Swine , Young Adult
6.
PLoS One ; 15(7): e0235617, 2020.
Article in English | MEDLINE | ID: mdl-32634160

ABSTRACT

Low egg quality and embryonic survival are critical challenges in aquaculture, where assisted reproduction procedures and other factors may impact egg quality. This includes European eel (Anguilla anguilla), where pituitary extract from carp (CPE) or salmon (SPE) is applied to override a dopaminergic inhibition of the neuroendocrine system, preventing gonadotropin secretion and gonadal development. The present study used either CPE or SPE to induce vitellogenesis in female European eel and compared impacts on egg quality and offspring developmental competence with emphasis on the maternal-to-zygotic transition (MZT). Females treated with SPE produced significantly higher proportions of floating eggs with fewer cleavage abnormalities and higher embryonic survival. These findings related successful embryogenesis to higher abundance of mRNA transcripts of genes involved in cell adhesion, activation of MZT, and immune response (dcbld1, epcam, oct4, igm) throughout embryonic development. The abundance of mRNA transcripts of cldnd, foxr1, cea, ccna1, ccnb1, ccnb2, zar1, oct4, and npm2 was relatively stable during the first eight hours, followed by a drop during MZT and low levels thereafter, indicating transfer and subsequent clearance of maternal mRNA. mRNA abundance of zar1, epcam, and dicer1 was associated with cleavage abnormalities, while mRNA abundance of zar1, sox2, foxr1, cldnd, phb2, neurod4, and neurog1 (before MZT) was associated with subsequent embryonic survival. In a second pattern, low initial mRNA abundance with an increase during MZT and higher levels persisting thereafter indicating the activation of zygotic transcription. mRNA abundance of ccna1, npm2, oct4, neurod4, and neurog1 during later embryonic development was associated with hatch success. A deviating pattern was observed for dcbld1, which mRNA levels followed the maternal-effect gene pattern but only for embryos from SPE treated females. Together, the differences in offspring production and performance reported in this study show that PE composition impacts egg quality and embryogenesis and in particular, the transition from initial maternal transcripts to zygotic transcription.


Subject(s)
Anguilla/physiology , Carps/metabolism , Embryonic Development , Oogenesis , Pituitary Gland/metabolism , Salmon/metabolism , Anguilla/growth & development , Animals , Cyclin A1/genetics , Embryonic Development/drug effects , Embryonic Development/genetics , Female , Fish Proteins/genetics , Gene Expression Regulation, Developmental/drug effects , Octamer Transcription Factor-3/genetics , Oogenesis/drug effects , Pituitary Gland/chemistry , Pituitary Hormones/pharmacology , RNA, Messenger/metabolism , Zygote/drug effects , Zygote/growth & development , Zygote/metabolism
7.
J Psychopharmacol ; 34(4): 478-489, 2020 04.
Article in English | MEDLINE | ID: mdl-31909693

ABSTRACT

BACKGROUND: Identifying neural substrates that are differentially affected by drugs of abuse and natural rewards is key to finding a target for an efficacious treatment for substance abuse. Melanin-concentrating hormone is a polypeptide with an inhibitory effect on the mesolimbic dopamine system. Here we test the hypothesis that melanin-concentrating hormone in the lateral hypothalamus and nucleus accumbens shell is differentially involved in the regulation of morphine and food-rewarded behaviors. METHODS: Male Sprague-Dawley rats were trained with morphine (5.0 mg/kg, subcutaneously) or food pellets (standard chow, 10-14 g) to induce a conditioned place preference, immediately followed by extinction training. Melanin-concentrating hormone (1.0 µg/side) or saline was infused into the nucleus accumbens shell or lateral hypothalamus before the reinstatement primed by morphine or food, and locomotor activity was simultaneously monitored. As the comparison, melanin-concentrating hormone was also microinjected into the nucleus accumbens shell or lateral hypothalamus before the expression of food or morphine-induced conditioned place preference. RESULTS: Microinfusion of melanin-concentrating hormone into the nucleus accumbens shell (but not into the lateral hypothalamus) prevented the reinstatement of morphine conditioned place preference but had no effect on the reinstatement of food conditioned place preference. In contrast, microinfusion of melanin-concentrating hormone into the lateral hypothalamus (but not in the nucleus accumbens shell) inhibited the reinstatement of food conditioned place preference but had no effect on the reinstatement of morphine conditioned place preference. CONCLUSIONS: These results suggest a clear double dissociation of melanin-concentrating hormone in morphine/food rewarding behaviors and melanin-concentrating hormone in the nucleus accumbens shell. Melanin-concentrating hormone could be a potential target for therapeutic intervention for morphine abuse without affecting natural rewards.


Subject(s)
Drug-Seeking Behavior/drug effects , Feeding Behavior/drug effects , Hypothalamic Area, Lateral/metabolism , Hypothalamic Hormones/pharmacology , Melanins/pharmacology , Morphine/pharmacology , Nucleus Accumbens/metabolism , Pituitary Hormones/pharmacology , Animals , Conditioning, Operant/drug effects , Hypothalamic Hormones/administration & dosage , Male , Melanins/administration & dosage , Microinjections , Pituitary Hormones/administration & dosage , Rats , Rats, Sprague-Dawley , Reward
8.
Peptides ; 126: 170249, 2020 04.
Article in English | MEDLINE | ID: mdl-31911169

ABSTRACT

Serotonergic neurons of the median raphe nucleus (MnR) and hypothalamic melanin-concentrating hormone (MCH)-containing neurons, have been involved in the control of REM sleep and mood. In the present study, we examined in rats and cats the anatomical relationship between MCH-containing fibers and MnR neurons, as well as the presence of MCHergic receptors in these neurons. In addition, by means of in vivo unit recording in urethane anesthetized rats, we determined the effects of MCH in MnR neuronal firing. Our results showed that MCH-containing fibers were present in the central and paracentral regions of the MnR. MCHergic fibers were in close apposition to serotonergic and non-serotonergic neurons. By means of an indirect approach, we also analyzed the presence of MCHergic receptors within the MnR. Accordingly, we microinjected MCH conjugated with the fluorophore rhodamine (R-MCH) into the lateral ventricle. R-MCH was internalized into serotonergic and non-serotonergic MnR neurons; some of these neurons were GABAergic. Furthermore, we determined that intracerebroventricular administration of MCH induced a significant decrease in the firing rate of 53 % of MnR neurons, while the juxtacellular administration of MCH reduced the frequency of discharge in 67 % of these neurons. Finally, the juxtacellular administration of the MCH-receptor antagonist ATC-0175 produced an increase in the firing rate in 78 % of MnR neurons. Hence, MCH produces a strong regulation of MnR neuronal activity. We hypothesize that MCHergic modulation of the MnR neuronal activity may be involved in the promotion of REM sleep and in the pathophysiology of depressive disorders.


Subject(s)
Hypothalamic Hormones/pharmacology , Hypothalamus/drug effects , Melanins/pharmacology , Nerve Fibers/drug effects , Neurons/drug effects , Pituitary Hormones/pharmacology , Raphe Nuclei/drug effects , Receptors, Pituitary Hormone/metabolism , Animals , Cats , Hypothalamus/metabolism , Hypothalamus/physiology , Nerve Fibers/metabolism , Nerve Fibers/physiology , Neurons/metabolism , Neurons/physiology , Raphe Nuclei/metabolism , Raphe Nuclei/physiology , Rats , Rats, Wistar
9.
Int J Mol Sci ; 20(19)2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31623386

ABSTRACT

This study aimed to examine the effect of follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and growth hormone (GH) on Aquaporin 5 (AQP5) expression in granulosa (Gc) and theca cells (Tc) from medium (MF) and large (LF) ovarian follicles of pigs. The results showed that GH significantly decreased the expression of AQP5 in Gc from MF in relation to the control. In the Gc of large follicles, PRL stimulated the expression of AQP5. However, the increased expression of AQP5 in the Tc of LF was indicated by GH and PRL in relation to the control. A significantly higher expression of the AQP5 protein in the Gc from MF and LF was indicated by FSH and PRL. In co-cultures, an increased expression of AQP5 was observed in the Gc from LF incubated with LH, PRL, and GH. A significantly increased expression of AQP5 was also observed in co-cultures of Tc from all type of follicles incubated with LH, whereas PRL stimulated the expression of AQP5 in Tc from MF. Moreover, AQP5 protein expression increased in the co-culture isolated from MF and LF after treatment with FSH, LH, PRL, and GH. AQP5 immunoreactivity was observed in the cytoplasm, mainly in the perinuclear region and endosomes, as well as in the cell membranes of Gc and Tc from the LF and MF.


Subject(s)
Aquaporin 5/genetics , Gene Expression Regulation, Plant , Ovarian Follicle/metabolism , Pituitary Hormones/metabolism , Animals , Biomarkers , Coculture Techniques , Female , Follicle Stimulating Hormone/metabolism , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Growth Hormone/metabolism , Luteinizing Hormone/metabolism , Ovarian Follicle/cytology , Ovarian Follicle/drug effects , Pituitary Hormones/pharmacology , Prolactin/metabolism , Swine , Theca Cells/drug effects , Theca Cells/metabolism
10.
Diabetes ; 68(12): 2210-2222, 2019 12.
Article in English | MEDLINE | ID: mdl-31530579

ABSTRACT

Melanin-concentrating hormone (MCH) is an important regulator of food intake, glucose metabolism, and adiposity. However, the mechanisms mediating these actions remain largely unknown. We used pharmacological and genetic approaches to show that the sirtuin 1 (SIRT1)/FoxO1 signaling pathway in the hypothalamic arcuate nucleus (ARC) mediates MCH-induced feeding, adiposity, and glucose intolerance. MCH reduces proopiomelanocortin (POMC) neuronal activity, and the SIRT1/FoxO1 pathway regulates the inhibitory effect of MCH on POMC expression. Remarkably, the metabolic actions of MCH are compromised in mice lacking SIRT1 specifically in POMC neurons. Of note, the actions of MCH are independent of agouti-related peptide (AgRP) neurons because inhibition of γ-aminobutyric acid receptor in the ARC did not prevent the orexigenic action of MCH, and the hypophagic effect of MCH silencing was maintained after chemogenetic stimulation of AgRP neurons. Central SIRT1 is required for MCH-induced weight gain through its actions on the sympathetic nervous system. The central MCH knockdown causes hypophagia and weight loss in diet-induced obese wild-type mice; however, these effects were abolished in mice overexpressing SIRT1 fed a high-fat diet. These data reveal the neuronal basis for the effects of MCH on food intake, body weight, and glucose metabolism and highlight the relevance of SIRT1/FoxO1 pathway in obesity.


Subject(s)
Adiposity/drug effects , Forkhead Box Protein O1/metabolism , Glucose Intolerance/metabolism , Hyperphagia/metabolism , Hypothalamic Hormones/pharmacology , Melanins/pharmacology , Neurons/drug effects , Pituitary Hormones/pharmacology , Pro-Opiomelanocortin/metabolism , Sirtuin 1/metabolism , Adiposity/physiology , Animals , Forkhead Box Protein O1/genetics , Glucose Intolerance/genetics , Hyperphagia/genetics , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Mice, Knockout , Neurons/metabolism , Patch-Clamp Techniques , Rats, Sprague-Dawley , Sirtuin 1/genetics
11.
Behav Brain Res ; 374: 112120, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31376444

ABSTRACT

Animal studies have shown that antagonists of receptor 1 of Melanin-Concentrating Hormone (MCH-R1) elicit antidepressive-like behavior, suggesting that MCH-R1 might be a novel target for the treatment of depression and supports the hypothesis that MCHergic signaling regulates depressive-like behaviors. Consistent with the evidence that MCHergic neurons send projections to dorsal and median raphe nuclei, we have previously demonstrated that MCH microinjections in both nuclei induced a depressive-like behavior. Even though MCH neurons also project to Locus Coeruleus (LC), only a few studies have reported the behavioral and neurochemical effect of MCH into the LC. We studied the effects of MCH (100 and 200 ng) into the LC on coping-stress related behaviors associated with depression, using two different behavioral tests: the forced swimming test (FST) and the learned helplessness (LH). To characterize the functional interaction between MCH and the noradrenergic LC system, we also evaluated the neurochemical effects of MCH (100 ng) on the extracellular levels of noradrenaline (NA) in the medial prefrontal cortex (mPFC), an important LC terminal region involved in emotional processing. MCH administration into the LC elicited a depressive-like behavior evidenced in both paradigms. Interestingly, in the LH, MCH (100) elicited a significant increase in escape failures only in stressed animals. A significant decrease in prefrontal levels of NA was observed after MCH microinjection into the LC. Our results demonstrate that increased MCH signaling into the LC triggers depressive-like behaviors, especially in stressed animals. These data further corroborate the important role of MCH in the neurobiology of depression.


Subject(s)
Hypothalamic Hormones/pharmacology , Locus Coeruleus/metabolism , Melanins/pharmacology , Pituitary Hormones/pharmacology , Receptors, Somatostatin/metabolism , Animals , Antidepressive Agents/pharmacology , Depression/chemically induced , Depression/physiopathology , Dorsal Raphe Nucleus/drug effects , Dorsal Raphe Nucleus/metabolism , Emotions/drug effects , Hypothalamic Hormones/metabolism , Locus Coeruleus/drug effects , Male , Melanins/metabolism , Neurons/physiology , Norepinephrine/analysis , Pituitary Hormones/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , Receptors, Somatostatin/antagonists & inhibitors , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
12.
Neurochem Res ; 44(7): 1736-1744, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31037609

ABSTRACT

Recent advances in human induced pluripotent stem cells (hiPSCs) offer new possibilities for biomedical research and clinical applications. Neurons differentiated from hiPSCs may be promising tools to develop novel treatment methods for various neurological diseases. However, the detailed process underlying functional maturation of hiPSC-derived neurons remains poorly understood. Here, we analyze the developmental architecture of hiPSC-derived cortical neurons, iCell GlutaNeurons, focusing on the primary cilium, a single sensory organelle that protrudes from the surface of most growth-arrested vertebrate cells. To characterize the neuronal cilia, cells were cultured for various periods and evaluated immunohistochemically by co-staining with antibodies against ciliary markers Arl13b and MAP2. Primary cilia were detected in neurons within days, and their prevalence and length increased with increasing days in culture. Treatment with the mood stabilizer lithium led to primary cilia length elongation, while treatment with the orexigenic neuropeptide melanin-concentrating hormone caused cilia length shortening in iCell GlutaNeurons. The present findings suggest that iCell GlutaNeurons develop neuronal primary cilia together with the signaling machinery for regulation of cilia length. Our approach to the primary cilium as a cellular antenna can be useful for both assessment of neuronal maturation and validation of pharmaceutical agents in hiPSC-derived neurons.


Subject(s)
Cilia/metabolism , Cilia/ultrastructure , Induced Pluripotent Stem Cells/cytology , Neurons/cytology , ADP-Ribosylation Factors/immunology , Adenylyl Cyclases/immunology , Animals , Antibodies/immunology , Cell Line , Cilia/drug effects , Hippocampus/cytology , Hippocampus/drug effects , Humans , Hypothalamic Hormones/pharmacology , Immunohistochemistry , Lithium/pharmacology , Melanins/pharmacology , Microtubule-Associated Proteins/immunology , Neurogenesis/physiology , Neurons/drug effects , Pituitary Hormones/pharmacology , Rats, Wistar , Receptors, Somatostatin/immunology
13.
Anim Reprod Sci ; 203: 75-83, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30826248

ABSTRACT

The research reported focuses on reproduction of the river lamprey Lampetra fluviatilis,(Linnaeus, 1758) in controlled conditions. There was specific emphasis on fish harvesting dates (autumn and spring), holding conditions and reproduction in a controlled environment. Attempts were also made to synchronize the time of ovulation among river lampreys, egg and sperm collections. Hormonal stimulation was conducted using carp pituitary homogenate (CPH) at a total dose of 4 mg/kg which allowed for shortening of the egg-laying period from 2 to 3 weeks to a few days while sustaining embryo survival rates and larvae quality. River lamprey males were found to not require hormonal treatment to yield good-quality sperm, as measured using the CASA system. River lamprey broodstocks adapted well to different manipulations in hatchery conditions when harvested in the autumn and spring. The results of the present study may be used to restore endangered natural populations of the river lamprey (egg and sperm collection, fertilization or gamete preservation) because ovulation and spermiation synchronization is very difficult to achieve without hormonal treatment in controlled conditions.


Subject(s)
Lampreys/physiology , Ovum/physiology , Pituitary Hormones/pharmacology , Reproduction , Seasons , Spermatozoa/physiology , Animals , Female , Male , Ovum/drug effects , Rivers , Spermatozoa/drug effects
14.
Int J Neuropsychopharmacol ; 21(12): 1128-1137, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30335150

ABSTRACT

Background: Previous anatomical and behavioral studies have shown that melanin-concentrating hormone is involved in the modulation of emotional states. However, little is known about brain regions other than the dorsal raphe nucleus that relate the melanin-concentrating hormone-ergic system to depressive states. Numerous studies have shown that the locus coeruleus is involved in the regulation of depression and sleep. Although direct physiological evidence is lacking, previous studies suggest that melanin-concentrating hormone release in the locus coeruleus decreases neuronal discharge. However, remaining unclear is whether the melanin-concentrating hormone-ergic system in the locus coeruleus is related to depressive-like behavior. Method: We treated rats with an intra-locus coeruleus injection of melanin-concentrating hormone, intracerebroventricular injection of melanin-concentrating hormone, or chronic subcutaneous injections of corticosterone to induce different depressive-like phenotypes. We then assessed the effects of the melanin-concentrating hormone receptor 1 antagonist SNAP-94847 on depressive-like behavior in the forced swim test and the sucrose preference test. Results: The intra-locus coeruleus and intracerebroventricular injections of melanin-concentrating hormone and chronic injections of corticosterone increased immobility time in the forced swim test and decreased sucrose preference in the sucrose preference test. All these depressive-like behaviors were reversed by an intra-locus coeruleus microinjection of SNAP-94847. Conclusions: These results suggest that the melanin-concentrating hormone-ergic system in the locus coeruleus might play an important role in the regulation of depressive-like behavior.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Depression/metabolism , Hypothalamic Hormones/metabolism , Locus Coeruleus/drug effects , Melanins/metabolism , Pituitary Hormones/metabolism , Receptors, Somatostatin/metabolism , Animals , Antidepressive Agents/administration & dosage , Corticosterone/administration & dosage , Depression/chemically induced , Depression/drug therapy , Disease Models, Animal , Hypothalamic Hormones/pharmacology , Injections, Intraventricular , Injections, Subcutaneous , Male , Melanins/pharmacology , Pituitary Hormones/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Somatostatin/antagonists & inhibitors
15.
Zygote ; 26(4): 279-285, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30220262

ABSTRACT

SummaryThe aim of this study was to evaluate if hormonal treatment causes changes in the morphology of matrinxã Brycon amazonicus spermatozoa. Twelve males were randomized into three treatment groups: 1, Ovaprim™ (0.5 ml/kg); 2, carp pituitary extract (CPE; 2.0 mg/kg); and 3, NaCl solution 0.9% - control group (0.5 ml/kg); with four replicates. Morphological sperm analysis was performed using an optical and scanning electron microscope. The percentage of normal spermatozoa (49.6±4.6% to 60.8±2.8%), with primary (26.1±6.4% to 45.3±4.5%) and secondary abnormalities (4.4±2.9% to 13.9±3.5%) did not differ significantly between treatment groups. There were no significant differences between treatments in relation to the primary abnormalities found in the head (10.5±3.8% to 25.5±6.3%), the midpiece (0.1±0.1% to 0.2±0.2%) and in the flagellum (18.9±3.8% to 15.5±3.1%), as well as in the secondary abnormalities, located in the head (0.8±0.4% to 7.8±4.6%) and in the flagellum (2.2±1.1% to 6.1±1.5%). When each abnormality was evaluated individually, only the percentage of degenerated head was higher in the CPE-induced group (24.9±5.9%) than the control group (7.2±3.1%). We concluded that the use of pituitary extract of carp or Ovaprim™ under the conditions of this experiment does not influence the percentage of sperm abnormalities in B. amazonicus.


Subject(s)
Carps/physiology , Characiformes/physiology , Domperidone/pharmacology , Gonadotropin-Releasing Hormone/pharmacology , Pituitary Hormones/pharmacology , Spermatozoa/pathology , Tissue Extracts/pharmacology , Animals , Drug Combinations , Male , Sperm Motility/drug effects , Spermatozoa/drug effects
16.
Biochem Biophys Res Commun ; 503(4): 3128-3133, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30166060

ABSTRACT

INTRODUCTION: Reconstruction of respiratory epithelium is critical for the fabrication of bioengineered airway implants. Epithelial differentiation is typically achieved using bovine pituitary extract (BPE). Due to the xenogenic nature and undefined composition of BPE, an alternative for human clinical applications, devoid of BPE, must be developed. The goal of this study was to develop two different BPE-free media, with and without select pituitary hormone (PH), which could initiate epithelial differentiation for use in human implantation. METHODS: The ability of the two BPE-free media to initiate epithelial differentiation of adherent, non-expanded stromal-vascular cells grown on porcine small intestinal submucosa was compared to traditional BPE-containing media (M1). Nanostring® was used to measure differences in gene expression of stemness (MSC), basal cell (basal), and ciliated markers (muco-cil), and staining was performed support the gene data. RESULTS: Compared to baseline, both BPE-free media upregulated epithelial and stemness genes, however this was to a lower degree than BPE-containing media. In general, the expression of basal cell markers (COL17A1, DSG3, ITGA6, KRT6A, LOXL2) and secreted mucous proteins (PLUNC, MUC5B, SCGB2A1) was upregulated. The gene expression of ciliated markers C9orf24, TUBA3 and DNCL2B but not of the key transcription factor for cilagenesis FOXJ1 were upregulated, indicating that mucus-secreting cell differentiation occurs more rapidly than ciliogenesis. The ability of the adherent stromal vascular cells to upregulate gene expression of both epithelial and stemness markers suggests maintenance of the self-renewal capacity of undifferentiated and/or basal cell-like cells contributing to proliferation and ensuring a persisting source of cells for regenerative medicine applications. CONCLUSION: This study provides the initial step to defining a BPE-free epithelial differentiation medium for clinical translation. Thus, either of the proposed BPE-free medium are viable alternatives to BPE-containing medium for partial epithelial differentiation for human translational applications.


Subject(s)
Adipose Tissue/cytology , Cell Culture Techniques/methods , Cell Differentiation , Culture Media/pharmacology , Epithelial Cells/cytology , Pituitary Hormones/pharmacology , Stromal Cells/cytology , Adipose Tissue/drug effects , Adult , Animals , Cattle , Cell Differentiation/drug effects , Cells, Cultured , Culture Media/chemistry , Epithelial Cells/drug effects , Female , Humans , Middle Aged , Pituitary Hormones/chemistry , Stromal Cells/drug effects
17.
J Endocrinol ; 237(3): R83-R98, 2018 06.
Article in English | MEDLINE | ID: mdl-29555849

ABSTRACT

Studies over the past decade have challenged the long-held belief that pituitary hormones have singular functions in regulating specific target tissues, including master hormone secretion. Our discovery of the action of thyroid-stimulating hormone (TSH) on bone provided the first glimpse into the non-traditional functions of pituitary hormones. Here we discuss evolving experimental and clinical evidence that growth hormone (GH), follicle-stimulating hormone (FSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin and arginine vasopressin (AVP) regulate bone and other target tissues, such as fat. Notably, genetic and pharmacologic FSH suppression increases bone mass and reduces body fat, laying the framework for targeting the FSH axis for treating obesity and osteoporosis simultaneously with a single agent. Certain 'pituitary' hormones, such as TSH and oxytocin, are also expressed in bone cells, providing local paracrine and autocrine networks for the regulation of bone mass. Overall, the continuing identification of new roles for pituitary hormones in biology provides an entirely new layer of physiologic circuitry, while unmasking new therapeutic targets.


Subject(s)
Adipose Tissue/metabolism , Bone and Bones/metabolism , Pituitary Hormones/physiology , Adipose Tissue/drug effects , Adrenocorticotropic Hormone/pharmacology , Adrenocorticotropic Hormone/physiology , Animals , Arginine Vasopressin/pharmacology , Arginine Vasopressin/physiology , Bone and Bones/drug effects , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/physiology , Growth Hormone/pharmacology , Growth Hormone/physiology , Humans , Oxytocin/pharmacology , Oxytocin/physiology , Pituitary Hormones/pharmacology , Prolactin/pharmacology , Prolactin/physiology , Thyrotropin/pharmacology , Thyrotropin/physiology
18.
Sci Rep ; 8(1): 707, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335480

ABSTRACT

The melanin-concentrating hormone (MCH) is a peptidergic neuromodulator synthesized by neurons in the lateral hypothalamus and zona incerta. MCHergic neurons project throughout the central nervous system, indicating the involvements of many physiological functions, but the role in pain has yet to be determined. In this study, we found that pMCH-/- mice showed lower baseline pain thresholds to mechanical and thermal stimuli than did pMCH+/+ mice, and the time to reach the maximum hyperalgesic response was also significantly earlier in both inflammatory and neuropathic pain. To examine its pharmacological properties, MCH was administered intranasally into mice, and results indicated that MCH treatment significantly increased mechanical and thermal pain thresholds in both pain models. Antagonist challenges with naltrexone (opioid receptor antagonist) and AM251 (cannabinoid 1 receptor antagonist) reversed the analgesic effects of MCH in both pain models, suggesting the involvement of opioid and cannabinoid systems. MCH treatment also increased the expression and activation of CB1R in the medial prefrontal cortex and dorsolateral- and ventrolateral periaqueductal grey. The MCH1R antagonist abolished the effects induced by MCH. This is the first study to suggest novel analgesic actions of MCH, which holds great promise for the application of MCH in the therapy of pain-related diseases.


Subject(s)
Analgesics/pharmacology , Hypothalamic Hormones/pharmacology , Melanins/pharmacology , Pain Perception/drug effects , Pituitary Hormones/pharmacology , Administration, Intranasal , Analgesics/administration & dosage , Animals , Hypothalamic Hormones/administration & dosage , Hypothalamic Hormones/deficiency , Melanins/administration & dosage , Melanins/deficiency , Mice , Mice, Knockout , Pituitary Hormones/administration & dosage , Pituitary Hormones/deficiency
19.
Neuropharmacology ; 128: 22-32, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28888943

ABSTRACT

Repetitive and perseverative behaviors are common features of a number of neuropsychiatric diseases such as Angelman's syndrome, Tourette's syndrome, obsessive-compulsive disorder, and autism spectrum disorders. The oxytocin system has been linked to the regulation of repetitive behavior in both animal models and humans, but many of its downstream targets have still to be found. We report that the melanin-concentrating hormone (MCH) system is a target of the oxytocin system in regulating one repetitive behavior, marble burying. First we report that nearly 60% of MCH neurons express oxytocin receptors, and demonstrate using rabies mediated tract tracing that MCH neurons receive direct presynaptic input from oxytocin neurons. Then we show that MCH receptor knockout (MCHR1KO) mice and MCH ablated animals display increased marble burying response while central MCH infusion decreases it. Finally, we demonstrate the downstream role of the MCH system on oxytocin mediated marble burying by showing that central infusions of MCH and oxytocin alone or together reduce it while antagonizing the MCH system blocks oxytocin-mediated reduction of this behavior. Our findings reveal a novel role for the MCH system as a mediator of the role of oxytocin in regulating marble-burying behavior in mice.


Subject(s)
Exploratory Behavior/drug effects , Hypothalamic Hormones/pharmacology , Melanins/pharmacology , Oxytocin/pharmacology , Pituitary Hormones/pharmacology , Adaptation, Ocular/drug effects , Analysis of Variance , Animals , Diphtheria Toxin/pharmacology , Glycoproteins/genetics , Glycoproteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Grooming/drug effects , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects , Pyrimidinones/pharmacology , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Receptors, Somatostatin/antagonists & inhibitors , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Stereotyped Behavior/drug effects , Thiophenes/pharmacology , Red Fluorescent Protein
20.
Ann Endocrinol (Paris) ; 78 Suppl 1: S41-S49, 2017 Oct.
Article in French | MEDLINE | ID: mdl-29157488

ABSTRACT

Behaviour may be influenced by pituitary hormones or treatments. Dopamine agonist (DA) indicated in prolactinomas treatment can cause side effects, and especially impulse control disorders. In the context of prolactinomas treatment, impulse control disorders (ICD) have been reported like gambling, compulsive shopping, but mostly hypersexuality. These ICD can occur with low AD doses, and seem to be independent of type of molecule and psychiatric medical history. The main pathophysiologic hypothesis is a dysregulation of dopaminergic pathway involved in reward system. Given the possible devastating social impact of these ICD, they have to be screened in patients treated with DA. Our social behaviour can also be impacted by oxytocin. This hormone secreted on physiologic state at posterior pituitary, but also by others areas of brain and brainstem, has an impact on attachment in pair partners and in parent-child relationship, but also in empathy behaviour. Oxytocin affects as well eating behaviour with an anorexigenic impact. Studies on small populations assessed the relevance of an oxytocin treatment in several endocrine and nutritional pathologies like post-surgery craniopharyngioma, panhypopituitarism and obesity. Despite promising results, several pitfalls prevent yet the oxytocin use in clinical practice.


Subject(s)
Behavior/drug effects , Dopamine Agonists/pharmacology , Pituitary Diseases/therapy , Pituitary Gland/physiology , Pituitary Hormones/pharmacology , Adult , Child , Compulsive Behavior/chemically induced , Compulsive Behavior/physiopathology , Dopamine Agonists/adverse effects , Empathy/drug effects , Humans , Interpersonal Relations , Oxytocin/adverse effects , Oxytocin/pharmacology , Parent-Child Relations , Pituitary Diseases/physiopathology , Pituitary Diseases/psychology , Pituitary Hormones/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...