Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
1.
BMC Pregnancy Childbirth ; 23(1): 725, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821857

ABSTRACT

BACKGROUND: The placenta serves as the sole maternal organ responsible for transmitting nutrients to the fetus, playing a crucial role in supporting standard fetal growth and development. To date, only a small number of studies have investigated the impact of maternal gestational weight gain and lipid concentrations on placental development. This study aimed to explore the influence of weight gain during pregnancy and lipid levels in the second trimester on placental weight, volume, and the placental weight ratio. METHODS: This birth cohort study encompassed 1,358 mother-child pairs. Placental data for each participant was gathered immediately post-delivery, and the study incorporated data on gestational weight gain throughout pregnancy and lipid profiles from the mid-trimester. A linear regression model was employed to assess the correlations between gestational weight gain, mid-trimester lipid levels, and metrics such as placental weight, placental volume, and the placental-to-birth weight ratio (PFR). RESULTS: In the study groups of pre-pregnancy underweight, normal weight, and overweight, the placental weight increased by 4.93 g (95% CI: 1.04-8.81), 2.52 g (95% CI: 1.04-3.99), and 3.30 g (95% CI: 0.38-6.22) per 1 kg of gestational weight gain, respectively. Within the pre-pregnancy underweight and normal weight groups, the placental volume increased by 6.79 cm^3 (95% CI: 3.43-10.15) and 2.85 cm^3 (95% CI: 1.31-4.39) per 1 kg of gestational weight gain, respectively. Additionally, placental weight exhibited a positive correlation with triglyceride (TG) levels (ß = 9.81, 95% CI: 3.28-16.34) and a negative correlation with high-density lipoprotein (HDL-C) levels (ß = - 46.30, 95% CI: - 69.49 to - 23.11). Placental volume also showed a positive association with TG levels (ß = 14.54, 95% CI: 7.69-21.39). Conversely, PFR demonstrated a negative correlation with increasing HDL-C levels (ß = - 0.89, 95% CI: - 1.50 to - 0.27). CONCLUSIONS: Gestational weight gain was significantly correlated with both placental weight and volume. This association was especially pronounced in women who, prior to pregnancy, were underweight or of normal weight. Additionally, TG and HDL-C levels during the mid-trimester were linked to placental development.


Subject(s)
Gestational Weight Gain , Placenta , Female , Humans , Pregnancy , Birth Weight , Cohort Studies , East Asian People , Lipids , Placenta/embryology , Thinness , Organ Size
2.
São Paulo; s.n; s.n; 2022. 46 p. tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-1416717

ABSTRACT

A implantação do embrião na parede uterina é um processo complexo que consiste na interação do blastocisto com as células epiteliais do útero, e depende de diferentes tipos celulares do microambiente uterino. Embora a literatura mostre a participação de neutrófilos neste processo, os dados ainda são incipientes para proposição da função exata destas células nos períodos iniciais da gestação. Dados do nosso grupo de pesquisa mostraram que neutrófilos pró-angiogênicos induzem a tolerância gestacional, e que a depleção de neutrófilos durante as fases iniciais da gestação prejudica a implantação do blastocisto e a progressão da gestação. Com base nestes resultados, o presente estudo visou investigar se a depleção de neutrófilos na fase pré-receptiva da janela de implantação do blastocisto altera a morfologia placentária. Para tanto, foi utilizado o modelo de gestação alogênica, onde camundongos fêmeas C57BL/6, após cruzamento com machos Balb/C foram tratadas com anticorpo anti-Ly6G ou isotipo no dia 1,5 da gestação (24 horas após a detecção do plug vaginal) em dose suficiente para manter a depleção de neutrófilos circulantes por 48 horas (200µg/ 500µL; i.p). No final da gestação (dia 18,5), o sangue periférico foi coletado e, em seguida, os animais foram submetidos a laparotomia para retirada da placenta, a qual foi submetida à análise histológica. As análises dos leucócitos circulantes evidenciaram a efetividade do tratamento para depleção de neutrófilos periféricos. A análise histológica mostrou alterações significativas na morfologia da placenta nos animais tratados com anti-Ly6G. Foram detectadas a redução da zona juncional, de células trofoblásticas e de fatores angiogênicos, como fator de crescimento do endotélio vascular (VEGF), e das moléculas de adesão intracelular-1 (ICAM-1) e de plaqueta e endotélio (PECAM-1). Esses dados evidenciam a importância dos neutrófilos nos primeiros dias de gestação para o desenvolvimento da placenta


Blastocyst implantation is a complex process, consisting of the interaction between blastocyst and uterine epithelial cells. Also, it is well known that the implantation site resembles an inflammatory response, with a profusion of recruited immune cells into the endometrial stroma and lumen from the blood. The role of macrophages, natural killers, and dendritic cells have been extensively studied, however, the participation of neutrophils in this process remains unclear. Data from our research group showed that pro-angiogenic neutrophils induced gestation tolerance, also peripheral neutrophils depletion at the time of active placental development led to smaller embryo sizes and abnormal placentation in mice. In this context, the present study aimed to investigate whether pharmacological depletion of neutrophils in mice in the blastocyst implantation phase alters placental morphology. Therefore, C7/BL/6 female mice, after mating with Balb/C males, were treated with an anti-Ly6G antibody or isotype on day 1 of gestation (after detection of the vaginal plug) at a dose sufficient to maintain the depletion of circulating neutrophils for 48 hours (200 µg/500µL; i.p). At the end of the gestational day (day 18), peripheral blood was collected, and then the animals were submitted to laparotomy for the placenta removal and subsequent histological analysis. The analysis of circulating leukocytes from neutrophils depleted mice showed a reduction of peripheral neutrophils up to 48 hours after antibody injection. The histological analysis showed significant alterations in the placenta morphology of the animals treated with anti-Ly6G. The morphometric analyses showed a reduction in the size of neutrophils depleted placenta due to diminished junctional zone and reduction of trophoblast cells. Also, it was observed a reduction of vascular endothelial growth factors (VEGF), reduction of adhesion molecules intracell-1 (ICAM-1), and platelets and endothelium (PECAM-1) positive cells in the junctional zone. In conclusion, these data show the importance of neutrophils on the first days of pregnancy for the development of the placenta


Subject(s)
Animals , Female , Mice , Embryo Implantation , Placenta/embryology , Neutrophils/metabolism , Dendritic Cells/classification , Intercellular Adhesion Molecule-1/administration & dosage , Platelet Endothelial Cell Adhesion Molecule-1/adverse effects , Vascular Endothelial Growth Factor A , Angiogenesis Inducing Agents/adverse effects , Diagnosis , Embryonic Structures/metabolism
3.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34559199

ABSTRACT

The therian-specific gene paternally expressed 10 (Peg10) plays an essential role in placenta formation: Peg10 knockout mice exhibit early embryonic lethality as a result of severe placental defects. The PEG10 protein exhibits homology with long terminal repeat (LTR) retrotransposon GAG and POL proteins; therefore, we generated mice harboring a mutation in the highly conserved viral aspartic protease motif in the POL-like region of PEG10 because this motif is essential for the life cycle of LTR retrotransposons/retroviruses. Intriguingly, frequent perinatal lethality, not early embryonic lethality, was observed with fetal and placental growth retardation starting mid-gestation. In the mutant placentas, severe defects were observed in the fetal vasculature, where PEG10 is expressed in the three trophoblast cell layers that surround fetal capillary endothelial cells. Thus, Peg10 has essential roles, not only in early placenta formation, but also in placental vasculature maintenance from mid- to late-gestation. This implies that along the feto-maternal placenta interface an interaction occurs between two retrovirus-derived genes, Peg10 and retrotransposon Gag like 1 (Rtl1, also called Peg11), that is essential for the maintenance of fetal capillary endothelial cells.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Capillaries/metabolism , DNA-Binding Proteins/metabolism , Placenta/blood supply , RNA-Binding Proteins/metabolism , Amino Acid Motifs , Animals , Apoptosis Regulatory Proteins/chemistry , Capillaries/embryology , DNA-Binding Proteins/chemistry , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Female , Mice , Placenta/embryology , Pregnancy , Pregnancy Proteins/chemistry , Pregnancy Proteins/metabolism , RNA-Binding Proteins/chemistry
4.
Cytokine ; 143: 155517, 2021 07.
Article in English | MEDLINE | ID: mdl-33814270

ABSTRACT

Vertical transmission of Toxoplasma gondii leads to adverse pregnancy outcomes depending on the time at which the infection occurs and the immunological state of the mother. C57BL/6 and BALB/c mice have been described as susceptible and resistant mouse lineages to congenital T. gondii infection, respectively. This study aimed to elucidate the systemic and local cytokine profile of pregnant mice infected with T. gondii and whether the expression of the transcription factor FOXP3, related to T regulatory cells, is associated with the resistance/susceptibility of these lineages of mice in the context of experimental congenital toxoplasmosis. For this purpose, C57BL/6 and BALB/c females were orally infected with the T. gondii ME-49 strain on the day of vaginal plug detection or day 14 of gestation, examined 7 or 5 days later, respectively, as models of early and late pregnancy. Cytokine levels were measured systemically and in the uterus/placenta. Additionally, the uterus/placenta were evaluated macroscopically for resorption rates and histologically for parasite and FOXP3 immunostaining. The FOXP3 protein expression was also evaluated by western blotting assay. It was found that, during early pregnancy, the infection leads to high IFN-γ, TNF and IL-6 levels systemically, with the TNF levels being higher in C57BL/6 mice. At the maternal-fetal interface, the infection induced high levels of IFN-γ in both mouse lineages; however, higher levels were observed in BALB/c, while high TNF and IL-6 levels were found in C57BL/6, but not in BALB/c mice. In contrast, in late gestation, T. gondii interfered less strongly with the cytokine profile. In early pregnancy, a reduction of FOXP3 expression at the maternal-fetal interface of infected mice was also observed, and the reduction was larger in C57BL/6 compared with BALB/c mice. Additionally, the parasite was seldom found in the uterus/placenta. Thus, the worse pregnancy outcomes observed in C57BL/6 mice were associated with higher TNF systemically, and TNF and IL-6 at the maternal-fetal interface, with lower FOXP3 expression.


Subject(s)
Forkhead Transcription Factors/metabolism , Interleukin-6/blood , Maternal-Fetal Exchange , Pregnancy Outcome , Toxoplasmosis, Congenital/blood , Tumor Necrosis Factor-alpha/blood , Animals , Disease Models, Animal , Female , Interferon-gamma/blood , Lung/parasitology , Mice, Inbred BALB C , Mice, Inbred C57BL , Parasites/physiology , Placenta/embryology , Placenta/metabolism , Placenta/parasitology , Pregnancy , Toxoplasma/physiology , Toxoplasmosis, Animal/blood , Uterus/embryology , Uterus/pathology
5.
Genetics ; 218(1)2021 05 17.
Article in English | MEDLINE | ID: mdl-33710276

ABSTRACT

Embryonic development in mammals is highly sensitive to changes in gene expression within the placenta. The placenta is also highly enriched for genes showing parent-of-origin or imprinted expression, which is predicted to evolve rapidly in response to parental conflict. However, little is known about the evolution of placental gene expression, or if divergence of placental gene expression plays an important role in mammalian speciation. We used crosses between two species of dwarf hamsters (Phodopus sungorus and Phodopus campbelli) to examine the genetic and regulatory underpinnings of severe placental overgrowth in their hybrids. Using quantitative genetic mapping and mitochondrial substitution lines, we show that overgrowth of hybrid placentas was primarily caused by genetic differences on the maternally inherited P. sungorus X chromosome. Mitochondrial interactions did not contribute to abnormal hybrid placental development, and there was only weak correspondence between placental disruption and embryonic growth. Genome-wide analyses of placental transcriptomes from the parental species and first- and second-generation hybrids revealed a central group of co-expressed X-linked and autosomal genes that were highly enriched for maternally biased expression. Expression of this gene network was strongly correlated with placental size and showed widespread misexpression dependent on epistatic interactions with X-linked hybrid incompatibilities. Collectively, our results indicate that the X chromosome is likely to play a prominent role in the evolution of placental gene expression and the accumulation of hybrid developmental barriers between mammalian species.


Subject(s)
Genes, X-Linked/genetics , Placenta/metabolism , X Chromosome/genetics , Animals , Cricetinae/genetics , Female , Gene Expression/genetics , Genome-Wide Association Study/methods , Genomic Imprinting , Placenta/embryology , Pregnancy , Reproductive Isolation , Species Specificity
7.
Radiology ; 298(2): 403-412, 2021 02.
Article in English | MEDLINE | ID: mdl-33231529

ABSTRACT

Background Prenatal identification of placenta accreta spectrum (PAS) disorder is essential for treatment planning. More objective means for predicting PAS and clinical outcome may be provided by MRI descriptors. Purpose To investigate the association of intraplacental fetal vessel (IFV) diameter at MRI with PAS and peripartum complications. Materials and Methods Between March 2016 and October 2019, 160 gravid women suspected of having PAS underwent placental MRI as part of a prospective trial. Secondary analysis was performed by two experienced genitourinary radiologists for presence and maximum diameter of IFVs. Relative risk ratios were computed to test the association of IFVs with presence and depth of PAS invasiveness. Receiver operating characteristic analysis was used to evaluate the ability of IFV diameter to help predict PAS, placenta percreta, and peripartum complications and for comparison of the area under the curve (AUC) versus that from other combined MRI predictors of PAS (eg, myometrial thinning, intraplacental T2-hypointense bands, uterine bulge, serosal hypervascularity, and signs of extrauterine placental spread). Intraoperative and histopathologic findings were the reference standard. Results A total of 155 women were evaluated (mean age, 35 years ± 5 [standard deviation]; mean gestational age, 32 weeks ± 3). PAS was diagnosed in 126 of 155 women (81%) (placental percreta in 68 of 126 [54%]). At delivery, 30 of 126 women (24%) experienced massive blood loss (>2000 mL). IFVs were detected at MRI in 109 of 126 women with PAS (86%) and in 67 of 68 women with placental percreta (98%). The relative risk ratio was 2.4 (95% CI: 1.6, 3.4; P < .001) for PAS and 10 (95% CI: 1.5, 70.4; P < .001) for placental percreta when IFVs were visible. IFVs of 2 mm or greater were associated with PAS (AUC, 0.81; 95% CI: 0.67, 0.95; P = .04). IVFs of 3 mm or greater were associated with placenta percreta (AUC, 0.81; 95% CI: 0.73, 0.89; P < .001) and with peripartum complications, including massive bleeding (AUC, 0.80; 95% CI: 0.71, 0.89; P < .001). Combining assessment of IFVs with other MRI descriptors improved the ability of MRI to predict PAS (AUC, 0.94 vs 0.89; P = .009). Conclusion Assessment of intraplacental fetal vessels with other MRI descriptors improved the ability of MRI to help predict PAS. Vessel diameter of 3 mm or greater was predictive of placenta percreta and peripartum complications. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Dighe in this issue.


Subject(s)
Magnetic Resonance Imaging/methods , Placenta Accreta/diagnosis , Placenta/blood supply , Placenta/embryology , Prenatal Diagnosis/methods , Adult , Female , Humans , Placenta/diagnostic imaging , Pregnancy , Prospective Studies
8.
J Assist Reprod Genet ; 37(12): 3057-3067, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33089439

ABSTRACT

PURPOSE: This study aimed to determine the effects of drilling and thinning treatment of laser-assisted hatching on the expression and methylation of imprinted gene IGF2/H19 in embryos and offspring. METHODS: The prehatching blastocysts with treatment of drilling or thinning, or control prehatching blastocysts, were transplanted in surrogate uteri. The DNA methylation of IGF2/H19 imprinting control region (ICR) and the expression of IGF2 and H19 were respectively evaluated using bisulfite conversion-mediated sequencing and real-time PCR. RESULTS: The drilling group showed a significant increase in the development rate of hatched blastocysts in comparison with the control and thinning group. DNA methylation level of IGF2/H19 ICR of hatched blastocysts in the thinning group was 27.33% in comparison with the 38.67% and 36% observed in the control and drilling group. The thinning treatment increased the DNA methylation level of IGF2/H19 ICR in the placenta in comparison with the control and drilling group. The drilling and thinning treatment decreased the expression level of H19 mRNA in prehatching and hatched blastocysts as well as placenta, while a significant increase in the expression level of H19 mRNA of offspring was observed in the thinning group. The thinning treatment increased the expression level of IGF2 mRNA of prehatching blastocysts and offspring and a significant decrease in placenta, while the drilling treatment resulted in a significant increase in the expression level of IGF2 mRNA of hatched blastocysts and placenta. CONCLUSION: These observations suggested that drilling used for hatching of in vitro cultured mouse blastocysts may improve the production of offspring.


Subject(s)
Blastocyst/physiology , DNA Methylation , Fertilization in Vitro/methods , Genomic Imprinting , Insulin-Like Growth Factor II/metabolism , Placenta/embryology , RNA, Long Noncoding/genetics , Animals , Animals, Newborn , Blastocyst/cytology , Blastocyst/radiation effects , Embryo Culture Techniques , Female , Insulin-Like Growth Factor II/genetics , Lasers , Male , Mice , Pregnancy
9.
Int J Mol Sci ; 21(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066440

ABSTRACT

Placental homeostasis of tryptophan is essential for fetal development and programming. The two main metabolic pathways (serotonin and kynurenine) produce bioactive metabolites with immunosuppressive, neurotoxic, or neuroprotective properties and their concentrations in the fetoplacental unit must be tightly regulated throughout gestation. Here, we investigated the expression/function of key enzymes/transporters involved in tryptophan pathways during mid-to-late gestation in rat placenta and fetal organs. Quantitative PCR and heatmap analysis revealed the differential expression of several genes involved in serotonin and kynurenine pathways. To identify the flux of substrates through these pathways, Droplet Digital PCR, western blot, and functional analyses were carried out for the rate-limiting enzymes and transporters. Our findings show that placental tryptophan metabolism to serotonin is crucial in mid-gestation, with a subsequent switch to fetal serotonin synthesis. Concurrently, at term, the close interplay between transporters and metabolizing enzymes of both placenta and fetal organs orchestrates serotonin homeostasis and prevents hyper/hypo-serotonemia. On the other hand, the placental production of kynurenine increases during pregnancy, with a low contribution of fetal organs throughout gestation. Any external insult to this tightly regulated harmony of transporters and enzymes within the fetoplacental unit may affect optimal in utero conditions and have a negative impact on fetal programming.


Subject(s)
Fetus/metabolism , Placenta/metabolism , Transcriptome , Tryptophan/metabolism , Animals , Female , Fetus/embryology , Gene Expression Regulation, Developmental , Metabolic Networks and Pathways , Placenta/embryology , Pregnancy , Rats , Rats, Wistar , Tryptophan/genetics
10.
Cells ; 9(9)2020 08 22.
Article in English | MEDLINE | ID: mdl-32842598

ABSTRACT

Y-box binding protein 1 (YB-1) is pivotal for the regulation of cancerogenesis and inflammation. However, its involvement in pregnancy processes such as fetal and placental development remains to be elucidated. We studied Ybx1 (YB-1)+/- heterozygous intercrossings and compared them to YB-1+/+ wild-type (WT) combinations. Additionally, we generated trophoblast-specific YB-1-deficient mice by pairing FVB Cyp19-Cre females to YB-1fl/fl males. YB-1fl/fl-paired FVB WT females served as controls. Serial in vivo ultrasound measurements were performed to assess fetal and placental parameters. After sacrificing the females, implantation and abortion rates were recorded, spiral artery (SA) remodeling was analyzed and fetal and placental weights were determined. Compared to YB-1+/+ counterparts, YB-1+/- females showed reduced implantation areas at gestation day (GD)10, insufficiently remodeled SAs at GD12, increased placental diameter/thickness ratios at GD14 and reduced placental and fetal weights at GD14. Compared to WT, Cyp19-Cre females with YB-1-deficient placentas showed reduced implantation areas at GD8, 10 and 12; decreased placental areas and diameters at GD10 and 12; diminished placental thicknesses at GD12; as well as reduced placental weights at GD12 and 14. In conclusion, our data suggest haploinsufficiency of YB-1 resulting in disturbed fetal and placental development. Moreover, we provide the first evidence for the relevance of trophoblast-specific YB-1 for placentation.


Subject(s)
Fetus/embryology , Placenta/embryology , Trophoblasts/metabolism , Y-Box-Binding Protein 1/metabolism , Animals , Female , Humans , Male , Mice , Pregnancy
11.
Cell Rep ; 32(1): 107874, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32640239

ABSTRACT

Regulatory T cells (Tregs) have been exhaustively investigated during early pregnancy; however, their role later in gestation is poorly understood. Herein, we report that functional Tregs are reduced at the maternal-fetal interface in a subset of women with idiopathic preterm labor/birth, which is accompanied by a concomitant increase in Tc17 cells. In mice, depletion of functional Tregs during late gestation induces preterm birth and adverse neonatal outcomes, which are rescued by the adoptive transfer of such cells. Treg depletion does not alter obstetrical parameters in the mother, yet it increases susceptibility to endotoxin-induced preterm birth. The mechanisms whereby depletion of Tregs induces adverse perinatal outcomes involve tissue-specific immune responses and mild systemic maternal inflammation, together with dysregulation of developmental and cellular processes in the placenta, in the absence of intra-amniotic inflammation. These findings provide mechanistic evidence supporting a role for Tregs in the pathophysiology of idiopathic preterm labor/birth and adverse neonatal outcomes.


Subject(s)
Obstetric Labor, Premature/immunology , Pregnancy Outcome , Premature Birth/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Amnion/pathology , Animals , Delivery, Obstetric , Disease Susceptibility , Endotoxins , Female , Humans , Infant, Newborn , Lymphocyte Depletion , Maternal-Fetal Exchange , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Biological , Placenta/drug effects , Placenta/embryology , Placenta/immunology , Pregnancy
12.
Neurochem Int ; 138: 104778, 2020 09.
Article in English | MEDLINE | ID: mdl-32474175

ABSTRACT

Neurotrophins play a critical role in the development, maintenance, and proper function of the brain. We investigated the effects of maternal diet high in omega (n)-3 polyunsaturated fatty acids (PUFA) on fatty acids composition and the gene expression of neurotrophins in fetal brain at different gestation stages. Female C57BL/6 mice (7-weeks old, n = 8/group) were fed a diet containing high, low or very low n-3 PUFA (9, 3 or 1% w/w, respectively), with an n-6:n-3 PUFA of 5:1, 20:1 and 40:1, respectively, for two weeks before mating and throughout pregnancy. Animals were sacrificed during pregnancy at gestation day 12.5 and 18.5 to determine placental and fetal-brain fatty acids composition. The gene expressions of endothelial lipase (EL) and plasma membrane fatty acid-binding protein (FABPpm) were measured in the placenta, while major facilitator superfamily domain-containing 2a (Mfsd2a), brain-derived neurotrophic factor (BDNF), tropomyosin-receptor kinase (TrK)-B, and cAMP response element-binding protein (CREB) were measured in fetal-brain, using qPCR. The protein expression of phosphorylated CREB (pCREB) was determined using ELISA. The high n-3 PUFA diet increased the mRNA expression of EL, FABPpm, and Mfsd2a at both gestation days, compared to other groups. Docosahexaenoic acid (DHA) and total n-3 PUFA were significantly higher in the high n-3 PUFA group, compared to the other groups at both gestation days. The high n-3 PUFA diet also increased the mRNA expressions of BDNF, TrKB and CREB, as well as the protein concentration of pCREB as gestation progressed, compared to the other groups. Our findings show for the first time that maternal diet high in n-3 PUFA increased the mRNA expression of Mfsd2a, which correlated with an increase in DHA accretion in the fetal-brain. A diet high in n-3 PUFA increased neurotrophin signalling in fetal-brain as gestation progressed, demonstrating the importance of n-3 PUFA during brain development.


Subject(s)
Dietary Fats/administration & dosage , Fatty Acids, Omega-3/administration & dosage , Fetal Development/physiology , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Up-Regulation/physiology , Animals , Brain/drug effects , Brain/embryology , Brain/metabolism , Female , Fetal Development/drug effects , Maternal Health , Mice , Mice, Inbred C57BL , Placenta/drug effects , Placenta/embryology , Placenta/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Up-Regulation/drug effects
13.
PLoS One ; 15(4): e0232025, 2020.
Article in English | MEDLINE | ID: mdl-32353019

ABSTRACT

The actin cytoskeleton plays a central role in establishing cell polarity and shape during embryonic morphogenesis. Daam1, a member of the Formin family of actin cytoskeleton regulators, is a Dvl2-binding protein that functions in the Wnt/Planar Cell Polarity (PCP) pathway. To examine the role of the Daam proteins in mammalian development, we generated Daam-deficient mice by gene targeting and found that Daam1, but not Daam2, is necessary for fetal survival. Embryonic development of Daam1 mutants was delayed most likely due to functional defects in the labyrinthine layer of the placenta. Examination of Daam2 and Daam1/2 double mutants revealed that Daam1 and Daam2 are functionally redundant during placental development. Of note, neural tube closure defects (NTD), which are observed in several mammalian PCP mutants, are not observed in Wnt5a or Daam1 single mutants, but arise in Daam1;Wnt5a double mutants. These findings demonstrate a unique function for Daam genes in placental development and are consistent with a role for Daam1 in the Wnt/PCP pathway in mammals.


Subject(s)
Microfilament Proteins/genetics , Placentation/genetics , rho GTP-Binding Proteins/genetics , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Carrier Proteins/metabolism , Cell Polarity , Cytoskeleton/metabolism , Embryonic Development , Female , Formins/genetics , Formins/metabolism , Gene Expression Regulation, Developmental/genetics , Male , Mice/embryology , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Placenta/embryology , Pregnancy , Wnt Signaling Pathway , rho GTP-Binding Proteins/metabolism
14.
Int J Mol Sci ; 21(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455665

ABSTRACT

Placental disorders are a major cause of pregnancy loss in humans, and 40-60% of embryos are lost between fertilization and birth. Successful embryo implantation and placental development requires rapid proliferation, invasion, and migration of trophoblast cells. In recent years, microRNAs (miRNAs) have emerged as key regulators of molecular pathways involved in trophoblast function. A miRNA binds its target mRNA in the 3'-untranslated region (3'-UTR), causing its degradation or translational repression. Lethal-7 (let-7) miRNAs induce cell differentiation and reduce cell proliferation by targeting proliferation-associated genes. The oncoprotein LIN28 represses the biogenesis of mature let-7 miRNAs. Proliferating cells have high LIN28 and low let-7 miRNAs, whereas differentiating cells have low LIN28 and high let-7 miRNAs. In placenta, low LIN28 and high let-7 miRNAs can lead to reduced proliferation of trophoblast cells, resulting in abnormal placental development. In trophoblast cells, let-7 miRNAs reduce the expression of proliferation factors either directly by binding their mRNA in 3'-UTR or indirectly by targeting the AT-rich interaction domain (ARID)3B complex, a transcription-activating complex comprised of ARID3A, ARID3B, and histone demethylase 4C (KDM4C). In this review, we discuss regulation of trophoblast function by miRNAs, focusing on the role of LIN28-let-7-ARID3B pathway in placental development.


Subject(s)
DNA-Binding Proteins/genetics , MicroRNAs/genetics , Placenta/metabolism , RNA-Binding Proteins/genetics , Animals , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation, Developmental , Humans , MicroRNAs/metabolism , Placenta/embryology , Pregnancy , RNA-Binding Proteins/metabolism
15.
PLoS Genet ; 16(4): e1008739, 2020 04.
Article in English | MEDLINE | ID: mdl-32320395

ABSTRACT

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of intracellular Ca2+ release channels located on the ER membrane, which in mammals consist of 3 different subtypes (IP3R1, IP3R2, and IP3R3) encoded by 3 genes, Itpr1, Itpr2, and Itpr3, respectively. Studies utilizing genetic knockout mouse models have demonstrated that IP3Rs are essential for embryonic survival in a redundant manner. Deletion of both IP3R1 and IP3R2 has been shown to cause cardiovascular defects and embryonic lethality. However, it remains unknown which cell types account for the cardiovascular defects in IP3R1 and IP3R2 double knockout (DKO) mice. In this study, we generated conditional IP3R1 and IP3R2 knockout mouse models with both genes deleted in specific cardiovascular cell lineages. Our results revealed that deletion of IP3R1 and IP3R2 in cardiomyocytes by TnT-Cre, in endothelial / hematopoietic cells by Tie2-Cre and Flk1-Cre, or in early precursors of the cardiovascular lineages by Mesp1-Cre, resulted in no phenotypes. This demonstrated that deletion of both IP3R genes in cardiovascular cell lineages cannot account for the cardiovascular defects and embryonic lethality observed in DKO mice. We then revisited and performed more detailed phenotypic analysis in DKO embryos, and found that DKO embryos developed cardiovascular defects including reduced size of aortas, enlarged cardiac chambers, as well as growth retardation at embryonic day (E) 9.5, but in varied degrees of severity. Interestingly, we also observed allantoic-placental defects including reduced sizes of umbilical vessels and reduced depth of placental labyrinth in DKO embryos, which could occur independently from other phenotypes in DKO embryos even without obvious growth retardation. Furthermore, deletion of both IP3R1 and IP3R2 by the epiblast-specific Meox2-Cre, which targets all the fetal tissues and extraembryonic mesoderm but not extraembryonic trophoblast cells, also resulted in embryonic lethality and similar allantoic-placental defects. Taken together, our results demonstrated that IP3R1 and IP3R2 play an essential and redundant role in maintaining the integrity of fetal-maternal connection and embryonic viability.


Subject(s)
Fetal Growth Retardation/genetics , Fetal Heart/metabolism , Heart Defects, Congenital/genetics , Inositol 1,4,5-Trisphosphate Receptors/genetics , Placenta/metabolism , Animals , Endothelial Progenitor Cells/metabolism , Female , Fetal Heart/embryology , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Placenta/embryology , Pregnancy
16.
Endocrinology ; 161(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32270179

ABSTRACT

Vitamin D insufficiency during pregnancy is widespread. The effects of active vitamin D on the human placenta in vivo are unknown. We test the hypotheses that 25(OH)D sufficiency (arbitrarily defined as 25(OH)D ≥32 ng/mL) modulates placental structure and function in vivo in a population of women whose offspring are at risk for childhood asthma, and that placental pathology is more common in offspring that evolve asthma at age 3. Pregnant volunteers in the St. Louis, MO, cohort of the Vitamin D Antenatal Asthma Reduction Trial (VDAART, NIH grant #HL091528) participated in a nested case-control study and consented for the study of placentas after delivery. Maternal concentrations of 25(OH)D were measured at trial entry and in the third trimester. The histopathology of the placentas from women with sufficient 25(OH)D, versus insufficient, showed no clinically significant differences, but morphometry revealed villi of women with sufficient third-trimester 25(OH)D had a higher villous surface density. Notably, analyses of transcripts, extracted from formalin-fixed paraffin-embedded specimens, revealed higher expression of INTS9, vWF, MACC1, and ARMS2, and diminished expression of the CNTN5 genes in the insufficient group. A larger proportion of placentas showed chronic chorioamnionitis in offspring with versus without asthma at age 3. These findings suggest that maternal 25(OH)D insufficiency has a limited effect on human placental villous histopathology and morphometry, but attenuates a small number of placental gene expression profiles in this selected population. The association of placental chronic chorioamnionitis and offspring asthma is worthy of further study.


Subject(s)
Chorioamnionitis/drug therapy , Placenta/anatomy & histology , Vitamin D Deficiency/drug therapy , Vitamin D/administration & dosage , Adult , Asthma/epidemiology , Case-Control Studies , Child, Preschool , Chorioamnionitis/genetics , Chorioamnionitis/metabolism , Chorioamnionitis/pathology , Dietary Supplements/analysis , Female , Humans , Male , Placenta/drug effects , Placenta/embryology , Placenta/pathology , Pregnancy , Proteins/genetics , Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , United States/epidemiology , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/metabolism , Vitamin D Deficiency/pathology , Young Adult
17.
Cells ; 9(4)2020 03 31.
Article in English | MEDLINE | ID: mdl-32244352

ABSTRACT

Trophoblasts are the first cell type to be specified during embryogenesis, and they are essential for placental morphogenesis and function. Trophoblast stem (TS) cells are the progenitor cells for all trophoblast lineages; control of TS cell differentiation into distinct trophoblast subtypes is not well understood. Mice lacking the transcription factor OVO-like 2 (OVOL2) fail to produce a functioning placenta, and die around embryonic day 10.5, suggesting that OVOL2 may be critical for trophoblast development. Therefore, our objective was to determine the role of OVOL2 in mouse TS cell fate. We found that OVOL2 was highly expressed in mouse placenta and differentiating TS cells. Placentas and TS cells lacking OVOL2 showed poor trophoblast differentiation potential, including increased expression of stem-state associated genes (Eomes, Esrrb, Id2) and decreased levels of differentiation-associated transcripts (Gcm1, Tpbpa, Prl3b1, Syna). Ectopic OVOL2 expression in TS cells elicited precocious differentiation. OVOL2 bound proximate to the gene encoding inhibitor of differentiation 2 (ID2), a dominant negative helix-loop-helix protein, and directly repressed its activity. Overexpression of ID2 was sufficient to reinforce the TS cell stem state. Our findings reveal a critical role of OVOL2 as a regulator of TS cell differentiation and placental development, in-part by coordinating repression of ID2.


Subject(s)
Cell Differentiation , Inhibitor of Differentiation Protein 2/metabolism , Placenta/embryology , Stem Cells/cytology , Stem Cells/metabolism , Transcription Factors/metabolism , Trophoblasts/cytology , Animals , Base Sequence , Cell Proliferation , Embryo, Mammalian/cytology , Female , Gene Expression Regulation, Developmental , Male , Mice, Inbred C57BL , Pregnancy , Protein Binding , Transcription Factors/deficiency , Transcription Factors/genetics
18.
Genes Cells ; 25(6): 427-438, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32267063

ABSTRACT

All trophoblast subtypes of the placenta are derived from trophoblast stem cells (TSCs). TSCs have the capacity to self-renew, but how the proliferation of these cells is regulated in the undifferentiated state has been largely unclear. We now show that the F-box protein Skp2 regulates the proliferation of TSCs and thereby plays a pivotal role in placental development in mice on the C57BL/6 background. The placenta of Skp2-/- mouse embryos on the C57BL/6 background was smaller than that of their Skp2+/+ littermates, with the mutant embryos also manifesting intrauterine growth retardation. Although the Skp2-/- mice were born alive, most of them died before postnatal day 21, presumably as a result of placental defects. Depletion of Skp2 in TSCs cultured in the undifferentiated state resulted in a reduced rate of proliferation and arrest of the cell cycle in G1 phase, indicative of a defect in self-renewal capacity. The cell cycle arrest apparent in Skp2-deficient TSCs was reversed by additional ablation of the cyclin-dependent kinase inhibitor (CKI) p57 but not by that of the CKI p27. Our results thus suggest that Skp2-mediated degradation of p57 is an important determinant of the self-renewal capacity of TSCs during placental development, at least in mice of certain genetic backgrounds.


Subject(s)
Cell Cycle/genetics , Embryo, Mammalian/metabolism , Placenta/metabolism , Placentation/genetics , S-Phase Kinase-Associated Proteins/metabolism , Stem Cells/metabolism , Trophoblasts/metabolism , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Embryo, Mammalian/embryology , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Placenta/embryology , Pregnancy , Rats , S-Phase Kinase-Associated Proteins/genetics
19.
J Endocrinol ; 245(1): 115-127, 2020 04.
Article in English | MEDLINE | ID: mdl-32027603

ABSTRACT

Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) are essential for normal energy homeostasis. Maximal ARC Pomc transcription is dependent on neuronal Pomc enhancer 1 (nPE1), located 12 kb upstream from the promoter. Selective deletion of nPE1 in mice decreases ARC Pomc expression by 70%, sufficient to induce mild obesity. Because nPE1 is located exclusively in the genomes of placental mammals, we questioned whether its hypomorphic mutation would also alter placental Pomc expression and the metabolic adaptations associated with pregnancy and lactation. We assessed placental development, pup growth, circulating leptin and expression of Pomc, Agrp and alternatively spliced leptin receptor (LepR) isoforms in the ARC and placenta of Pomc∆1/∆1 and Pomc+/+ dams. Despite indistinguishable body weights, lean mass, food intake, placental histology and Pomc expression and overall pregnancy outcomes between the genotypes, Pomc ∆1/∆1 females had increased pre-pregnancy fat mass that paradoxically decreased to control levels by parturition. However, Pomc∆1/∆1 dams had exaggerated increases in circulating leptin, up to twice of that of the typically elevated levels in Pomc+/+ mice at the end of pregnancy, despite their equivalent fat mass. Pomc∆1/∆1dams also had increased placental expression of soluble leptin receptor (LepRe), although the protein levels of LEPRE in circulation were the same as Pomc+/+ controls. Together, these data suggest that the hypomorphic Pomc∆1/∆1 allele is responsible for the perinatal super hyperleptinemia of Pomc∆1/∆1 dams, possibly due to upregulated leptin secretion from individual adipocytes.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Gene Expression Regulation, Developmental , Leptin/metabolism , Neurons/metabolism , Pro-Opiomelanocortin/genetics , Adiposity/genetics , Alleles , Animals , Arcuate Nucleus of Hypothalamus/cytology , Body Weight , Female , Leptin/blood , Male , Mice, Inbred C57BL , Mice, Knockout , Placenta/embryology , Placenta/metabolism , Pregnancy , Pro-Opiomelanocortin/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism
20.
Eur J Obstet Gynecol Reprod Biol ; 245: 198-204, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31889569

ABSTRACT

OBJECTIVES: A low fetal cerebroplacental ratio (CPR) in late pregnancy is a marker of a fetus that has failed to reach its growth potential and is associated with a variety of perinatal and pregnancy complications. It is not known if it is also correlated with aberrations in angiogenic, hypoxia-responsive or inflammatory cytokine levels in the maternal circulation. We investigated if there were any differences in levels of biomarkers of angiogenesis, endothelial cell dysfunction, hypoxia and/or inflammation in term pregnancies with a low fetal CPR compared to controls. We hypothesized that as the CPR is a marker of suboptimal growth, this would be reflected in a shift towards upregulation of hypoxia-responsive factors even in non-small for gestational age fetuses. STUDY DESIGN: We used Multiplex ELISA to measure a panel of 28 candidate biomarkers of angiogenesis and/or hypoxia in pre-labour maternal plasma from 113 women at term, stratified for CPR <10th centile vs. CPR >10th centile. Plasma levels of the biomarkers were measured using 2 multiplex Luminex assays - a commercially available human angiogenesis/growth factor panel (R&D Systems®), comprising 15 analytes and an in-house custom panel of a further 13 candidate biomarkers. RESULTS: Of the 28 candidate biomarkers investigated, we found significantly elevated levels of Carbonic Anhydrase 9 and soluble Fms-like tyrosine kinase (Vascular Endothelial Growth Factor Receptor 1), and lower levels of Placental Growth Factor in plasma from women with a low fetal CPR. The soluble Fms-like tyrosine kinase-1/Placental Growth Factor ratio was also markedly elevated in this cohort. We also demonstrated significant inverse correlations between the fetal CPR and Carbonic Anydrase 9, soluble Fms-like tyrosine kinase and Hepatocyte Growth Factor. CONCLUSIONS: A low fetal CPR is associated with changes in some hypoxia-responsive and angiogenesis factors in the maternal circulation in pregnancies with normally grown fetuses.


Subject(s)
Brain/blood supply , Fetal Hypoxia/diagnosis , Maternal Serum Screening Tests/statistics & numerical data , Placenta Diseases/diagnosis , Placenta/blood supply , Adult , Antigens, Neoplasm/blood , Biomarkers/blood , Brain/embryology , Carbonic Anhydrase IX/blood , Case-Control Studies , Female , Humans , Infant, Newborn , Middle Cerebral Artery/embryology , Neovascularization, Pathologic/diagnosis , Placenta/embryology , Placenta Growth Factor/blood , Placental Circulation , Predictive Value of Tests , Pregnancy , Prospective Studies , Pulsatile Flow , Term Birth/physiology , Umbilical Arteries/embryology , Vascular Endothelial Growth Factor Receptor-1/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...