Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 20(3): e1012129, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547321

ABSTRACT

We recently identified two virulence-associated small open reading frames (sORF) of Yersinia pestis, named yp1 and yp2, and null mutants of each individual genes were highly attenuated in virulence. Plague vaccine strain EV76 is known for strong reactogenicity, making it not suitable for use in humans. To improve the immune safety of EV76, three mutant strains of EV76, Δyp1, Δyp2, and Δyp1&yp2 were constructed and their virulence attenuation, immunogenicity, and protective efficacy in mice were evaluated. All mutant strains were attenuated by the subcutaneous (s.c.) route and exhibited more rapid clearance in tissues than the parental strain EV76. Under iron overload conditions, only the mice infected with EV76Δyp1 survived, accompanied by less draining lymph nodes damage than those infected by EV76. Analysis of cytokines secreted by splenocytes of immunized mice found that EV76Δyp2 induced higher secretion of multiple cytokines including TNF-α, IL-2, and IL-12p70 than EV76. On day 42, EV76Δyp2 or EV76Δyp1&yp2 immunized mice exhibited similar protective efficacy as EV76 when exposed to Y. pestis 201, both via s.c. or intranasal (i.n.) routes of administration. Moreover, when exposed to 200-400 LD50 Y. pestis strain 201Δcaf1 (non-encapsulated Y. pestis), EV76Δyp2 or EV76Δyp1&yp2 are able to afford about 50% protection to i.n. challenges, significantly better than the protection afforded by EV76. On 120 day, mice immunized with EV76Δyp2 or EV76Δyp1&yp2 cleared the i.n. challenge of Y. pestis 201-lux as quickly as those immunized with EV76, demonstrating 90-100% protection. Our results demonstrated that deletion of the yp2 gene is an effective strategy to attenuate virulence of Y. pestis EV76 while improving immunogenicity. Furthermore, EV76Δyp2 is a promising candidate for conferring protection against the pneumonic and bubonic forms of plague.


Subject(s)
Plague Vaccine , Vaccines , Yersinia pestis , Humans , Animals , Mice , Yersinia pestis/genetics , Open Reading Frames , Plague Vaccine/genetics , Cytokines/genetics
2.
Int Immunopharmacol ; 132: 111952, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38555818

ABSTRACT

Yersinia pestis, the causative agent of plague, is a gram-negative bacterium that can be fatal if not treated properly. Three types of plague are currently known: bubonic, septicemic, and pneumonic plague, among which the fatality rate of septicemic and pneumonic plague is very high. Bubonic plague can be treated, but only if antibiotics are used at the initial stage of the infection. But unfortunately, Y. pestis has also shown resistance to certain antibiotics such as kanamycin, minocycline, tetracycline, streptomycin, sulfonamides, spectinomycin, and chloramphenicol. Despite tremendous progress in vaccine development against Y. pestis, there is no proper FDA-approved vaccine available to protect people from its infections. Therefore, effective broad-spectrum vaccine development against Y. pestis is indispensable. In this study, vaccinomics-assisted immunoinformatics techniques were used to find possible vaccine candidates by utilizing the core proteome prepared from 58 complete genomes of Y. pestis. Human non-homologous, pathogen-essential, virulent, and extracellular and membrane proteins are potential vaccine targets. Two antigenic proteins were prioritized for the prediction of lead epitopes by utilizing reverse vaccinology approaches. Four vaccine designs were formulated using the selected B- and T-cell epitopes coupled with appropriate linkers and adjuvant sequences capable of inducing potent immune responses. The HLA allele population coverage of the T-cell epitopes selected for vaccine construction was also analyzed. The V2 constructs were top-ranked and selected for further analysis on the basis of immunological, physicochemical, and immune-receptor docking interactions and scores. Docking and molecular dynamic simulations confirmed the stability of construct V2 interactions with the host immune receptors. Immune simulation analysis anticipated the strong immune profile of the prioritized construct. In silico restriction cloning ensured the feasible cloning ability of the V2 construct in the expression system of E. coli strain K12. It is anticipated that the designed vaccine construct may be safe, effective, and able to elicit strong immune responses against Y. pestis infections and may, therefore, merit investigation using in vitro and in vivo assays.


Subject(s)
Plague , Yersinia pestis , Yersinia pestis/immunology , Yersinia pestis/genetics , Humans , Plague/prevention & control , Plague/immunology , Plague Vaccine/immunology , Plague Vaccine/genetics , Genome, Bacterial , Vaccine Development , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Vaccines, Synthetic/immunology , Animals
3.
Sci Adv ; 9(10): eadg1036, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36888708

ABSTRACT

Messenger RNA (mRNA) lipid nanoparticle (LNP) vaccines have emerged as an effective vaccination strategy. Although currently applied toward viral pathogens, data concerning the platform's effectiveness against bacterial pathogens are limited. Here, we developed an effective mRNA-LNP vaccine against a lethal bacterial pathogen by optimizing mRNA payload guanine and cytosine content and antigen design. We designed a nucleoside-modified mRNA-LNP vaccine based on the bacterial F1 capsule antigen, a major protective component of Yersinia pestis, the etiological agent of plague. Plague is a rapidly deteriorating contagious disease that has killed millions of people during the history of humankind. Now, the disease is treated effectively with antibiotics; however, in the case of a multiple-antibiotic-resistant strain outbreak, alternative countermeasures are required. Our mRNA-LNP vaccine elicited humoral and cellular immunological responses in C57BL/6 mice and conferred rapid, full protection against lethal Y. pestis infection after a single dose. These data open avenues for urgently needed effective antibacterial vaccines.


Subject(s)
Plague Vaccine , Plague , Yersinia pestis , Mice , Animals , Plague/prevention & control , Plague Vaccine/genetics , Bacterial Proteins/genetics , Mice, Inbred C57BL , Yersinia pestis/genetics , Antigens, Bacterial/genetics
4.
Proc Natl Acad Sci U S A ; 119(11): e2109667119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35275791

ABSTRACT

SignificanceYersinia pestis, the etiologic agent of plague, has been responsible for high mortality in several epidemics throughout human history. This plague bacillus has been used as a biological weapon during human history and is currently one of the deadliest biological threats. Currently, no licensed plague vaccines are available in the Western world. Since an array of immunogens are enclosed in outer membrane vesicles (OMVs), immune responses elicited by OMVs against a diverse range of antigens may reduce the likelihood of antigen circumvention. Therefore, self-adjuvanting OMVs from a remodeled Yersinia pseudotuberculosis strain as a type of plague vaccine could diversify prophylactic choices and solve current vaccine limitations.


Subject(s)
Antigens, Bacterial , Lipid A , Plague Vaccine , Plague , Pore Forming Cytotoxic Proteins , Yersinia pseudotuberculosis , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Lethal Dose 50 , Lipid A/genetics , Lipid A/immunology , Mice , Plague/prevention & control , Plague Vaccine/administration & dosage , Plague Vaccine/genetics , Plague Vaccine/immunology , Plasmids/genetics , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/immunology , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/immunology
5.
mBio ; 12(6): e0322321, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34872353

ABSTRACT

Mice immunized with a combination of an adenovirus vector (Ad5-YFV) and live-attenuated (LMA)-based vaccines were evaluated for protective efficacy against pneumonic plague. While the Ad5-YFV vaccine harbors a fusion cassette of three genes encoding YscF, F1, and LcrV, LMA represents a mutant of parental Yersinia pestis CO92 deleted for genes encoding Lpp, MsbB, and Ail. Ad5-YFV and LMA were either administered simultaneously (1-dose regimen) or 21 days apart in various orders and route of administration combinations (2-dose regimen). The 2-dose regimen induced robust immune responses to provide full protection to animals against parental CO92 and its isogenic F1 deletion mutant (CAF-) challenges during both short- and long-term studies. Mice intranasally (i.n.) immunized with Ad5-YFV first followed by LMA (i.n. or intramuscularly [i.m.]) had higher T- and B-cell proliferative responses and LcrV antibody titers than those in mice vaccinated with LMA (i.n. or i.m.) first ahead of Ad5-YFV (i.n.) during the long-term study. Specifically, the needle- and adjuvant-free vaccine combination (i.n.) is ideal for use in plague regions of endemicity. Conversely, with a 1-dose regimen, mice vaccinated with Ad5-YFV i.n. and LMA by the i.m. route provided complete protection to animals against CO92 and its CAF- mutant challenges and elicited Th1/Th2, as well as Th17 responses, making it suitable for emergency vaccination during a plague outbreak or bioterrorist attack. This is a first study in which a viral vector-based and live-attenuated vaccines were effectively used in combination, representing adjuvant- and/or needle-free immunization, with each vaccine triggering a distinct cellular immune response. IMPORTANCE Yersinia pestis, the causative agent of plague, is a Tier-1 select agent and a reemerging human pathogen. A 2017 outbreak in Madagascar with >75% of cases being pneumonic and 8.6% causalities emphasized the importance of the disease. The World Health Organization has indicated an urgent need to develop new-generation subunit and live-attenuated plague vaccines. We have developed a subunit vaccine, including three components (YscF, F1, and LcrV) using an adenovirus platform (Ad5-YFV). In addition, we have deleted virulence genes of Y. pestis (e.g., lpp, msbB, and ail) to develop a live-attenuated vaccine (LMA). Both of these vaccines generated robust humoral and cellular immunity and were highly efficacious in several animal models. We hypothesized the use of a heterologous prime-boost strategy or administrating both vaccines simultaneously could provide an adjuvant- and/or a needle-free vaccine(s) that has attributes of both vaccines for use in regions of endemicity and during an emergency situation.


Subject(s)
Adenoviridae/immunology , Antigens, Bacterial/administration & dosage , Plague Vaccine/administration & dosage , Plague/prevention & control , Pneumonia/prevention & control , Vaccines, Attenuated/administration & dosage , Yersinia pestis/immunology , Adenoviridae/genetics , Adjuvants, Immunologic/administration & dosage , Administration, Intranasal , Animals , Antibodies, Bacterial/immunology , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Mice , Plague/immunology , Plague/microbiology , Plague Vaccine/genetics , Plague Vaccine/immunology , Pneumonia/immunology , Pneumonia/microbiology , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Yersinia pestis/genetics
6.
Biomolecules ; 10(11)2020 11 14.
Article in English | MEDLINE | ID: mdl-33202679

ABSTRACT

The Gram-negative bacterium Yersinia pestis causes plague, a fatal flea-borne anthropozoonosis, which can progress to aerosol-transmitted pneumonia. Y. pestis overcomes the innate immunity of its host thanks to many pathogenicity factors, including plasminogen activator, Pla. This factor is a broad-spectrum outer membrane protease also acting as adhesin and invasin. Y. pestis uses Pla adhesion and proteolytic capacity to manipulate the fibrinolytic cascade and immune system to produce bacteremia necessary for pathogen transmission via fleabite or aerosols. Because of microevolution, Y. pestis invasiveness has increased significantly after a single amino-acid substitution (I259T) in Pla of one of the oldest Y. pestis phylogenetic groups. This mutation caused a better ability to activate plasminogen. In paradox with its fibrinolytic activity, Pla cleaves and inactivates the tissue factor pathway inhibitor (TFPI), a key inhibitor of the coagulation cascade. This function in the plague remains enigmatic. Pla (or pla) had been used as a specific marker of Y. pestis, but its solitary detection is no longer valid as this gene is present in other species of Enterobacteriaceae. Though recovering hosts generate anti-Pla antibodies, Pla is not a good subunit vaccine. However, its deletion increases the safety of attenuated Y. pestis strains, providing a means to generate a safe live plague vaccine.


Subject(s)
Plasminogen Activators/metabolism , Protein Interaction Maps/physiology , Yersinia pestis/metabolism , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Humans , Plague/genetics , Plague/metabolism , Plague/prevention & control , Plague Vaccine/administration & dosage , Plague Vaccine/genetics , Plague Vaccine/metabolism , Plasminogen Activators/chemistry , Plasminogen Activators/genetics , Point Mutation/physiology , Protein Structure, Secondary , Yersinia pestis/classification , Yersinia pestis/genetics
7.
Vaccine ; 38(21): 3720-3728, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32278523

ABSTRACT

We incorporated the ΔPfur::TT araC PBADfur deletion-insertion mutation on top of a previous Yersinia pseudotuberculosis mutant (Δasd ΔyopJ ΔyopK) to construct a new mutant designated as Yptb5, which manifests the arabinose-dependent regulated delayed fur (encoding ferric uptake regulator) shut-off. The Yptb5 strain was used to deliver an adjuvanted fusion protein, FliC180-LcrV. Levels of FliC180-LcrV synthesis were same in Yptb5 either harboring pSMV4, a p15A ori plasmid or pSMV8, a pSC101 ori plasmid containing the fliC180-lcrV fusion gene driven by Ptrc promoter. Tissue burdens of both Yptb5(pSMV4) and Yptb5(pSMV8) in mice had similar patterns. Mice vaccinated orally with 5 × 108 CFU of either Yptb5(pSMV4) or Yptb5(pSMV8) strain were primed high antibody titers with a balanced Th1/Th2 response, also developed potent T-cell responses with significant productions of IFN-γ, IL-17A and TNF-α. Immunization with each mutant strain conferred complete protection against pulmonary challenge with 5.5 × 103 CFU (55 LD50) of Y. pestis, but partial protection (50% survival) against 100 LD50 of Y. pestis. Our results demonstrate that arabinose-dependent regulated delayed fur shut-off is an effective strategy to develop live attenuated bacterial vaccines while retaining strong immunogenicity.


Subject(s)
Plague Vaccine , Plague , Yersinia pestis , Yersinia pseudotuberculosis , Animals , Antibodies, Bacterial , Antigens, Bacterial/genetics , Mice , Plague/prevention & control , Plague Vaccine/genetics , Pore Forming Cytotoxic Proteins , Vaccination , Vaccines, Attenuated , Yersinia pestis/genetics , Yersinia pestis/immunology , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/immunology
8.
Infect Immun ; 87(10)2019 10.
Article in English | MEDLINE | ID: mdl-31331960

ABSTRACT

In this study, a novel recombinant attenuated Yersinia pseudotuberculosis PB1+ strain (χ10069) engineered with ΔyopK ΔyopJ Δasd triple mutations was used to deliver a Y. pestis fusion protein, YopE amino acid 1 to 138-LcrV (YopENt138-LcrV), to Swiss Webster mice as a protective antigen against infections by yersiniae. χ10069 bacteria harboring the pYA5199 plasmid constitutively synthesized the YopENt138-LcrV fusion protein and secreted it via the type 3 secretion system (T3SS) at 37°C under calcium-deprived conditions. The attenuated strain χ10069(pYA5199) was manifested by the establishment of controlled infection in different tissues without developing conspicuous signs of disease in histopathological analysis of microtome sections. A single-dose oral immunization of χ10069(pYA5199) induced strong serum antibody titers (log10 mean value, 4.2), secretory IgA in bronchoalveolar lavage (BAL) fluid from immunized mice, and Yersinia-specific CD4+ and CD8+ T cells producing high levels of tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and interleukin 2 (IL-2), as well as IL-17, in both lungs and spleens of immunized mice, conferring comprehensive Th1- and Th2-mediated immune responses and protection against bubonic and pneumonic plague challenges, with 80% and 90% survival, respectively. Mice immunized with χ10069(pYA5199) also exhibited complete protection against lethal oral infections by Yersinia enterocolitica WA and Y. pseudotuberculosis PB1+. These findings indicated that χ10069(pYA5199) as an oral vaccine induces protective immunity to prevent bubonic and pneumonic plague, as well as yersiniosis, in mice and would be a promising oral vaccine candidate for protection against plague and yersiniosis for human and veterinary applications.


Subject(s)
Antibodies, Bacterial/biosynthesis , Immunoglobulin A/biosynthesis , Plague Vaccine/administration & dosage , Plague/prevention & control , Recombinant Fusion Proteins/administration & dosage , Yersinia pestis/drug effects , Yersinia pseudotuberculosis Infections/prevention & control , Yersinia pseudotuberculosis/drug effects , Administration, Oral , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/microbiology , Cross Protection , Female , Gene Expression , Humans , Immunization , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Lung/drug effects , Lung/immunology , Lung/microbiology , Male , Mice , Plague/immunology , Plague/microbiology , Plague/mortality , Plague Vaccine/biosynthesis , Plague Vaccine/genetics , Plague Vaccine/immunology , Plasmids/chemistry , Plasmids/metabolism , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Survival Analysis , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vaccines, Synthetic , Yersinia pestis/immunology , Yersinia pestis/pathogenicity , Yersinia pseudotuberculosis/immunology , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis Infections/mortality
9.
Article in English | MEDLINE | ID: mdl-29090192

ABSTRACT

Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE), and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884-encoded protein has homology to the ßγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55-100% protected upon subsequent re-challenge with wild-type CO92 in a pneumonic model. Further, evaluation of the attenuated T6SS mutant strains in vitro revealed significant alterations in phagocytosis, intracellular survival in murine macrophages, and their ability to induce cytotoxic effects on macrophages. The results reported here provide further evidence of the utility of the STM screening approach for the identification of novel virulence factors and to possibly target such genes for the development of novel live-attenuated vaccine candidates for plague.


Subject(s)
Bacterial Proteins/immunology , Plague Vaccine/immunology , Plague/prevention & control , Vaccines, Attenuated/genetics , Virulence Factors/immunology , Yersinia pestis/immunology , Animals , Bacterial Proteins/genetics , Computer Simulation , Disease Models, Animal , Female , Immunologic Factors/genetics , Kaplan-Meier Estimate , Macrophages/immunology , Mice , Phagocytosis/immunology , Plague Vaccine/genetics , RAW 264.7 Cells , Sequence Deletion , Type VI Secretion Systems/genetics , Virulence Factors/genetics , Yersinia pestis/genetics , Yersinia pestis/pathogenicity
10.
Vaccine ; 34(47): 5768-5776, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27745954

ABSTRACT

Yersinia pestis, one of history's deadliest pathogens, has killed millions over the course of human history. It has attributes that make it an ideal choice to produce mass casualties and is a prime candidate for use as a biological weapon. When aerosolized, Y. pestis causes pneumonic plague, a pneumonia that is 100% lethal if not promptly treated with effective antibiotics. Currently, there is no FDA approved plague vaccine. The current lead vaccine candidate, a parenterally administered protein subunit vaccine comprised of the Y. pestis virulence factors, F1 and LcrV, demonstrated variable levels of protection in primate pneumonic plague models. As the most likely mode of exposure in biological attack with Y. pestis is by aerosol, this raises a question of whether this parenteral vaccine will adequately protect humans against pneumonic plague. In the present study we evaluated two distinct mucosal delivery platforms for the intranasal (IN) administration of LcrV and F1 vaccine proteins, a live bacterial vector, Lactobacillus plantarum, and a Tobacco Mosaic Virus (TMV) based delivery platform. IN administration of L. plantarum expressing LcrV, or TMV-conjugated to LcrV and F1 (TMV-LcrV+TMV-F1) resulted in the similar induction of high titers of IgG antibodies and evidence of proinflammatory cytokine secretion. However, only the TMV-conjugate delivery platform protected against subsequent lethal challenge with Y. pestis. TMV-LcrV+TMV-F1 co-vaccinated mice had no discernable morbidity and no mortality, while mice vaccinated with L. plantarum expressing LcrV or rLcrV+rF1 without TMV succumbed to infection or were only partially protected. Thus, TMV is a suitable mucosal delivery platform for an F1-LcrV subunit vaccine that induces complete protection against pneumonic infection with a lethal dose of Y. pestis in mice.


Subject(s)
Antigens, Bacterial/immunology , Lactobacillus plantarum/immunology , Plague Vaccine/immunology , Plague/prevention & control , Pneumonia, Bacterial/prevention & control , Pore Forming Cytotoxic Proteins/immunology , Tobacco Mosaic Virus/immunology , Yersinia pestis/immunology , Administration, Intranasal , Analysis of Variance , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/genetics , Cytokines/analysis , Disease Models, Animal , Humans , Lactobacillus plantarum/genetics , Mice , Plague Vaccine/administration & dosage , Plague Vaccine/genetics , Pore Forming Cytotoxic Proteins/genetics , Time Factors , Tobacco Mosaic Virus/genetics , Vaccination , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Virulence Factors/genetics , Virulence Factors/immunology , Yersinia pestis/genetics
11.
Clin Vaccine Immunol ; 23(7): 586-600, 2016 07.
Article in English | MEDLINE | ID: mdl-27170642

ABSTRACT

Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models.


Subject(s)
Adenoviruses, Human/genetics , Drug Carriers , Plague Vaccine/immunology , Plague/prevention & control , Administration, Intranasal , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Disease Models, Animal , Female , Immunization Schedule , Injections, Intramuscular , Interferon-gamma/metabolism , Macaca fascicularis , Male , Mice , Plague/pathology , Plague Vaccine/administration & dosage , Plague Vaccine/genetics , Survival Analysis , T-Lymphocytes/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Virus Replication , Yersinia pestis/genetics , Yersinia pestis/immunology
12.
Vaccine ; 34(21): 2410-2416, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27060051

ABSTRACT

Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine.


Subject(s)
Antigens, Bacterial/immunology , Plague Vaccine/immunology , Plague/prevention & control , Salmonella typhimurium/genetics , Yersinia pestis/chemistry , Yersinia pestis/immunology , Administration, Intranasal , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Mice , Mice, SCID , Plague/immunology , Plague Vaccine/administration & dosage , Plague Vaccine/chemistry , Plague Vaccine/genetics , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/immunology , Salmonella Vaccines/genetics , Salmonella Vaccines/immunology , Salmonella typhimurium/growth & development , Salmonella typhimurium/immunology , Vaccination , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Yersinia pestis/pathogenicity
13.
PLoS Negl Trop Dis ; 9(10): e0004162, 2015.
Article in English | MEDLINE | ID: mdl-26473734

ABSTRACT

BACKGROUND: No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably. METHODOLOGY/PRINCIPAL FINDINGS: The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1-Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis. SIGNIFICANCE: VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single oral administration.


Subject(s)
Bacterial Proteins/immunology , Plague Vaccine/administration & dosage , Plague Vaccine/immunology , Plague/prevention & control , Yersinia pestis/immunology , Yersinia pseudotuberculosis/immunology , Administration, Oral , Animals , Bacterial Proteins/genetics , Cytokines/metabolism , Drug Carriers , Female , Immunity, Cellular , Mice , Mice, Inbred C57BL , Plague/immunology , Plague Vaccine/genetics , Survival Analysis , Time Factors , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Yersinia pestis/genetics , Yersinia pseudotuberculosis/genetics
14.
Clin Vaccine Immunol ; 22(12): 1255-68, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26446423

ABSTRACT

Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.c.) or the intramuscular (i.m.) route with two doses (2 × 10(6) CFU/dose) of the above-mentioned triple mutant with 100% survivability of the animals. Upon subsequent pneumonic challenge with 70 to 92 50% lethal doses (LD(50)) of wild-type (WT) strain CO92, all of the mice survived when immunization occurred by the i.m. route. Since Ail has virulence and immunogenic potential, a mutated version of Ail devoid of its virulence properties was created, and the genetically modified ail replaced the native ail gene on the chromosome of the Δlpp ΔmsbB double mutant, creating a Δlpp ΔmsbB::ailL2 vaccine strain. This newly generated mutant was attenuated similarly to the Δlpp ΔmsbB Δail triple mutant when administered by the i.m. route and provided 100% protection to animals against subsequent pneumonic challenge. Not only were the two above-mentioned mutants cleared rapidly from the initial i.m. site of injection in animals with no histopathological lesions, the immunized mice did not exhibit any disease symptoms during immunization or after subsequent exposure to WT CO92. These two mutants triggered balanced Th1- and Th2-based antibody responses and cell-mediated immunity. A substantial increase in interleukin-17 (IL-17) from the T cells of vaccinated mice, a cytokine of the Th17 cells, further augmented their vaccine potential. Thus, the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants represent excellent vaccine candidates for plague, with the latter mutant still retaining Ail immunogenicity but with a much diminished virulence potential.


Subject(s)
Mutation , Plague Vaccine/immunology , Plague/prevention & control , Yersinia pestis/genetics , Yersinia pestis/immunology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Disease Models, Animal , Gene Deletion , Immunity, Cellular , Immunity, Humoral , Immunization , Injections, Intramuscular , Lipoproteins/immunology , Mice , Plague/immunology , Plague/microbiology , Plague Vaccine/administration & dosage , Plague Vaccine/genetics , Vaccination , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
15.
Clin Vaccine Immunol ; 22(9): 1070-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26224691

ABSTRACT

The efficacy of a recombinant plague vaccine (rF1V) was evaluated in cynomolgus macaques (CMs) to establish the relationship among vaccine doses, antibody titers, and survival following an aerosol challenge with a lethal dose of Yersinia pestis strain Colorado 92. CMs were vaccinated with a range of rF1V doses on a three-dose schedule (days 0, 56, and 121) to provide a range of survival outcomes. The humoral immune response following vaccination was evaluated with anti-rF1, anti-rV, and anti-rF1V bridge enzyme-linked immunosorbent assays (ELISAs). Animals were challenged via aerosol exposure on day 149. Vaccine doses and antibody responses were each significantly associated with the probability of CM survival (P < 0.0001). Vaccination also decreased signs of pneumonic plague in a dose-dependent manner. There were statistically significant correlations between the vaccine dose and the time to onset of fever (P < 0.0001), the time from onset of fever to death (P < 0.0001), the time to onset of elevated respiratory rate (P = 0.0003), and the time to onset of decreased activity (P = 0.0251) postinfection in animals exhibiting these clinical signs. Delays in the onset of these clinical signs of disease were associated with larger doses of rF1V. Immunization with ≥ 12 µg of rF1V resulted in 100% CM survival. Since both the vaccine dose and anti-rF1V antibody titers correlate with survival, rF1V bridge ELISA titers can be used as a correlate of protection.


Subject(s)
Antibodies, Bacterial/blood , Plague Vaccine/administration & dosage , Plague Vaccine/immunology , Plague/immunology , Plague/prevention & control , Yersinia pestis/immunology , Animals , Antibodies, Bacterial/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Immunity, Humoral , Immunization Schedule , Macaca fascicularis , Plague/microbiology , Plague Vaccine/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
16.
Infect Immun ; 83(1): 161-72, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25332120

ABSTRACT

Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity.


Subject(s)
Drug Carriers , Plague Vaccine/immunology , Plague/prevention & control , Salmonella typhi/genetics , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Disease Models, Animal , Genetic Vectors , Mice, Inbred BALB C , Plague/immunology , Plague Vaccine/administration & dosage , Plague Vaccine/genetics , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/immunology , Survival Analysis , Vaccination/methods , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
17.
Infect Immun ; 82(10): 4390-404, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25114109

ABSTRACT

Here, we constructed a Yersinia pseudotuberculosis mutant strain with arabinose-dependent regulated and delayed shutoff of crp expression (araC P(BAD) crp) and replacement of the msbB gene with the Escherichia coli msbB gene to attenuate it. Then, we inserted the asd mutation into this construction to form χ10057 [Δasd-206 ΔmsbB868::P(msbB) msbB(EC) ΔP(crp21)::TT araC P(BAD) crp] for use with a balanced-lethal Asd-positive (Asd(+)) plasmid to facilitate antigen synthesis. A hybrid protein composed of YopE (amino acids [aa]1 to 138) fused with full-length LcrV (YopE(Nt138)-LcrV) was synthesized in χ10057 harboring an Asd(+) plasmid (pYA5199, yopE(Nt138)-lcrV) and could be secreted through a type III secretion system (T3SS) in vitro and in vivo. Animal studies indicated that mice orally immunized with χ10057(pYA5199) developed titers of IgG response to whole-cell lysates of Y. pestis (YpL) and subunit LcrV similar to those seen with χ10057(pYA3332) (χ10057 plus an empty plasmid). However, only immunization of mice with χ10057(pYA5199) resulted in a significant secretory IgA response to LcrV. χ10057(pYA5199) induced a higher level of protection (80% survival) against intranasal (i.n.) challenge with ~240 median lethal doses (LD50) (2.4 × 10(4) CFU) of Y. pestis KIM6+(pCD1Ap) than χ10057(pYA3332) (40% survival). Splenocytes from mice vaccinated with χ10057(pYA5199) produced significant levels of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-17 (IL-17) after restimulation with LcrV and YpL antigens. Our results suggest that it is possible to use an attenuated Y. pseudotuberculosis strain delivering the LcrV antigen via the T3SS as a potential vaccine candidate against pneumonic plague.


Subject(s)
Antigens, Bacterial/immunology , Plague Vaccine/immunology , Plague/prevention & control , Pore Forming Cytotoxic Proteins/immunology , Yersinia pseudotuberculosis/immunology , Administration, Oral , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Cytokines/metabolism , Disease Models, Animal , Female , Immunoglobulin A, Secretory/blood , Immunoglobulin G/blood , Leukocytes, Mononuclear/immunology , Mice , Plague/immunology , Plague Vaccine/administration & dosage , Plague Vaccine/genetics , Pore Forming Cytotoxic Proteins/genetics , Spleen/immunology , Survival Analysis , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Yersinia pseudotuberculosis/genetics
18.
Infect Genet Evol ; 26: 172-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24905600

ABSTRACT

Plague, one of the most devastating infectious diseases in human history, is caused by the bacterial species Yersinia pestis. A live attenuated Y. pestis strain (EV76) has been widely used as a plague vaccine in various countries around the world. Here we compared the whole genome sequence of an EV76 strain used in China (EV76-CN) with the genomes of Y. pestis wild isolates to identify genetic variations specific to the EV76 lineage. We identified 6 SNPs and 6 Indels (insertions and deletions) differentiating EV76-CN from its counterparts. Then, we screened these polymorphic sites in 28 other strains of EV76 lineage that were stored in different countries. Based on the profiles of SNPs and Indels, we reconstructed the parsimonious dissemination history of EV76 lineage. This analysis revealed that there have been at least three independent imports of EV76 strains into China. Additionally, we observed that the pyrE gene is a mutation hotspot in EV76 lineages. The fine comparison results based on whole genome sequence in this study provide better understanding of the effects of laboratory passages on the accumulation of genetic polymorphisms in plague vaccine strains. These variations identified here will also be helpful in discriminating different EV76 derivatives.


Subject(s)
Genetic Variation , Plague Vaccine/genetics , Plague Vaccine/immunology , Plague/prevention & control , Yersinia pestis/genetics , Yersinia pestis/immunology , DNA Mutational Analysis , Evolution, Molecular , Genotype , Geography , Humans , INDEL Mutation , Mutation , Phylogeny , Phylogeography , Polymorphism, Single Nucleotide , Vaccines, Attenuated , Yersinia pestis/classification , Yersinia pestis/isolation & purification
19.
Pathog Dis ; 70(2): 119-31, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23913628

ABSTRACT

Yersinia pestis YadB and YadC are two new outer membrane proteins related to its pathogenicity. Here, codon-optimized yadC, yadC810 (aa 32-551), or yadBC antigen genes delivered by live attenuated Salmonella strains are evaluated in mice for induction of protective immune responses against Y. pestis CO92 through subcutaneous or intranasal challenge. Our findings indicate that mice immunized with Salmonella synthesizing YadC, YadC810, or YadBC develop significant serum IgG responses to purified recombinant YadC protein. For subcutaneous challenge (approximately 230 LD50 of Y. pestis CO92), mice immunized with Salmonella synthesizing YadC or YadC810 are afforded 50% protection, but no protection by immunization with the Salmonella strain synthesizing YadBC. None of these antigens provided protection against intranasal challenge (approximately 31 LD50 of Y. pestis CO92). In addition, subcutaneous immunization with purified YadC810 protein emulsified with alum adjuvant does not elicit a protective response against Y. pestis administered by either challenge route.


Subject(s)
Adhesins, Bacterial/immunology , Plague Vaccine/immunology , Plague/prevention & control , Adhesins, Bacterial/genetics , Administration, Intranasal , Animals , Antibodies, Bacterial/blood , Disease Models, Animal , Drug Carriers/administration & dosage , Female , Injections, Subcutaneous , Mice, Inbred BALB C , Plague Vaccine/administration & dosage , Plague Vaccine/genetics , Salmonella/genetics , Salmonella/growth & development , Survival Analysis , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
20.
Clin Exp Immunol ; 172(1): 1-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23480179

ABSTRACT

The causative organism of plague is the bacterium Yersinia pestis. Advances in understanding the complex pathogenesis of plague infection have led to the identification of the F1- and V-antigens as key components of a next-generation vaccine for plague, which have the potential to be effective against all forms of the disease. Here we review the roles of F1- and V-antigens in the context of the range of virulence mechanisms deployed by Y. pestis, in order to develop a greater understanding of the protective immune responses required to protect against plague.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Plague Vaccine/immunology , Plague/prevention & control , Pore Forming Cytotoxic Proteins/immunology , Vaccination , Yersinia pestis/pathogenicity , Antibodies, Bacterial/biosynthesis , Antibodies, Bacterial/immunology , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Gene Expression , Humans , Immune Evasion , Immunity, Cellular , Immunity, Humoral , Plague/immunology , Plague/microbiology , Plague Vaccine/genetics , Plague Vaccine/pharmacology , Pore Forming Cytotoxic Proteins/genetics , Virulence , Yersinia pestis/drug effects , Yersinia pestis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL