Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 38(6): 2566-2581, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33706381

ABSTRACT

Genetic conflict is considered a key driver in the evolution of reproductive systems with non-Mendelian inheritance, where parents do not contribute equally to the genetic makeup of their offspring. One of the most extraordinary examples of non-Mendelian inheritance is paternal genome elimination (PGE), a form of haplodiploidy which has evolved repeatedly across arthropods. Under PGE, males are diploid but only transmit maternally inherited chromosomes, while the paternally inherited homologues are excluded from sperm. This asymmetric inheritance is thought to have evolved through an evolutionary arms race between the paternal and maternal genomes over transmission to future generations. In several PGE clades, such as the mealybugs (Hemiptera: Pseudococcidae), paternal chromosomes are not only eliminated from sperm, but also heterochromatinized early in development and thought to remain inactive, which could result from genetic conflict between parental genomes. Here, we present a parent-of-origin allele-specific transcriptome analysis in male mealybugs showing that expression is globally biased toward the maternal genome. However, up to 70% of somatically expressed genes are to some degree paternally expressed, while paternal genome expression is much more restricted in the male reproductive tract, with only 20% of genes showing paternal contribution. We also show that parent-of-origin-specific gene expression patterns are remarkably similar across genotypes, and that genes with completely biparental expression show elevated rates of molecular evolution. Our results provide the clearest example yet of genome-wide genomic imprinting in insects and enhance our understanding of PGE, which will aid future empirical tests of evolutionary theory regarding the origin of this unusual reproductive strategy.


Subject(s)
Gene Silencing , Genome, Insect , Genomic Imprinting , Planococcus Insect/genetics , Transcriptome , Animals , Evolution, Molecular , Female , Genitalia, Male/metabolism , Haploidy , Hybridization, Genetic , Male , Planococcus Insect/metabolism
2.
J Evol Biol ; 32(5): 491-504, 2019 05.
Article in English | MEDLINE | ID: mdl-30776169

ABSTRACT

Genomic conflicts arising during reproduction might play an important role in shaping the striking diversity of reproductive strategies across life. Among these is paternal genome elimination (PGE), a form of haplodiploidy which has independently evolved several times in arthropods. PGE males are diploid but transmit maternally inherited chromosomes only, whereas paternal homologues are excluded from sperm. Mothers thereby effectively monopolize the parentage of sons, at the cost of the father's reproductive success. This creates striking conflict between the sexes that could result in a co-evolutionary arms race between paternal and maternal genomes over gene transmission, yet empirical evidence that such an arms race indeed takes place under PGE is scarce. This study addresses this by testing whether PGE is complete when paternal genotypes are exposed to divergent maternal backgrounds in intraspecific and hybrid crosses of the citrus mealybug, Planococcus citri, and the closely related Planococcus ficus. We determined whether males can transmit genetic information through their sons by tracking inheritance of two traits in a three-generation pedigree: microsatellite markers and sex-specific pheromone preferences. Our results suggest leakages of single paternal chromosomes through males occurring at a low frequency, but we find no evidence for transmission of paternal pheromone preferences from fathers to sons. The absence of differences between hybrid and intraspecific crosses in leakage rate of paternal alleles suggests that a co-evolutionary arms race cannot be demonstrated on this evolutionary timescale, but we conclude that there is scope for intragenomic conflict between parental genomes in mealybugs. Finally, we discuss how these paternal escapes can occur and what these findings may reveal about the evolutionary dynamics of this bizarre genetic system.


Subject(s)
Genome , Genotype , Planococcus Insect/genetics , Alleles , Animals , Biological Evolution , Female , Male , Microsatellite Repeats , Sex Attractants/pharmacology
4.
PLoS One ; 13(3): e0193852, 2018.
Article in English | MEDLINE | ID: mdl-29565996

ABSTRACT

Determining the most likely source of an invasive pest species might help to improve their management by establishing efficient quarantine measures and heading the search of efficient biological control agents. Planococcus ficus is an invasive mealybug pest of vineyards in Argentina, California, Mexico, Peru and South Africa. This mealybug pest had a previously known geographic distribution spanning southern Europe, the Middle East, and parts of northern Africa. In North America, Pl. ficus was first discovered in the early 1990s and soon thereafter in Mexico. To determine the origin of invasive populations in North America, Pl. ficus from California and Mexico were compared with material throughout its presumptive native range in the Mediterranean region, as well as material collected from an older invasion in South Africa and recently invaded Argentina. From each sample location, genomic DNA was sequenced for the nuclear internal transcribed spacer one (ITS1) and the mitochondrial cytochrome c. oxidase one (CO1). Phylogenetic analyses of CO1, ITS1 and concatenated CO1 and ITS1 data-sets using Bayesian and neighbor-joining analysis support two major divisions: a European grouping (Europe, Tunisia, Turkey) and a Middle Eastern grouping (Israel and Egypt). The invasive populations in Argentina and South Africa align with the European group and the invasive populations in North America align with the Middle Eastern group, with one Israel sample aligning closely with the North American clade, suggesting that Israel was the origin of those populations.


Subject(s)
Ficus/genetics , Planococcus Insect/genetics , Animals , Bayes Theorem , Electron Transport Complex IV/genetics , Insect Proteins/genetics , Molecular Biology/methods , Phylogeny , Sequence Analysis, DNA/methods
5.
Proc Natl Acad Sci U S A ; 113(37): E5416-24, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27573819

ABSTRACT

Stable endosymbiosis of a bacterium into a host cell promotes cellular and genomic complexity. The mealybug Planococcus citri has two bacterial endosymbionts with an unusual nested arrangement: the γ-proteobacterium Moranella endobia lives in the cytoplasm of the ß-proteobacterium Tremblaya princeps These two bacteria, along with genes horizontally transferred from other bacteria to the P. citri genome, encode gene sets that form an interdependent metabolic patchwork. Here, we test the stability of this three-way symbiosis by sequencing host and symbiont genomes for five diverse mealybug species and find marked fluidity over evolutionary time. Although Tremblaya is the result of a single infection in the ancestor of mealybugs, the γ-proteobacterial symbionts result from multiple replacements of inferred different ages from related but distinct bacterial lineages. Our data show that symbiont replacement can happen even in the most intricate symbiotic arrangements and that preexisting horizontally transferred genes can remain stable on genomes in the face of extensive symbiont turnover.


Subject(s)
Betaproteobacteria/genetics , Gammaproteobacteria/genetics , Planococcus Insect/microbiology , Symbiosis/genetics , Animals , Betaproteobacteria/growth & development , Gammaproteobacteria/growth & development , Gene Transfer, Horizontal/genetics , Genome, Bacterial , Phylogeny , Planococcus Insect/genetics , Sequence Analysis, DNA
7.
Environ Entomol ; 40(6): 1595-603, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22217778

ABSTRACT

A simple molecular tool was developed and tested to identify seven mealybug species found in North American vineyards: Pseudococcus maritimus Ehrhorn, Pseudococcus viburni (Signoret), Pseudococcus longispinus (Targioni-Tozzeti), Pseudococcus calceolariae (Maskell), Planococcus ficus (Signoret), Planococcus citri (Risso), and Ferrisia gilli Gullan. The developed multiplex PCR is based on the mitochondrial cytochrome c oxidase subunit one gene. In tests, this single-step multiplex PCR correctly identified 95 of 95 mealybug samples, representing all seven species and collected from diverse geographic regions. To test the sensitivity, single specimen samples with different Pl. ficus developmental stages (egg to adult female and adult male) were processed PCR and the resulting output provided consistent positive identification. To test the utility of this protocol for adult males caught in sex baited pheromone traps, Pl. ficus adult males were placed in pheromone traps, aged at a constant temperature of 26±2°C, and processed with the multiplex each day thereafter for 8 d. Results showed consistent positive identification for up to 6 d (range, 6-8 d). Results are discussed with respect to the usefulness of this molecular tool for the identification of mealybugs in pest management programs and biosecurity of invasive mealybugs.


Subject(s)
Hemiptera/genetics , Insect Proteins/genetics , Multiplex Polymerase Chain Reaction/methods , Aging , Animals , Electron Transport Complex IV/genetics , Female , Hemiptera/enzymology , Hemiptera/growth & development , Male , Molecular Sequence Data , North America , Nymph/enzymology , Nymph/genetics , Nymph/growth & development , Ovum/enzymology , Ovum/growth & development , Planococcus Insect/enzymology , Planococcus Insect/genetics , Planococcus Insect/growth & development , Sequence Analysis, DNA , Species Specificity , Time Factors , Vitis
8.
Naturwissenschaften ; 97(12): 1047-57, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20981534

ABSTRACT

The vine mealybug (VM) females collected in Israel produce two sex pheromone compounds: lavandulyl senecioate (LS) and (S)-lavandulyl isovalerate (LI). The males display ambiguous behavior to LI: repulsion in the vineyard and attraction of laboratory-reared males. We addressed the question of individual male behavior, i.e., do males respond to both LS and LI, or might they display a distinct response to each of the two pheromone compounds. We compared male pherotype frequencies between wild-caught and laboratory-reared populations. Then, we examined the relationship between pherotype composition and male capture rates in pheromone traps. Finally, we addressed the heredity of the pherotypes. The Israeli VM populations contain nine different male pherotypes, as defined according to the male behavior to pheromone compounds. The studied Portuguese populations included five of the nine pherotypes; none of the Portuguese males were attracted to LI. It seems that the high frequency of males that were attracted to LI is related to dense VM populations. It is hypothesized that selection for the male pherotypes, I males, those that respond to LI, occur under high-density rearing conditions. This may result from shorter development times of males and females that produce more I male pherotypes. The lower relative frequency of trapping of males in LI-baited traps than expected from the percentage determined in a Petri dish arena suggests that males that respond solely to LS (S males) are better fliers. The results also suggest that the pherotype trait is inherited by both sexes of the VM.


Subject(s)
Mating Preference, Animal/physiology , Planococcus Insect/physiology , Sex Attractants/classification , Acyclic Monoterpenes , Animals , Female , Israel , Male , Monoterpenes/chemistry , Monoterpenes/metabolism , Planococcus Insect/classification , Planococcus Insect/genetics , Portugal , Sex Attractants/biosynthesis , Sex Attractants/chemistry , Vitis/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...