Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.787
Filter
1.
Nat Prod Res ; 38(11): 1918-1923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739564

ABSTRACT

Blumea eriantha D.C is a weed from Asteraceae family and is reported to have anticancer activity. The essential oil from the aerial parts was extracted by steam distillation method with the yield of 0.36%. Through GC-MS analysis of the oil, seventeen compounds could be identified by comparing with linear retention indices with the library. Out of the seventeen compounds ß-Caryophylline oxide was isolated by column chromatography with gradient elution and the structure was determined through FT-IR, MS, 1HNMR, 13 C NMR and DEPT. The oil was evaluated for its effect on angiogenesis using Chorioallantoic Membrane Assay (CAM Assay). The concentration dependent antiangiogenic effect was observed with IC 50 value of 19.28 ppm.


Subject(s)
Angiogenesis Inhibitors , Asteraceae , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Asteraceae/chemistry , Animals , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/blood supply , Plant Components, Aerial/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Polycyclic Sesquiterpenes
2.
Pak J Pharm Sci ; 37(1): 163-171, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741413

ABSTRACT

Medicinal plants contain a wide variety of bioactive phytoconstituents which can serve as new therapeutic agents for several diseases. This study examines the antidiabetic potential of Aitchisonia rosea in alloxan-induced diabetic rats and identifies its bioactive phytoconstituents using GC-MS. In vitro, antidiabetic potential was established using the α-amylase inhibition assay. In vivo, antidiabetic potential was investigated by employing the oral glucose tolerance test (OGTT). GC-MS analysis was used to identify the bioactive phytoconstituents. The in vitro and in vivo tests showed that the aqueous extract of A. rosea possesses better antidiabetic potential. The α-amylase inhibition assay highlighted an IC50 value of 134.87µg/ml. In an oral glucose tolerance test, rats given an aqueous A. rosea extract significantly lowered their blood sugar levels significant reduction in the blood glucose concentration was observed in the oral glucose tolerance test in rats treated with the aqueous A. rosea extract. GC-MS investigation revealed many phytoconstituents, with serverogenin acetate and cycloheptasiloxane tetradecamethyl being important antidiabetic agents. This study found anti-diabetic properties in A. rosea extract. The phytochemical and GC-MS investigation also found serverogenin acetate and cycloheptasiloxane tetradecamethyl, which could be used to develop new antidiabetic drugs.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Gas Chromatography-Mass Spectrometry , Hypoglycemic Agents , Plant Components, Aerial , Plant Extracts , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Plant Components, Aerial/chemistry , Male , Blood Glucose/drug effects , Rats , Glucose Tolerance Test , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Rats, Wistar , Phytochemicals/pharmacology , Phytochemicals/analysis , Alloxan
3.
Chin J Nat Med ; 22(4): 375-384, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658100

ABSTRACT

The aerial parts of Mosla chinensis Maxim. and Mosla chinensis cv. 'Jiangxiangru' (MCJ) are widely utilized in traditional Chinese medicine (TCM), known collectively as Xiang-ru. However, due to clinical effectiveness concerns and frequent misidentification, the original plants have increasingly been substituted by various species within the genera Elsholtzia and Mosla. The challenge in distinguishing between these genera arises from their similar morphological and metabolic profiles. To address this issue, our study introduced a rapid method for metabolic characterization, employing high-resolution mass spectrometry-based metabolomics. Through detailed biosynthetic and chemometric analyses, we pinpointed five phenolic compounds-salviaflaside, cynaroside, scutellarein-7-O-D-glucoside, rutin, and vicenin-2-among 203 identified compounds, as reliable chemical markers for distinguishing Xiang-ru from closely related Elsholtzia species. This methodology holds promise for broad application in the analysis of plant aerial parts, especially in verifying the authenticity of aromatic traditional medicinal plants. Our findings underscore the importance of non-volatile compounds as dependable chemical markers in the authentication process of aromatic traditional medicinal plants.


Subject(s)
Drugs, Chinese Herbal , Lamiaceae , Phenols , Phenols/analysis , Phenols/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Lamiaceae/chemistry , Lamiaceae/classification , Medicine, Chinese Traditional , Metabolomics/methods , Mass Spectrometry/methods , Plant Components, Aerial/chemistry
4.
Biomolecules ; 14(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38672484

ABSTRACT

A detailed phytochemical investigation has been carried out on the aerial parts of G. foetida leading to the isolation of 29 pure compounds, mainly belonging to the amorfrutin and polyphenol classes. Among them, the new amorfrutin N (5) and exiguaflavone L (21) were isolated and their structures elucidated by means of HR-ESIMS and NMR. All the isolated compounds were investigated for modulation of mitochondrial activity and stimulation of glucose uptake via GLUT transporters, two metabolic processes involved in intracellular glucose homeostasis, which, therefore, correlate with the incidence of metabolic syndrome. These experiments revealed that amorfrutins were active on both targets, with amorfrutin M (17) and decarboxyamorfrutin A (2) emerging as mitochondrial stimulators, and amorfrutin 2 (12) as a glucose uptake promoter. However, members of the rich chalcone/flavonoid fraction also proved to contribute to this activity.


Subject(s)
Glucose , Metabolic Syndrome , Plant Components, Aerial , Metabolic Syndrome/metabolism , Metabolic Syndrome/drug therapy , Plant Components, Aerial/chemistry , Humans , Glucose/metabolism , Glycyrrhiza/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/genetics
5.
J Ethnopharmacol ; 330: 118252, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38663782

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylis aristata batt., as an endemic plant from the Asteraceae family, holds a significant position in the Ahaggar region of southern Algeria's traditional medicine. The aerial parts of Atractylis aristata was used to cure inflammation, fever, and stomach disorders. AIM OF THE STUDY: The objective of the present investigation was to ascertain the overall bioactive components and phytochemical components and examine the antioxidant, antidiabetic, anti-inflammatory, acute toxicity, and sedative properties of the crude extract obtained from the aerial portions of Atractylis aristata (AaME). MATERIALS AND METHODS: The AaME's antioxidant activity was assessed by the use of pyrogallol autoxidation, (1,1 diphenyl-2-picrylhydrazyl) (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and reducing power (RP) techniques. 1 mg/mL of AaME was used to evaluate the antidiabetic activity by applying the enzyme α-amylase inhibitory power test. At the same time, the bovine serum albumin (BSA) denaturation method was employed to quantify the in vitro anti-inflammatory activity at different concentrations (1.5625, 0.78125, 0.390625, 0.1953125 and 0.09765625 mg/mL). In contrast, following the Organization for Economic Co-operation and Development (OECD) guideline No. 423, which covers acute oral toxicity testing protocols, the limit dosage test was employed to assess in vivo acute toxicity. At the dose of 0.08 mg/mL, the carrageenan-induced paw edema approach was used to assess the anti-inflammatory efficacy in vivo, and the sedative activity was carried out at the dose of 0.08 mg/mL using the measurement of the locomotor method. Different bioactive compounds were identified within AaME using LC-MS/MS and HPLC-UV analysis. RESULTS: The acute toxicity study showed no fatalities or noticeable neurobehavioral consequences at the limit test; this led to their classification in Globally Harmonized System (GHS) category Five, as the OECD guideline No 423 recommended. At a concentration of 0.08 mg/mL (2000 mg/kg), AaME showed apparent inhibition of paw edema and a significant (p = 0.01227) reduction in locomotor activity compared to the control animals. Our findings showed that AaME exhibited considerable antioxidant (IC50 = 0.040 ± 0.003 mg/mL (DPPH), IC50 = 0.005 ± 5.77 × 10-5 mg/mL (ABTS), AEAC = 91.15 ± 3.921 mg (RP) and IR% = 23.81 ± 4.276 (Inhibition rate of pyrogallol) and rebuts antidiabetic activities (I% = 57.6241% ± 2.81772). Our findings revealed that the maximum percentage of BSA inhibition (70.84 ± 0.10%) was obtained at 1.562.5 mg/mL. Thus, the AaME phytochemical profile performed using phytochemical screening, HPLC-UV, and LC-MS/MS analysis demonstrated that A. aristata can be a valuable source of chemicals with biological activity for pharmaceutical manufacturers. CONCLUSION: The phytochemical profiling, determined through HPLC-UV and LC-MS/MS applications, reveals this plant's therapeutic value. The aerial parts of Atractylis aristata contain bioactive molecules such as gallic acid, ascorbic acid, and quercetin, contributing to its significant antioxidant capabilities. Furthermore, identifying alizarin, the active compound responsible for its anti-inflammatory properties, could provide evidence supporting the anti-inflammatory capabilities of this subspecies.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Hypnotics and Sedatives , Hypoglycemic Agents , Phenols , Plant Extracts , Animals , Antioxidants/pharmacology , Antioxidants/isolation & purification , Antioxidants/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/toxicity , Male , Phenols/pharmacology , Phenols/analysis , Phenols/isolation & purification , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/isolation & purification , Hypnotics and Sedatives/toxicity , Mice , Asteraceae/chemistry , Rats, Wistar , Rats , Edema/drug therapy , Edema/chemically induced , Female , Plant Components, Aerial/chemistry
6.
Chem Biodivers ; 21(5): e202400302, 2024 May.
Article in English | MEDLINE | ID: mdl-38454878

ABSTRACT

This study isolated pure compounds from Canna edulis aerial parts and assessed their antiplatelet and anticoagulant potential. Structural elucidation resulted in the identification of two new compounds: caneduloside A (1) and caneduloside B (2), and eleven known compounds: 6'-acetyl-3,6,2'-tri-p-coumaroyl sucrose (3), 6'-acetyl-3,6,2'-triferuloyl sucrose (4), tiliroside (5), afzelin (6), quercitrin (7), 2-hydroxycinnamaldehyde (8), cinnamic acid (9), 3,4-dimethoxycinnamic acid (10), dehydrovomifoliol (11), 4-hydroxy-3,5-dimethoxybenzaldehyde (12), and (S)-(-)-rosmarinic acid (13). Compounds 3, 4, 6-9, 13 were previously reported for antithrombotic properties. Hence, antithrombotic tests were conducted for 1, 2, 5, 10-12. All tested compounds demonstrated a dose-dependent antiaggregatory effect, and 10 and 12 were the most potent for both ADP and collagen activators. Additionally, 10 and 12 showed anticoagulant effects, with prolonged prothrombin time and activated partial thromboplastin time. The new compound 1 displayed antiplatelet and anticoagulant activity, while 2 mildly inhibited platelet aggregation. C. edulis is a potential source for developing antithrombotic agents.


Subject(s)
Anticoagulants , Plant Components, Aerial , Platelet Aggregation Inhibitors , Sucrose , Anticoagulants/pharmacology , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/isolation & purification , Sucrose/chemistry , Sucrose/pharmacology , Sucrose/metabolism , Plant Components, Aerial/chemistry , Plant Components, Aerial/metabolism , Humans , Esters/chemistry , Esters/pharmacology , Esters/isolation & purification , Platelet Aggregation/drug effects , Myristicaceae/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship , Animals
7.
Chem Biodivers ; 21(5): e202400414, 2024 May.
Article in English | MEDLINE | ID: mdl-38500337

ABSTRACT

Three undescribed sesquiterpenes (1-3), two enantiomeric pairs of monoterpenes (4a/4b-5a/5b), one alkyne (6), two known alkynes (7-8) and eight known coumarins (9-16) were isolated from the aerial parts extracts of Artemisia scoparia. The structures of these compounds were fully elucidated by their 1D and 2D NMR, HRESIMS spectral data analyses, and comparison with literature. The absolute configurations of compounds were determined by single-crystal X-ray crystallography (1), a comparison of experimental and calculated electronic circular dichroism (ECD) data (2-6). 15 showed moderate inhibitory activity with the NO release in LPS-induced RAW264.7 cells. 9-16 showed varying degrees of promoting melanogenesis and tyrosinase activity in B16 cells.


Subject(s)
Artemisia , Nitric Oxide , Artemisia/chemistry , Mice , Animals , RAW 264.7 Cells , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Crystallography, X-Ray , Plant Components, Aerial/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Molecular Structure , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Monoterpenes/pharmacology , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/isolation & purification , Molecular Conformation , Melanins/antagonists & inhibitors , Melanins/metabolism , Models, Molecular , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification
8.
Chem Biodivers ; 21(5): e202400518, 2024 May.
Article in English | MEDLINE | ID: mdl-38501574

ABSTRACT

In this study, two undescribed compounds (1 and 2), together with eight known compounds (3-10) were isolated from the aerial parts of Piper samentosum by various chromatography methods. Their chemical structures were determined to be 7'''-oxolyciumamide N (1), vitexin 2''-O-ß-D-(6'''-feruloyl)-glucopyranoside (2), 1,2-dihydro-6,8-dimethoxy-7-hydroxy-1-(3,4-dihydroxyphenyl)-N1,N2-bis-[2-(-hydroxyphenyl)ethyl]-2,3-napthalene dicarboamide (3), vitexin 6''-O-ß-D-glucopyranoside (4), vitexin 2''-O-α-L-rhamnopyranoside (5), methyl 2-hydroxybenzoate-2-O-ß-D-apiofuranosyl-(1→2)-O-ß-D-glucopyranoside (6), ficuside G (7), methyl 2-O-ß-D-glucopyranosylbenzoate (8), methyl 2,5-dihydroxybenzoate-5-O-ß-D-glucopyranoside (9), and 3,7-dimethyloct-1-ene-3,6,7-triol 6-O-ß-D-glucopyranoside (10) by spectroscopic data analysis including HR-ESI-MS, 1D-, and 2D-NMR spectra. Compounds 1-5 inhibited nitric oxide production in LPS-stimulated RAW264.7 macrophages with the IC50 values of 27.62, 74.03, 38.54, 70.39, and 44.95 µM, respectively. The NMR data of 9 were firstly reported herein.


Subject(s)
Flavones , Glucosides , Lipopolysaccharides , Nitric Oxide , Piper , Plant Components, Aerial , RAW 264.7 Cells , Mice , Animals , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Plant Components, Aerial/chemistry , Glucosides/isolation & purification , Glucosides/pharmacology , Glucosides/chemistry , Piper/chemistry , Flavones/isolation & purification , Flavones/pharmacology , Flavones/chemistry , Amides/chemistry , Amides/pharmacology , Amides/isolation & purification , Molecular Structure
9.
J Nat Prod ; 87(4): 1179-1186, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38528772

ABSTRACT

A comprehensive phytochemical investigation of aerial parts obtained from Centaurea sicula L. led to the isolation of 14 terpenoids (1-14) and nine polyphenols (15-23). The sesquiterpenoid group (1-11) included three structural families, namely, elemanolides (1-6), eudesmanolides (7 and 8), and germacranolides (9-11) with four unreported secondary metabolites (5-8), whose structure has been determined by extensive spectroscopic analysis, including 1D/2D NMR, HR-MS, and chemical conversion. Moreover, an unprecedented alkaloid, named siculamide (24), was structurally characterized, and a possible biogenetic origin was postulated. Inspired by the traditional use of the plant and in the frame of ongoing research on compounds with potential activity on metabolic syndrome, all the isolated compounds were evaluated for their stimulation of glucose uptake, disclosing remarkable activity for dihydrocnicin (10) and the lignan salicifoliol (15).


Subject(s)
Centaurea , Glucose , Plant Components, Aerial , Plant Components, Aerial/chemistry , Centaurea/chemistry , Molecular Structure , Glucose/metabolism , Terpenes/chemistry , Terpenes/isolation & purification , Terpenes/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification
10.
J Ethnopharmacol ; 328: 117991, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38460574

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Glinus oppositifolius (L.) Aug. DC. belongs to the family Molluginaceae, an annual prostrate herb traditionally used to treat inflammations, arthritis, malarial, wounds, fevers, diarrhoea, cancer, stomach discomfort, jaundice, and intestinal parasites. However, the anti-arthritic activity of the aerial part has still not been reported. AIM OF THE STUDY: To investigate the antioxidant and anti-arthritic activity of G. oppositifolius in Complete Freund's Adjuvant (CFA) induced rats. MATERIALS AND METHODS: The dried aerial parts of this plant material were defatted with n-hexane and extracted by methanol using a soxhlet apparatus. The in vitro anti-arthritic activity of methanolic extract of G. oppositifolius (MEGO) was evaluated in protein denaturation, membrane stabilization, and inhibition of proteinase assay at 25, 50, 100, 200, and 400 µg/ml concentrations. Female Wistar rats were immunized sub-dermally into the right hind paw with 0.1 ml of CFA. Rats were administered with MEGO at doses of 200 and 400 mg/kg once daily for fourteen days after arthritis induction. Assessment of arthritis was performed by measuring paw diameter, arthritic index, arthritic score, body weight, organ weight, and hematological and biochemical parameters, followed by the analysis of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin-1-beta (IL-1ß), cyclooxygenase-2 (COX-2), interleukin 13 (IL-13) and interleukin 10 (IL-10) and histopathological study. In vivo antioxidant effect was investigated in enzymatic assays. The presence of phytoconstituents was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS), respectively. In silico molecular docking study of the compounds was carried out against COX-2, IL-1ß, IL-6, and TNF-α using AutoDock 4.2 and BIOVIA-Discovery Studio Visualizer software. RESULTS: MEGO's in vitro anti-arthritic activity showed dose-dependent inhibition of protein denaturation, membrane stabilization, and proteinase inhibition, followed by significant in vivo anti-arthritic activity. The rats treated with MEGO showed tremendous potential in managing arthritis-like symptoms by restoring hematological, biochemical, and histological changes in CFA-induced rats. MEGO (200 and 400 mg/kg) showed a significant alleviation in the levels of hyper expressed inflammatory mediators (TNF-α, IL-1ß, and IL-6) and oxidative stress (SOD, CAT, GSH, and LPO) in CFA-induced rats. Spergulagenin-A as identified by LC-MS analysis, exhibited the highest binding affinity against COX-2 (-8.6), IL-1ß (7.2 kcal/mol), IL-6 (-7.4 kcal/mol), and TNF-α (-6.5 kcal/mol). CONCLUSIONS: Provided with the comprehensive investigation, methanolic extract of G. oppositifolius against arthritic-like condition is a proof of concept that revalidates its ethnic claim. The presence of Spergulagenin-A might be responsible for the anti-arthritic activity.


Subject(s)
Arthritis, Experimental , Molluginaceae , Rats , Animals , Tumor Necrosis Factor-alpha , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Interleukin-6 , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Rats, Wistar , Cyclooxygenase 2 , Molecular Docking Simulation , Chemometrics , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Methanol/chemistry , Antioxidants/therapeutic use , Interleukin-13 , Peptide Hydrolases , Plant Components, Aerial
11.
Poult Sci ; 103(4): 103473, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340660

ABSTRACT

This research examined the impact of incorporating Angelica sinensis's aerial components (APA), commonly referred to as "female ginseng", into broilers' diet. Two hundred eighty-eight 1-day-old Cobb 500 broilers were randomly assigned to the 4 experimental groups with 6 replications and 12 birds/replicate. The 4 groups were fed the diets included 4 concentrations of APA (0, 1, 2, and 3%, respectively). The study spanned 42 d, categorized as the starter phase (1-21 d) and the finisher phase (22-42 d). Notably, broilers fed with 3% APA demonstrated a pronounced surge in feed consumption and weight gain during the 22 to 42 d and over the full 42-d period (P < 0.05). Furthermore, when examining the broilers' intestinal structure, there was a notable increase in the villus height and villi ratio across the duodenum, jejunum, and ileum, with a decrease in crypt depth upon 3% APA inclusion (P < 0.05). On a molecular note, certain genes connected to the intestinal mechanical barrier, such as Zona Occludens 1 and Claudin-2, saw significant elevation in the jejunum (P < 0.05). The jejunum also displayed heightened levels of antimicrobial peptides like lysozyme, mucin 2, sIgA, IgG, and IgM, showcasing an enhanced chemical and immune barrier (P < 0.05). Delving into the 16SrDNA sequencing of intestinal content, a higher microbial diversity was evident with a surge in beneficial bacteria, particularly Firmicutes, advocating a resilient and balanced microecosystem. The findings imply that a 3% APA dietary addition bolsters growth metrics and fortifies the intestinal barrier's structural and functional integrity in broilers.


Subject(s)
Angelica sinensis , Dietary Supplements , Animals , Female , Dietary Supplements/analysis , Chickens , Intestines , Diet/veterinary , Plant Components, Aerial , Animal Feed/analysis
12.
Bioorg Chem ; 145: 107230, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387397

ABSTRACT

Historically, Astragalus membranaceus Bunge has been used as a beneficial medicinal plant, particularly in the Asian traditional medical systems, for the treatment of various human diseases such as stomach ulcers, diarrhea, and respiratory issues associated with phlegm. In this study, a phytochemical characterization of the aerial parts of A. membranaceusled to the isolation of 29 oleanane-type triterpenoid saponins, including 11 new compounds named astraoleanosides E-P (6-9, 13, 14, 18-22), as well as 18 known ones. The structures of these compounds were elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Among them, astraoleanoside H (9) and cloversaponin III (15) demonstrated the most potent ß-glucuronidase inhibitory activities, with IC50 values of 21.20 ± 0.75 and 9.05 ± 0.47 µM, respectively, compared to the positive control d-saccharic acid 1,4-lactone (IC50 = 20.62 ± 1.61 µM). Enzyme kinetics studies were then conducted to investigate the type of inhibition exhibited by these active compounds. In addition, the binding mechanism, key interactions, binding stability, and dynamic behavior of protein-ligand complexes were investigated through in silico approaches, such as molecular docking and molecular dynamics simulations. These findings highlight the promising potential of triterpenoid saponins from A. membranaceus as lead compounds for ß-glucuronidase inhibitors, offering new possibilities for the development of therapeutic agents targeting various diseases where ß-glucuronidase plays a crucial role.


Subject(s)
Oleanolic Acid , Oleanolic Acid/analogs & derivatives , Saponins , Triterpenes , Humans , Molecular Structure , Astragalus propinquus/chemistry , Molecular Docking Simulation , Saponins/chemistry , Oleanolic Acid/chemistry , Plant Components, Aerial/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry
13.
Arch Pharm (Weinheim) ; 357(5): e2300728, 2024 May.
Article in English | MEDLINE | ID: mdl-38314893

ABSTRACT

In the present study, we aimed to investigate the chemical profiles and biological activities of different extracts (ethyl acetate, dichloromethane, ethanol, and water) of Pelargonium endlicherianum parts (aerial parts and roots). Free radical scavenging, reducing power, phosphomolybdenum, and metal chelating were assayed for antioxidant properties. To detect enzyme inhibitory properties, cholinesterase, amylase, glucosidase, and tyrosinase were chosen as target enzymes. The ethanol extract of the aerial parts contained higher amounts of total bioactive compounds (120.53 mg GAE/g-24.46 mg RE/g). The ethanol and water extracts of these parts were tentatively characterized by UHPLC-ESI-QTOF-MS and 95 compounds were annotated. In addition, the highest acetylcholiesterase (3.74 mg GALAE/g) and butyrylcholinesterase (3.92 mg GALAE/g) abilities were observed by the ethanol extract of roots. The water extract from aerial parts exhibited the most pronounced inhibitory effects on multiple cancer cell lines, especially A549 (IC50: 23.2 µg/mL) and HT-29 (IC50: 27.43 µg/mL) cells. Using network pharmacology, P. endlicherianum compounds were studied against cancer, revealing well-connected targets such as epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase (PI3K), AKT, receptor tyrosine-protein kinase erbB-2, and growth factor receptor bound protein 2 (GRB2) with significant impact on cancer-related pathways. The results could open a new path from natural treasure to functional applications with P. endlicherianum and highlight a new study on other uninvestigated Pelargonium species.


Subject(s)
Pelargonium , Plant Extracts , Spectrometry, Mass, Electrospray Ionization , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Pelargonium/chemistry , Network Pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Components, Aerial/chemistry , Plant Roots/chemistry
14.
Molecules ; 29(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338341

ABSTRACT

Medicinal plants are considered a major source for discovering novel effective drugs. To our knowledge, no studies have reported the chemical composition and biological activities of Moroccan Lactuca saligna extracts. In this context, this study aims to characterize the polyphenolic compounds distributed in hydro-methanolic extracts of L. saligna and evaluate their antioxidant and antibacterial activities; in addition, in silico analysis based on molecular docking and ADMET was performed to predict the antibacterial activity of the identified phenolic compounds. Our results showed the identification of 29 among 30 detected phenolic compounds with an abundance of dicaffeoyltartaric acid, luteolin 7-glucoronide, 3,5-di-O-caffeoylquinic acid, and 5-caffeoylquinic acid with 472.77, 224.30, 196.79, and 171.74 mg/kg of dried extract, respectively. Additionally, antioxidant activity assessed by DPPH scavenging activity, ferric reducing antioxidant power (FRAP) assay, and ferrous ion-chelating (FIC) assay showed interesting antioxidant activity. Moreover, the results showed remarkable antibacterial activity against Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes with minimum inhibitory concentrations between 1.30 ± 0.31 and 10.41 ± 0.23 mg/mL. Furthermore, in silico analysis identified three compounds, including Apigenin 7-O-glucuronide, Quercetin-3-O-glucuronide, and 3-p-Coumaroylquinic acid as potent candidates for developing new antibacterial agents with acceptable pharmacokinetic properties. Hence, L. saligna can be considered a source of phytochemical compounds with remarkable activities, while further in vitro and in vivo studies are required to explore the main biological activities of this plant.


Subject(s)
Antioxidants , Lactuca , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Docking Simulation , Glucuronides/pharmacology , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Phenols/pharmacology , Plant Components, Aerial/chemistry
15.
Chem Biodivers ; 21(3): e202301347, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244212

ABSTRACT

Felicia abyssinica L., family Asteraceae, is widely used in folk medicine. This represents the first study to investigate its phytoconstituents and pharmacological effects. Phytoconstituents identified by GC-MS, LC-ESI-MS/MS-based metabolomics, and NMR (1D & 2D). GC-MS of the (FAMEs) revealed mainly the identification of 55 fatty acids. LC-ESI-MS/MS analysis resulted in the tentative identity of 13 compounds representing flavonoids, phenolics, and fatty acids. Ethyl acetate fraction exhibited the highest total flavonoids 66.19 mg/mL Rutin equivalent, while the methanolic fraction showed the highest phenolics 87.70 mg/mL gallic acid equivalent, and the total condensed tannins were 64.35 µg CE/mg catechins equivalent. A flavonoid and a cinnamic acid derivative were identified as quercetin 3-O-(2'''-O-acetyl) rutinoside (Mumikotin A) (1) and Methyl sinapate (2). Biological evaluation of antioxidant and cytotoxic activities was carried out. Cytotoxicity was examined on HepG-2 cell lines where the average cell viability was 91.42 % and 52.48 % for concentrations 10 and 100 µg/mL respectively. Methylene chloride and methanolic fractions showed the highest antioxidant activity 225 µg/mL Ascorbic acid equivalents. It is hypothesized that high phenolics, flavonoid content, and oxygenated identified compounds contribute to the antioxidant activity and can be regarded as a promising species for nutraceuticals active antioxidants with potential value for remedy.


Subject(s)
Antioxidants , Asteraceae , Gas Chromatography-Mass Spectrometry , Antioxidants/chemistry , Tandem Mass Spectrometry/methods , Plant Extracts/chemistry , Flavonoids/chemistry , Phenols/chemistry , Methanol , Plant Components, Aerial/chemistry , Fatty Acids/analysis
16.
Chem Biodivers ; 21(3): e202302123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253808

ABSTRACT

Three previously undescribed compounds named rauvolphyllas A-C (1-3), along with thirteen known compounds, 18ß-hydroxy-3-epi-α-yohimbine (4), yohimbine (5), α-yohimbine (6), 17-epi-α-yohimbine (7), (E)-vallesiachotamine (8), (Z)-vallesiachotamine (9), 16S-E-isositsirikine (10), Nb -methylisoajimaline (11), Nb -methylajimaline (12), ajimaline (13), (+)-lyoniresinol 3α-O-ß-D-glucopyranoside (14), (+)-isolarisiresinol 3α-O-ß-D-glucopyranoside (15), and (-)-lyoniresinol 3α-O-ß-D-glucopyranoside (16) were isolated from the aerial parts of Rauvolfia tetraphylla L. Their chemical structures were elucidated based on the extensive spectroscopic interpretation of HR-ESI-MS, 1D and 2D NMR spectra. The absolute configurations of 2 and 3 were determined by experimental ECD spectra. Compounds 5, 6, 7, and 11-13 exhibited nitric oxide production inhibition activity in LPS-activated RAW 264.7 cells with the IC50 values of 79.10, 44.34, 51.28, 33.54, 37.67, and 28.56 µM, respectively, compared to that of the positive control, dexamethasone, which showed IC50 value of 13.66 µM. The other isolates were inactive with IC50 values over 100 µM.


Subject(s)
Alkaloids , Anisoles , Lignans , Naphthalenes , Rauwolfia , Animals , Mice , Lignans/chemistry , RAW 264.7 Cells , Lipopolysaccharides/pharmacology , Nitric Oxide , Alkaloids/analysis , Magnetic Resonance Spectroscopy , Plant Components, Aerial/chemistry , Yohimbine , Molecular Structure
17.
Chem Biodivers ; 21(3): e202302105, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38269614

ABSTRACT

Four previously undescribed compounds named phyllancosides A and B (1 and 2), and phyllancochines A and B (3 and 4) together with ten known compounds (5-14) were isolated from the aerial parts of Phyllanthus cochinchinensis Spreng. Their chemical structures were elucidated on the basis of comprehensive analysis of IR, HR-ESI-MS, 1D and 2D NMR spectra. The absolute configurations of 1 and 2 were determined by electronic circular dichroism (ECD) spectra. Compounds 3, 4, and 10 showed antimicrobial activity against E. faecalis, S. aureus, and B. cereus with the MIC values in range of 32-256 µg/mL. Compound 11 inhibited E. faecalis and B. cereus, and 7 inhibited S. aureus with the MIC values in range of 64-128 µg/mL. In addition, compounds 1, 3, 4, 8, and 9 showed significantly NO production inhibitory activity in LPS activated RAW 264.7 cells with IC50 values ranging from 36.57 to 56.34 µM.


Subject(s)
Anti-Infective Agents , Lipopolysaccharides , Animals , Mice , RAW 264.7 Cells , Molecular Structure , Lipopolysaccharides/pharmacology , Staphylococcus aureus , Nitric Oxide , Plant Components, Aerial/chemistry , Anti-Infective Agents/analysis
18.
BMC Complement Med Ther ; 24(1): 28, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195460

ABSTRACT

BACKGROUND: Indigofera suffruticosa Mill. is used as a folk medicine for treating patients with leukemia, however very little is known regarding the molecular mechanism of its anti-leukemic activity and the chemical profile of the active extract. The present study aimed to reveal the molecular effect of I. suffruticosa aerial parts extract (ISAE) on leukemia cells and its chemical constituents. METHODS: Cytotoxicity of ISAE were determined by resazurin viability assay, multitox - Glo multiplex cytotoxicity assay, and Annexin V staining assay. Cell cycle profiles were revealed by propidium iodide staining assay. The effects of ISAE on G2/M arrest signaling and DNA damage were evaluated by Western blot assay and phospho-H2A.X staining assay. The chemical profile of ISAE were determined by tandem mass spectroscopy and molecular networking approach. RESULTS: We showed that the acute lymphoblastic leukemia cell line Jurkat cell was more responsive to ISAE treatment than other leukemia cell lines. In contrast, ISAE did not induce cytotoxic effects in normal fibroblast cells. Cell cycle analysis revealed that ISAE triggered G2/M arrest in Jurkat cells in dose- and time-dependent manners. Elevation of annexin V-stained cells and caspase 3/7 activity suggested ISAE-induced apoptosis. Furthermore, ISAE alone could increase the phosphorylation of CDK1 at Y15 and activate the ATR/CHK1/Wee1/CDC25C signaling pathway. However, the addition of caffeine, a widely used ATR inhibitor to ISAE, reduced the phosphorylation of ATR, CHK1, and CDK1, as well as G2/M arrest in Jurkat cells. Moreover, increased phospho-H2A.X stained cells indicated the involvement of DNA damage in the anti-leukemic effect of ISAE. Finally, qualitative analysis using UPLC-tandem mass spectroscopy and molecular networking revealed that tryptanthrin was the most abundant organoheterocyclic metabolite in ISAE. At equivalent concentrations to ISAE, tryptanthrin induced G2/M arrest of Jurkat cells, which can be prevented by caffeine. CONCLUSIONS: ISAE causes G2/M arrest via activating ATR/CHK1/CDK1 pathway and tryptanthrin is one of the active components of ISAE. Our findings provide subtle support to the traditional use of I. suffruitcosa in leukemia management in folk medicine.


Subject(s)
Indigofera , Leukemia , Humans , Jurkat Cells , Annexin A5 , Apoptosis , Caffeine , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Plant Components, Aerial , Plant Extracts/pharmacology , Ataxia Telangiectasia Mutated Proteins
19.
Phytochemistry ; 219: 113984, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266953

ABSTRACT

Thirty-nine thymol and acetophenone derivatives, including eight pairs of enantiomers, were isolated from the aerial parts of Eupatorium fortunei. Their structures were assigned by detailed analyses of spectroscopic data and NMR calculations based on density functional theory, with 18 ones (1a/1b-14) being previously undescribed compounds. While the absolute configurations of 1a/1b, 2a/2b, 4, 6a/6b, 7, 11a/11b and 15a/15b-18a/18b were established by calculations of electronic circular dichroism data, that of 14 was determined by modified Mosher's method. Compounds 1a/1b and 2a/2b represent a previously unreported type of monoterpenoid dimers via an amide linkage, and compound 3 is a monoterpene-phenylpropanoid hybrid connected through an ester bond. Among the known molecules, the formerly mis-assigned structures of 15a/15b and 22 were revised, and pure natural enantiomers of 16a/16b-18a/18b were reported for the first time. Selective compounds showed antiradical and NO production inhibitory activities in the preliminary biological screening. Compound 31 was further demonstrated to alleviate oxidative stress by activating Nrf2 signaling pathway.


Subject(s)
Eupatorium , Eupatorium/chemistry , Monoterpenes/pharmacology , Monoterpenes/analysis , Molecular Structure , Plant Components, Aerial/chemistry , Acetophenones/analysis
20.
J Ethnopharmacol ; 324: 117774, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38244951

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Caralluma dalzielii (Asclepiadiaceae) is a shrub used in folkloric medicine to treat epilepsy, pain and infertility in sub-Saharan Africa. Previous studies demonstrated its analgesic, antiulcer, anticonvulsant, and anti-inflammatory activities. AIM: This study aimed to determine the neurobehavioural properties of Caralluma dalzielii aqueous aerial parts extract (CDAE) in mice using standard experimental models. MATERIALS AND METHODS: Neurobehavioural activities of CDAE were evaluated (100, 200, and 400 mg/kg) in Swiss Albino mice using the beam walk, staircase, hole board, object recognition, open field assay, Y-maze and forced swimming tests. Phytochemical constituents were analysed using GC-MS. RESULTS: CDAE significantly increased the mean number of head dips, recognition index and spontaneous alternation in hole board (14.03 at 400 mg/kg and 6.01 in distilled water group; p < 0.05), object recognition (68.16% at 400 mg/kg compared with 51.66% of distilled water group) and Y maze (9.16 at 400 mg/kg as against 4.66 of distilled water group; p < 0.05) tests respectively. It decreased the rearing counts as well as the peripheral and central square crossing in the staircase (4.2 at 400 mg/kg as against 7.87 of the distilled water group; p < 0.05) and open field tests (central, 0.81; peripheral, 1.66 at 400 mg/kg as against central, 5.23; peripheral 11.83 of the distilled water control group; p < 0.05), respectively. There were no significant effects on beam walk assays and forced swim tests. The GC-MS analysis identified a hundred compounds in CDAE. Some compounds which have been reported to possess neurobehavioural activity that were identified include 3,5-Dimethylpyrazole, 2-Amino-5-methylbenzoic acid, Acetophenone, and Tetrahydropyran. CONCLUSION: CDAE demonstrated anxiolytic, anti-hyperactivity, and memory-improving effects in mice. The extract may possess GABAergic and glutamatergic properties. More studies are needed to confirm this. Isolation of the bioactive compounds is currently ongoing to unravel the bioactive constituents present in C. dalzielii extract.


Subject(s)
Anti-Anxiety Agents , Apocynaceae , Mice , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Water , Plant Components, Aerial
SELECTION OF CITATIONS
SEARCH DETAIL
...