Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.206
Filter
1.
Mol Plant Pathol ; 25(5): e13464, 2024 May.
Article in English | MEDLINE | ID: mdl-38695733

ABSTRACT

Many plant pathogens secrete effector proteins into the host plant to suppress host immunity and facilitate pathogen colonization. The necrotrophic pathogen Sclerotinia sclerotiorum causes severe plant diseases and results in enormous economic losses, in which secreted proteins play a crucial role. SsCVNH was previously reported as a secreted protein, and its expression is significantly upregulated at 3 h after inoculation on the host plant. Here, we further demonstrated that deletion of SsCVNH leads to attenuated virulence. Heterologous expression of SsCVNH in Arabidopsis enhanced pathogen infection, inhibited the host PAMP-triggered immunity (PTI) response and increased plant susceptibility to S. sclerotiorum. SsCVNH interacted with class III peroxidase AtPRX71, a positive regulator of innate immunity against plant pathogens. SsCVNH could also interact with other class III peroxidases, thus reducing peroxidase activity and suppressing plant immunity. Our results reveal a new infection strategy employed by S. sclerotiorum in which the fungus suppresses the function of class III peroxidases, the major component of PTI to promote its own infection.


Subject(s)
Arabidopsis , Ascomycota , Fungal Proteins , Plant Diseases , Plant Immunity , Ascomycota/pathogenicity , Plant Diseases/microbiology , Virulence , Arabidopsis/microbiology , Arabidopsis/immunology , Plant Immunity/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Peroxidases/metabolism , Peroxidases/genetics
2.
Mol Plant Pathol ; 25(5): e13463, 2024 May.
Article in English | MEDLINE | ID: mdl-38695677

ABSTRACT

The barley powdery mildew fungus, Blumeria hordei (Bh), secretes hundreds of candidate secreted effector proteins (CSEPs) to facilitate pathogen infection and colonization. One of these, CSEP0008, is directly recognized by the barley nucleotide-binding leucine-rich-repeat (NLR) receptor MLA1 and therefore is designated AVRA1. Here, we show that AVRA1 and the sequence-unrelated Bh effector BEC1016 (CSEP0491) suppress immunity in barley. We used yeast two-hybrid next-generation interaction screens (Y2H-NGIS), followed by binary Y2H and in planta protein-protein interactions studies, and identified a common barley target of AVRA1 and BEC1016, the endoplasmic reticulum (ER)-localized J-domain protein HvERdj3B. Silencing of this ER quality control (ERQC) protein increased Bh penetration. HvERdj3B is ER luminal, and we showed using split GFP that AVRA1 and BEC1016 translocate into the ER signal peptide-independently. Overexpression of the two effectors impeded trafficking of a vacuolar marker through the ER; silencing of HvERdj3B also exhibited this same cellular phenotype, coinciding with the effectors targeting this ERQC component. Together, these results suggest that the barley innate immunity, preventing Bh entry into epidermal cells, requires ERQC. Here, the J-domain protein HvERdj3B appears to be essential and can be regulated by AVRA1 and BEC1016. Plant disease resistance often occurs upon direct or indirect recognition of pathogen effectors by host NLR receptors. Previous work has shown that AVRA1 is directly recognized in the cytosol by the immune receptor MLA1. We speculate that the AVRA1 J-domain target being inside the ER, where it is inapproachable by NLRs, has forced the plant to evolve this challenging direct recognition.


Subject(s)
Ascomycota , Endoplasmic Reticulum , Hordeum , Plant Diseases , Plant Immunity , Plant Proteins , Hordeum/microbiology , Hordeum/genetics , Hordeum/immunology , Ascomycota/pathogenicity , Plant Proteins/metabolism , Plant Proteins/genetics , Endoplasmic Reticulum/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Immunity/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Protein Domains
3.
Proc Natl Acad Sci U S A ; 121(16): e2318783121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588412

ABSTRACT

Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.


Subject(s)
Hemiptera , MicroRNAs , Oryza , Animals , RNA Interference , MicroRNAs/genetics , MicroRNAs/metabolism , Saliva , Hemiptera/physiology , Plant Immunity/genetics , Oryza/genetics
4.
Cell ; 187(9): 2095-2116, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670067

ABSTRACT

Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.


Subject(s)
Disease Resistance , Plant Diseases , Plant Immunity , Plants , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/genetics , Plants/immunology , Plants/genetics , Disease Resistance/genetics , Humans
5.
Theor Appl Genet ; 137(4): 95, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582777

ABSTRACT

Grapevine (Vitis vinifera L.) is an economically important fruit crop cultivated worldwide. In China, grapevine cultivation is very extensive, and a few Vitis grapes have excellent pathogen and stress resistance, but the molecular mechanisms underlying the grapevine response to stress remain unclear. In this study, a microRNA (miRNA; miR827a), which negatively regulates its target gene VqMYB14, a key regulatory role in the synthesis of stilbenes, was identified in Vitis quinquangularis (V. quinquangularis) using transcriptome sequencing. Using overexpression and silencing approaches, we found that miR827a regulates the synthesis of stilbenes by targeting VqMYB14. We used flagellin N-terminal 22-amino-acid peptide (flg22), the representative elicitor in plant basal immunity, as the elicitor to verify whether miR827a is involved in the basal immunity of V. quinquangularis. Furthermore, the promoter activity of miR827a was alleviated in transgenic grape protoplasts and Arabidopsis thaliana following treatment with flg22 and Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000), respectively. In addition, yeast one-hybrid and dual luciferase reporter assay revealed that the ethylene transcription factor VqERF057 acted as a key regulator in the inhibition of miR827a transcription. These results will contribute to the understanding of the biological functions of miR827a in grapevine and clarify the molecular mechanism of the interaction between miR827a and VqMYB14.


Subject(s)
Arabidopsis , Stilbenes , Vitis , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Immunity/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Vitis/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics
6.
BMC Plant Biol ; 24(1): 339, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671375

ABSTRACT

BACKGROUND: Many phytopathogens secrete a large number of cell wall degrading enzymes (CWDEs) to decompose host cell walls in order to penetrate the host, obtain nutrients and accelerate colonization. There is a wide variety of CWDEs produced by plant pathogens, including glycoside hydrolases (GHs), which determine the virulence, pathogenicity, and host specificity of phytopathogens. The specific molecular mechanisms by which pathogens suppress host immunity remain obscure. RESULT: In this study, we found that CgEC124 encodes a glycosyl hydrolase with a signal peptide and a conserved Glyco_hydro_cc domain which belongs to glycoside hydrolase 128 family. The expression of CgEC124 was significantly induced in the early stage of Colletotrichum graminicola infection, especially at 12 hpi. Furthermore, CgEC124 positively regulated the pathogenicity, but it did not impact the vegetative growth of mycelia. Ecotopic transient expression of CgEC124 decreased the disease resistance and callose deposition in maize. Moreover, CgEC124 exhibited the ß-1,3-glucanase activity and suppresses glucan-induced ROS burst in maize leaves. CONCLUSIONS: Our results indicate that CgEC124 is required for full virulence of C. graminicola but not for vegetative growth. CgEC124 increases maize susceptibility by inhibiting host reactive oxygen species burst as well as callose deposition. Meanwhile, our data suggests that CgEC124 explores its ß-1,3-glucanase activity to prevent induction of host defenses.


Subject(s)
Colletotrichum , Plant Diseases , Plant Immunity , Zea mays , Colletotrichum/pathogenicity , Zea mays/microbiology , Zea mays/genetics , Zea mays/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Immunity/genetics , Glucan 1,3-beta-Glucosidase/metabolism , Glucan 1,3-beta-Glucosidase/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Disease Resistance/genetics , Glucans/metabolism , Reactive Oxygen Species/metabolism
7.
BMC Plant Biol ; 24(1): 347, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684939

ABSTRACT

BACKGROUND: Two-tiered plant immune responses involve cross-talk among defense-responsive (DR) genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered immunity (ETI) and effector-triggered susceptibility (ETS). Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an important bacterial disease that causes serious threats to rice yield and quality. Transcriptomic profiling provides an effective approach for the comprehensive and large-scale detection of DR genes that participate in the interactions between rice and Xoc. RESULTS: In this study, we used RNA-seq to analyze the differentially expressed genes (DEGs) in susceptible rice after inoculation with two naturally pathogenic Xoc strains, a hypervirulent strain, HGA4, and a relatively hypovirulent strain, RS105. First, bacterial growth curve and biomass quantification revealed that differential growth occurred beginning at 1 day post inoculation (dpi) and became more significant at 3 dpi. Additionally, we analyzed the DEGs at 12 h and 3 days post inoculation with two strains, representing the DR genes involved in the PTI and ETI/ETS responses, respectively. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on the common DEGs, which included 4380 upregulated and 4019 downregulated genes and 930 upregulated and 1383 downregulated genes identified for the two strains at 12 h post inoculation (hpi) and 3 dpi, respectively. Compared to those at 12 hpi, at 3 dpi the number of common DEGs decreased, while the degree of differential expression was intensified. In addition, more disease-related GO pathways were enriched, and more transcription activator-like effector (TALE) putative target genes were upregulated in plants inoculated with HGA4 than in those inoculated with RS105 at 3 dpi. Then, four DRs were randomly selected for the BLS resistance assay. We found that CDP3.10, LOC_Os11g03820, and OsDSR2 positively regulated rice resistance to Xoc, while OsSPX3 negatively regulated rice resistance. CONCLUSIONS: By using an enrichment method for RNA-seq, we identified a group of DEGs related to the two stages of response to the Xoc strain, which included four functionally identified DR genes.


Subject(s)
Gene Expression Profiling , Oryza , Plant Diseases , Xanthomonas , Xanthomonas/pathogenicity , Xanthomonas/physiology , Xanthomonas/genetics , Oryza/microbiology , Oryza/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Transcriptome , Host-Pathogen Interactions/genetics , Plant Immunity/genetics , Gene Expression Regulation, Plant
8.
Nat Commun ; 15(1): 2559, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519521

ABSTRACT

Proteins containing a ubiquitin regulatory X (UBX) domain are cofactors of Cell Division Cycle 48 (CDC48) and function in protein quality control. However, whether and how UBX-containing proteins participate in host-microbe interactions remain unclear. Here we show that MoNLE1, an effector from the fungal pathogen Magnaporthe oryzae, is a core virulence factor that suppresses rice immunity by specifically interfering with OsPUX8B.2. The UBX domain of OsPUX8B.2 is required for its binding to OsATG8 and OsCDC48-6 and controls its 26 S proteasome-dependent stability. OsPUX8B.2 and OsCDC48-6 positively regulate plant immunity against blast fungus, while the high-temperature tolerance heat-shock protein OsBHT, a putative cytoplasmic substrate of OsPUX8B.2-OsCDC48-6, negatively regulates defense against blast infection. MoNLE1 promotes the nuclear migration and degradation of OsPUX8B.2 and disturbs its association with OsBHT. Given the high conservation of MoNLE1 among fungal isolates, plants with broad and durable blast resistance might be generated by engineering intracellular proteins resistant to MoNLE1.


Subject(s)
Magnaporthe , Oryza , Host-Pathogen Interactions , Plant Immunity/genetics , Biological Transport , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oryza/metabolism , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism
9.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542444

ABSTRACT

The degradation of cellulose generates cellooligomers, which function as damage-associated molecular patterns and activate immune and cell wall repair responses via the CELLOOLIGOMER RECEPTOR KINASE1 (CORK1). The most active cellooligomer for the induction of downstream responses is cellotriose, while cellobiose is around 100 times less effective. These short-chain cellooligomers are also metabolized after uptake into the cells. In this study, we demonstrate that CORK1 is mainly expressed in the vascular tissue of the upper, fully developed part of the roots. Cellooligomer/CORK1-induced responses interfere with chitin-triggered immune responses and are influenced by BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE1 and the receptor kinase FERONIA. The pathway also controls sugar transporter and metabolism genes and the phosphorylation state of these proteins. Furthermore, cellotriose-induced ROS production and WRKY30/40 expression are controlled by the sugar transporters SUCROSE-PROTON SYMPORTER1, SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER11 (SWEET11), and SWEET12. Our data demonstrate that cellooligomer/CORK1 signaling is integrated into the pattern recognition receptor network and coupled to the primary sugar metabolism in Arabidopsis roots.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis Proteins/metabolism , Plant Immunity/genetics , Sugars/metabolism , Membrane Transport Proteins/metabolism
10.
Microb Pathog ; 189: 106599, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428471

ABSTRACT

We have functionally evaluated a transcription factor CaMYB59 for its role in pepper immune responses to Ralstonia solanacearum attack and high temperature-high humidity (HTHH). Exposure to R. solanacearum inoculation (RSI) and HTHH resulted in up-regulation of this nucleus-localized TF. Function of this TF was confirmed by performing loss of function assay of CaMYB59 by VIGS (virus-induced gene silencing). Plants with silenced CaMYB59 displayed not only compromised pepper immunity against RSI but also impaired tolerance to HTHH along with decreased hypersensitive response (HR). This impairment in defense function was fully linked with low induction of stress-linked genes like CaPO2, CaPR1, CaAcc and thermo-tolerance linked CaHSP24 as well as CaHsfB2a. Conversely, transient overexpression of CaMYB59 enhanced pepper immunity. This reveals that CaMYB59 positively regulated host defense against RSI and HTHH by means of HR like mimic cell death, H2O2 production and up-regulation of defense as well as thermo-tolerance associated genes. These changes in attributes collectively confirm the role of CaMYB59 as a positive regulator of pepper immunity against R. solanacearum. We recommend that such positive regulation of pepper defense is dynamically supported by phyto-hormone signaling and transcriptional web of defense genes. These integrated and interlinked events stabilize plant growth and survival under abiotic and biotic stresses.


Subject(s)
Plant Growth Regulators , Ralstonia solanacearum , Humans , Plant Growth Regulators/genetics , Disease Resistance/genetics , Plant Immunity/genetics , Ralstonia solanacearum/genetics , Hydrogen Peroxide/metabolism , Temperature , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/genetics
11.
Adv Virus Res ; 118: 77-212, 2024.
Article in English | MEDLINE | ID: mdl-38461031

ABSTRACT

Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.


Subject(s)
Plant Growth Regulators , Plant Immunity , Plant Immunity/genetics , Plant Growth Regulators/metabolism , Plants , Signal Transduction , Plant Diseases/genetics
12.
Nature ; 627(8005): 847-853, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480885

ABSTRACT

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain mediate recognition of strain-specific pathogen effectors, typically via their C-terminal ligand-sensing domains1. Effector binding enables TIR-encoded enzymatic activities that are required for TIR-NLR (TNL)-mediated immunity2,3. Many truncated TNL proteins lack effector-sensing domains but retain similar enzymatic and immune activities4,5. The mechanism underlying the activation of these TIR domain proteins remain unclear. Here we show that binding of the TIR substrates NAD+ and ATP induces phase separation of TIR domain proteins in vitro. A similar condensation occurs with a TIR domain protein expressed via its native promoter in response to pathogen inoculation in planta. The formation of TIR condensates is mediated by conserved self-association interfaces and a predicted intrinsically disordered loop region of TIRs. Mutations that disrupt TIR condensates impair the cell death activity of TIR domain proteins. Our data reveal phase separation as a mechanism for the activation of TIR domain proteins and provide insight into substrate-induced autonomous activation of TIR signalling to confer plant immunity.


Subject(s)
Adenosine Triphosphate , Arabidopsis , NAD , Nicotiana , Phase Separation , Plant Proteins , Protein Domains , Adenosine Triphosphate/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Cell Death , Mutation , NAD/metabolism , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/metabolism , NLR Proteins/chemistry , NLR Proteins/genetics , NLR Proteins/immunology , NLR Proteins/metabolism , Plant Diseases/immunology , Plant Immunity/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/immunology , Plant Proteins/metabolism , Promoter Regions, Genetic , Protein Domains/genetics , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Signal Transduction , Toll-Like Receptors/chemistry , Receptors, Interleukin-1/chemistry
13.
Cell Host Microbe ; 32(3): 425-440.e7, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38309260

ABSTRACT

In plant immunity, phosphatidic acid (PA) regulates reactive oxygen species (ROS) by binding to respiratory burst oxidase homolog D (RBOHD), an NADPH oxidase responsible for ROS production. Here, we analyze the influence of PA binding on RBOHD activity and the mechanism of RBOHD-bound PA generation. PA binding enhances RBOHD protein stability by inhibiting vacuolar degradation, thereby increasing chitin-induced ROS production. Mutations in diacylglycerol kinase 5 (DGK5), which phosphorylates diacylglycerol to produce PA, impair chitin-induced PA and ROS production. The DGK5 transcript DGK5ß (but not DGK5α) complements reduced PA and ROS production in dgk5-1 mutants, as well as resistance to Botrytis cinerea. Phosphorylation of S506 residue in the C-terminal calmodulin-binding domain of DGK5ß contributes to the activation of DGK5ß to produce PA. These findings suggest that DGK5ß-derived PA regulates ROS production by inhibiting RBOHD protein degradation, elucidating the role of PA-ROS interplay in immune response regulation.


Subject(s)
Arabidopsis Proteins , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Phosphatidic Acids/metabolism , NADPH Oxidases/genetics , Plant Immunity/genetics , Chitin/metabolism , Gene Expression Regulation, Plant
14.
Plant Cell Environ ; 47(6): 2074-2092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409861

ABSTRACT

Plants trigger a robust immune response by activating massive transcriptome reprogramming through crosstalk between PTI and ETI. However, how PTI and ETI contribute to the quantitative or/and qualitative output of immunity and how they work together when both are being activated were unclear. In this study, we performed a comprehensive overview of pathogen-triggered transcriptomic reprogramming by analyzing temporal changes in the transcriptome up to 144 h after Colletotrichum gloeosporioides inoculated in Populus. Moreover, we constructed a hierarchical gene regulatory network of PagWRKY18 and its potential target genes to explore the underlying regulatory mechanisms of PagWRKY18 that are not yet clear. Interestingly, we confirmed that PagWRKY18 protein can directly bind the W-box elements in the promoter of a transmembrane leucine-rich repeat receptor-like kinase, PagSOBIR1 gene, to trigger PTI. At the same time, PagWRKY18 functions in disease tolerance by modulation of ROS homeostasis and induction of cell death via directly targeting PagGSTU7 and PagPR4 respectively. Furthermore, PagPR4 can interact with PagWRKY18 to inhibit the expression of PagPR4 genes, forming a negative feedback loop. Taken together, these results suggest that PagWRKY18 may be involved in regulating crosstalk between PTI and ETI to activate a robust immune response and maintain intracellular homeostasis.


Subject(s)
Gene Expression Regulation, Plant , Plant Immunity , Plant Proteins , Populus , Populus/genetics , Populus/immunology , Populus/microbiology , Plant Immunity/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Colletotrichum/physiology , Transcriptome , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Gene Regulatory Networks , Transcription Factors/metabolism , Transcription Factors/genetics
15.
Plant Sci ; 342: 112033, 2024 May.
Article in English | MEDLINE | ID: mdl-38354753

ABSTRACT

The receptor-like cytoplasmic kinase BRASSINOSTEROID-SIGNALING KINASE1 (BSK1) interacts with pattern recognition receptor (PRR) FLAGELLIN SENSING2 (FLS2) and positively regulates plant innate immunity in Arabidopsis thaliana. However, the molecular components involved in BSK1-mediated immune signaling remain largely unknown. To further explore the molecular mechanism underlying BSK1-mediated disease resistance, we screened two cysteine proteases, RESPONSE TO DEHYDRATION 19 (RD19) and RD19-LIKE 2 (RDL2), as BSK1-binding partners. Overexpression of RD19, but not RDL2, displayed an autoimmune phenotype, presenting programmed cell death and enhanced resistance to multiple pathogens. Interestingly, RD19-mediated immune activation depends on BSK1, as knockout of BSK1 in RD19-overexpressing plants rescued their autoimmunity and abolished the increased resistance. Furthermore, we found that BSK1 plays a positive role in maintaining RD19 protein abundance in Arabidopsis. Our results provide new insights into BSK1-mediated immune signaling and reveal a potential mechanism by which BSK1 stabilizes RD19 to promote effective immune output.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cysteine Proteases , Protein Serine-Threonine Kinases , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Dehydration , Disease Resistance/genetics , Plant Immunity/genetics , Protein Serine-Threonine Kinases/genetics
16.
Gene ; 907: 148260, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38342252

ABSTRACT

Pokkah Boeng disease (PBD), caused by Fusarium sacchari, severely affects sugarcane yield and quality. Necrosis-inducing secreted protein 1 (Nis1) is a fungal secreted effector that induces necrotic lesions in plants. It interacts with host receptor-like kinases and inhibits their kinase activity. FsNis1 contains the Nis1 structure and triggered a pathogen-associated molecular pattern-triggered immune response in Nicotiana benthamiana, as reflected by causing reactive oxygen species production, callose accumulation, and the upregulated expression of defense response genes. Knockout of this gene in F. sacchari revealed a significant reduction in its pathogenicity, whereas the pathogenicity of the complementary mutant recovered to the wild-type levels, making this gene an important virulence factor for F. sacchari. In addition, the signal peptide of FsNis1 was required for the induction of cell death and PTI response in N. benthamiana. Thus, FsNis1 may not only be a key virulence factor for F. sacchari but may also induce defense responses in plants. These findings provide new insights into the function of Nis1 in host-pathogen interactions.


Subject(s)
Fusarium , Fusarium/genetics , Plant Immunity/genetics , Virulence/genetics , Virulence Factors/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
17.
Mol Plant Microbe Interact ; 37(2): 73-83, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38416059

ABSTRACT

Embedded in the plasma membrane of plant cells, receptor kinases (RKs) and receptor proteins (RPs) act as key sentinels, responsible for detecting potential pathogenic invaders. These proteins were originally characterized more than three decades ago as disease resistance (R) proteins, a concept that was formulated based on Harold Flor's gene-for-gene theory. This theory implies genetic interaction between specific plant R proteins and corresponding pathogenic effectors, eliciting effector-triggered immunity (ETI). Over the years, extensive research has unraveled their intricate roles in pathogen sensing and immune response modulation. RKs and RPs recognize molecular patterns from microbes as well as dangers from plant cells in initiating pattern-triggered immunity (PTI) and danger-triggered immunity (DTI), which have intricate connections with ETI. Moreover, these proteins are involved in maintaining immune homeostasis and preventing autoimmunity. This review showcases seminal studies in discovering RKs and RPs as R proteins and discusses the recent advances in understanding their functions in sensing pathogen signals and the plant cell integrity and in preventing autoimmunity, ultimately contributing to a robust and balanced plant defense response. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.


Subject(s)
Plants , Receptors, Pattern Recognition , Receptors, Pattern Recognition/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Disease Resistance , Carrier Proteins , Plant Immunity/genetics , Plant Diseases
18.
Plant Cell ; 36(5): 2021-2040, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38309956

ABSTRACT

Calcium-dependent protein kinases (CPKs) can decode and translate intracellular calcium signals to induce plant immunity. Mutation of the exocyst subunit gene EXO70B1 causes autoimmunity that depends on CPK5 and the Toll/interleukin-1 receptor (TIR) domain resistance protein TIR-NBS2 (TN2), where direct interaction with TN2 stabilizes CPK5 kinase activity. However, how the CPK5-TN2 interaction initiates downstream immune responses remains unclear. Here, we show that, besides CPK5 activity, the physical interaction between CPK5 and functional TN2 triggers immune activation in exo70B1 and may represent reciprocal regulation between CPK5 and the TIR domain functions of TN2 in Arabidopsis (Arabidopsis thaliana). Moreover, we detected differential phosphorylation of the calmodulin-binding transcription activator 3 (CAMTA3) in the cpk5 background. CPK5 directly phosphorylates CAMTA3 at S964, contributing to its destabilization. The gain-of-function CAMTA3A855V variant that resists CPK5-induced degradation rescues immunity activated through CPK5 overexpression or exo70B1 mutation. Thus, CPK5-mediated immunity is executed through CAMTA3 repressor degradation via phosphorylation-induced and/or calmodulin-regulated processes. Conversely, autoimmunity in camta3 also partially requires functional CPK5. While the TIR domain activity of TN2 remains to be tested, our study uncovers a TN2-CPK5-CAMTA3 signaling module for exo70B1-mediated autoimmunity, highlighting the direct embedding of a calcium-sensing decoder element within resistance signalosomes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mutation , Plant Immunity , Transcription Factors , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Autoimmunity/genetics , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Gene Expression Regulation, Plant , Mutation/genetics , Phosphorylation , Plant Immunity/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Plant Physiol ; 195(1): 832-849, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38306630

ABSTRACT

Plant innate immunity mediated by the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors plays an important role in defense against various pathogens. Although key biochemical events involving NLR activation and signaling have been recently uncovered, we know very little about the transcriptional regulation of NLRs and their downstream signaling components. Here, we show that the Toll-Interleukin 1 receptor homology domain containing NLR (TNL) gene N (Necrosis), which confers resistance to Tobacco mosaic virus, is transcriptionally induced upon immune activation. We identified two conserved transcription factors, N required C3H zinc finger 1 (NRZ1) and N required MYB-like transcription factor 1 (NRM1), that activate N in an immune responsive manner. Genetic analyses indicated that NRZ1 and NRM1 positively regulate coiled-coil domain-containing NLR- and TNL-mediated immunity and function independently of the signaling component Enhanced Disease Susceptibility 1. Furthermore, NRZ1 functions upstream of NRM1 in cell death signaling, and their gene overexpression induces ectopic cell death and expression of NLR signaling components. Our findings uncovered a conserved transcriptional regulatory network that is central to NLR-mediated cell death and immune signaling in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , NLR Proteins , Plant Immunity , Transcription Factors , Plant Immunity/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , NLR Proteins/genetics , NLR Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Signal Transduction/genetics , Plant Diseases/virology , Plant Diseases/immunology , Plant Diseases/genetics , Cell Death
20.
Science ; 383(6684): eadk3468, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38359131

ABSTRACT

Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) analyzed to date oligomerize and form resistosomes upon activation to initiate immune responses. Some NLRs are encoded in tightly linked co-regulated head-to-head genes whose products function together as pairs. We uncover the oligomerization requirements for different Arabidopsis paired CHS3-CSA1 alleles. These pairs form resting-state heterodimers that oligomerize into complexes distinct from NLRs analyzed previously. Oligomerization requires both conserved and allele-specific features of the respective CHS3 and CSA1 Toll-like interleukin-1 receptor (TIR) domains. The receptor kinases BAK1 and BIRs inhibit CHS3-CSA1 pair oligomerization to maintain the CHS3-CSA1 heterodimer in an inactive state. Our study reveals that paired NLRs hetero-oligomerize and likely form a distinctive "dimer of heterodimers" and that structural heterogeneity is expected even among alleles of closely related paired NLRs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chitin Synthase , NLR Proteins , Plant Diseases , Plant Immunity , Receptors, Immunologic , Alleles , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chitin Synthase/chemistry , Chitin Synthase/genetics , Chitin Synthase/metabolism , Mutation , NLR Proteins/chemistry , NLR Proteins/genetics , NLR Proteins/metabolism , Plant Diseases/genetics , Plant Diseases/immunology , Plant Immunity/genetics , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...