Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters











Publication year range
1.
J Neurochem ; 168(9): 1956-1972, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970456

ABSTRACT

Perineuronal nets (PNN) are highly specialized structures of the extracellular matrix around specific groups of neurons in the central nervous system (CNS). They play functions related to optimizing physiological processes and protection neurons against harmful stimuli. Traditionally, their existence was only described in the CNS. However, there was no description of the presence and composition of PNN in the enteric nervous system (ENS) until now. Thus, our aim was to demonstrate the presence and characterize the components of the PNN in the enteric nervous system. Samples of intestinal tissue from mice and humans were analyzed by RT-PCR and immunofluorescence assays. We used a marker (Wisteria floribunda agglutinin) considered as standard for detecting the presence of PNN in the CNS and antibodies for labeling members of the four main PNN-related protein families in the CNS. Our results demonstrated the presence of components of PNN in the ENS of both species; however its molecular composition is species-specific.


Subject(s)
Enteric Nervous System , Extracellular Matrix , Animals , Enteric Nervous System/metabolism , Humans , Mice , Male , Female , Extracellular Matrix/metabolism , Adult , Mice, Inbred C57BL , Middle Aged , Plant Lectins/metabolism , Aged , Species Specificity , Receptors, N-Acetylglucosamine/metabolism , Nerve Net/metabolism , Nerve Net/chemistry , Neurons/metabolism
2.
Int J Mol Sci ; 24(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37958949

ABSTRACT

Cells use glycans to encode information that modulates processes ranging from cell-cell recognition to programmed cell death. This information is encoded within a glycocode, and its decoding is performed by carbohydrate-binding proteins. Among these, lectins stand out due to their specific and reversible interaction with carbohydrates. Changes in glycosylation patterns are observed in several pathologies, including cancer, where abnormal glycans are found on the surfaces of affected tissues. Given the importance of the bioprospection of promising biomolecules, the current work aimed to determine the structural properties and anticancer potential of the mannose-specific lectin from seeds of Canavalia villosa (Cvill). Experimental elucidation of the primary and 3D structures of the lectin, along with glycan array and molecular docking, facilitated the determination of its fine carbohydrate-binding specificity. These structural insights, coupled with the lectin's specificity, have been combined to explain the antiproliferative effect of Cvill against cancer cell lines. This effect is dependent on the carbohydrate-binding activity of Cvill and its uptake in the cells, with concomitant activation of autophagic and apoptotic pathways.


Subject(s)
Canavalia , Lectins , Lectins/pharmacology , Lectins/analysis , Canavalia/metabolism , Molecular Docking Simulation , Plant Lectins/metabolism , Seeds/metabolism , Carbohydrates/analysis , Polysaccharides/analysis
3.
Chem Biol Interact ; 382: 110639, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37468117

ABSTRACT

Lectins are proteins of non-immunological origin with the ability to bind to carbohydrates reversibly. They emerge as an alternative to conventional antifungals, given the ability to interact with carbohydrates in the fungal cell wall inhibiting fungal growth. The lectin from D. violacea (DVL) already has its activity described as anti-candida in some species. Here, we observed the anti-candida effect of DVL on C. albicans, C. krusei and C. parapsilosis and its multiple mechanisms of action toward the yeasts. Additionally, it was observed that DVL induces membrane and cell wall damage and ROS overproduction. DVL was also able to cause an imbalance in the redox system of the cells, interact with ergosterol, inhibit ergosterol biosynthesis, and induce cytochrome c release from the mitochondrial membrane. These results endorse the potential application of DVL in developing a new antifungal drug to fight back against fungal resistance.


Subject(s)
Dioclea , Lectins , Lectins/pharmacology , Candida/metabolism , Dioclea/metabolism , Plant Lectins/pharmacology , Plant Lectins/metabolism , Antifungal Agents/pharmacology , Carbohydrates , Seeds/metabolism , Ergosterol , Candida albicans , Microbial Sensitivity Tests
4.
Biotechnol Appl Biochem ; 70(3): 1015-1023, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36441921

ABSTRACT

Lectins are carbohydrate-binding proteins belonging to the Leguminosae family. In this family stand out proteins extracted from species belonging to Diocleinae subtribe, which includes, for example, the seed lectin from Dioclea violacea (DVL) and the jack bean lectin Concanavalin A (ConA). Here, we report the photosynthesis of silver/silver chloride nanoparticles (NPs) assisted by ConA and DVL. The syntheses were simple processes using a green-chemistry approach. Under electron microscopy, NPs heterogeneous in size, nearly spherical and covered by a thin lectin corona, were observed. Both NPs assisted by lectins were capable to cause strong rabbit erythrocytes agglutination with the same titers of hemagglutinating activities. These results indicate that both lectins maintained their biological activities even after association with the NPs and therefore are able to interact with biological membrane carbohydrates. However, for rabbit erythrocytes treated with proteolytic enzymes were observed different titers of hemagglutinating activities, suggesting differences in the spatial arrangement of the lectins on the surface of the NPs. This study provides evidences that these hybrid lectin-coated silver/silver chloride NPs can be used for selective recognition and interaction with membrane carbohydrates and others biotechnological applications.


Subject(s)
Lectins , Plant Lectins , Animals , Rabbits , Lectins/chemistry , Plant Lectins/pharmacology , Plant Lectins/chemistry , Plant Lectins/metabolism , Silver/pharmacology , Carbohydrates/chemistry , Photosynthesis
5.
J Mol Recognit ; 34(10): e2922, 2021 10.
Article in English | MEDLINE | ID: mdl-34132435

ABSTRACT

Using a rat model of peritonitis, we herein report the inflammatory effect induced by the lectin isolated from Vatairea guianensis (VGL) seeds in the context of interactions between VGL and both toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1). Peritoneal macrophages were stimulated with VGL for dose-dependent gene expression and release of TNF-α. In vivo results showed that VGL (1 mg/kg; intraperitoneal) induced peritonitis in female Wistar rats. Leukocyte migration, macrophage activation, and protein leakage were measured 3 and 6 hours after induction. In vitro, peritoneal macrophages were stimulated with VGL for gene expression and TNF-α dosage (mean ± SEM (n = 6), analysis of variance, and Bonferroni's test (P < .05)). In silico, VGL structure was applied in molecular docking with representative glycans. It was found that (a) VGL increases vascular permeability and stimulates leukocyte migration, both rolling and adhesion; (b) lectin-induced neutrophil migration occurs via macrophage stimulation, both in vitro and in vivo; (c) lectin interacts with TLR4 and TNFR1; and (d) stimulates TNF-α gene expression (RT-PCR) and release from peritoneal macrophages. Thus, upon lectin-glycan binding on the cell surface, our results suggest that VGL induces an acute inflammatory response, in turn activating the release of peritoneal macrophages via TNF-α and TLR and/or TNFR receptor pathways.


Subject(s)
Fabaceae/chemistry , Glycoconjugates/metabolism , Macrophages, Peritoneal/drug effects , Plant Lectins/pharmacology , Animals , Cell Movement/drug effects , Cells, Cultured , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Glycoconjugates/chemistry , Leukocytes/drug effects , Macrophages, Peritoneal/metabolism , Peritonitis/chemically induced , Peritonitis/metabolism , Peritonitis/pathology , Plant Lectins/chemistry , Plant Lectins/metabolism , Rats, Wistar , Receptors, Tumor Necrosis Factor, Type I/chemistry , Receptors, Tumor Necrosis Factor, Type I/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
6.
Int J Biol Macromol ; 156: 1-9, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32275993

ABSTRACT

Lectins from Diocleinae subtribe species (family Leguminosae) are of special interest since they present a wide spectrum of biological activities, despite their high structural similarity. During their synthesis in plant cells, these proteins undergo post-translational processing resulting in the formation of three chains (α, ß, γ), which constitute the lectins' subunits. Furthermore, such wild-type proteins are presented as isolectins or with different combinations of these chains, which undermine their biotechnological potential. Thus, the present study aimed to produce a recombinant form of the lectin from Dioclea sclerocarpa seeds (DSL), exclusively constituted by α-chain. The recombinant DSL (rDSL) was successfully expressed in E. coli BL21 (DE3) and purified by affinity chromatography (Sephadex G-50), showing a final yield of 74 mg of protein per liter of culture medium and specificity for D-mannose, α-methyl-mannoside and melibiose, unlike the wild-type protein. rDSL presented an effective vasorelaxant effect in rat aortas up to 100% and also interacted with glioma cells C6 and U87. Our results demonstrated an efficient recombinant production of rDSL in a bacterial system that retained some biochemical properties of the wild-type protein, showing wider versatility in sugar specificities and better efficacy in its activity in the biological models evaluated in this work.


Subject(s)
Dioclea/chemistry , Plant Lectins/chemistry , Animals , Aorta/drug effects , Cell Line, Tumor , Chromatography, Affinity , Escherichia coli/genetics , Escherichia coli/metabolism , Glioma/metabolism , Hemagglutination , Mannose/chemistry , Plant Lectins/metabolism , Protein Structure, Secondary , Rats , Recombinant Proteins/analysis , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Seeds/chemistry , Vasodilator Agents/chemistry
7.
Molecules ; 25(5)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32110921

ABSTRACT

Lectins are bioactive proteins with the ability to recognize cell membrane carbohydrates in a specific way. Diverse plant lectins have shown diagnostic and therapeutic potential against cancer, and their cytotoxicity against transformed cells is mediated through the induction of apoptosis. Previous works have determined the cytotoxic activity of a Tepary bean (Phaseolus acutifolius) lectin fraction (TBLF) and its anti-tumorigenic effect on colon cancer. In this work, lectins from the TBLF were additionally purified by ionic-exchange chromatography. Two peaks with agglutination activity were obtained: one of them was named TBL-IE2 and showed a single protein band in two-dimensional electrophoresis; this one was thus selected for coupling to quantum dot (QD) nanoparticles by microfluidics (TBL-IE2-QD). The microfluidic method led to low sample usage, and resulted in homogeneous complexes, whose visualization was achieved using multiphoton and transmission electron microscopy. The average particle size (380 nm) and the average zeta potential (-18.51 mV) were determined. The cytotoxicity of the TBL-IE2 and TBL-IE2-QD was assayed on HT-29 colon cancer cells, showing no differences between them (p ≤ 0.05), where the LC50 values were 1.0 × 10-3 and 1.7 × 10-3 mg/mL, respectively. The microfluidic technique allowed control of the coupling between the QD and the protein, substantially improving the labelling process, providing a rapid and efficient method that enabled the traceability of lectins. Future studies will focus on the potential use of the QD-labelled lectin to recognize tumor tissues.


Subject(s)
Microfluidics , Phaseolus/metabolism , Plant Lectins/metabolism , Quantum Dots/metabolism , Staining and Labeling , Cell Death/drug effects , Fluorescence , HT29 Cells , Humans , Plant Lectins/isolation & purification , Plant Lectins/pharmacology
8.
Gene ; 735: 144397, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-31991161

ABSTRACT

Bacteria and archaea accumulate cytoplasmic polyhydroxyalkanoate (PHA) granules under nutrient-limited conditions with excess carbon. The transcriptional regulatory (TR) proteins found on the surface of PHA granules act as repressors as well as activators for the expression of major surface proteins called phasins. Until now, detailed information on the evolutionary relationships between these transcription regulators has not been available. Here, we conducted homology searches and analyzed information available for the domains and protein families of the TR proteins through phylogenetic studies. A total of 282 TR proteins were identified and further classified into four distinct subfamilies based upon the presence of conserved motifs: PHB_acc, TetR-like, AbrB-like, and PadR-like. Depending upon the particular family, the DNA-binding domains were located at either the N- or C-terminus. Our results indicated that TR proteins containing the PHB_acc domain are highly conserved within the bacteria, while other TR proteins are present only within archaea (AbrB-like), gram positive bacteria (PadR-like), or the Pseudomonas genera (TetR-like). The repression domains are charged, hydrophobic, and rich in leucine or glutamine. In phylogenetic analyses, many groups of TR proteins were clustered together according to identical domain architectures showing the independent origins of the TR proteins in the PHA reserve storage system. Further analyses revealed that the TR proteins have experienced multiple gene duplications across prokaryotes. Thus, this study investigated the evolutionary framework of TR proteins and has provided a comprehensive catalog of TR proteins for ongoing studies to characterize the functions of these proteins within diverse organisms.


Subject(s)
Archaeal Proteins/genetics , Bacterial Proteins/genetics , Conserved Sequence , Evolution, Molecular , Plant Lectins/genetics , Polyhydroxyalkanoates/biosynthesis , Transcription Factors/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Phylogeny , Plant Lectins/metabolism , Polyhydroxyalkanoates/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism
9.
Curr Neuropharmacol ; 18(3): 202-215, 2020.
Article in English | MEDLINE | ID: mdl-31622208

ABSTRACT

Lectins are proteins or glycoproteins of non-immunological origin capable of reversibly and specifically binding to glycoconjugates. They exist in free form or associated with cells and are widely distributed in nature, being found in plants, microorganisms, and animals. Due to their characteristics and mainly due to the possibility of reversible binding to glycoconjugates, lectins have stood out as important tools in research involving Neurobiology. These proteins have the ability to modulate molecular targets in the central nervous system (CNS) which may be involved with neuroplasticity, neurobehavioral effects, and neuroprotection. The present report integrates existing information on the activity of animal and plant lectins in different areas of Neuroscience, presenting perspectives to direct new research on lectin function in the CNS, providing alternatives for understanding neurological diseases such as mental disorders, neurodegenerative, and neuro-oncological diseases, and for the development of new drugs, diagnoses and therapies in the field of Neuroscience.


Subject(s)
Brain/drug effects , Brain/metabolism , Galectins/administration & dosage , Galectins/metabolism , Plant Lectins/administration & dosage , Plant Lectins/metabolism , Animals , Humans , Neuronal Plasticity/drug effects , Neuroprotective Agents/administration & dosage , Neurosciences , Research Design
10.
Mol Neurobiol ; 56(9): 6261-6275, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30746639

ABSTRACT

Using bacterial artificial chromosome-double transgenic mice expressing tdTomato in D1 receptor-medium spiny neurons (MSNs) and enhanced green fluorescent protein in D2 receptor-MSNs, we have studied changes in spine density and perisomatic GABAergic boutons density in MSNs of both the D1R and D2R pathways, in an experimental model of parkinsonism (mouse injected with 6-hydroxydopamine in the medial forebrain bundle), both in the parkinsonian and dyskinetic condition induced by L-DOPA treatment. To assess changes in perisomatic GABAergic connectivity onto MSNs, we measured the number of contacts originated from parvalbumin (PV)-containing striatal "fast-spiking" interneurons (FSIs), the major component of a feed-forward inhibition mechanism that regulates spike timing in MSNs, in both cell types as well as the number of vesicular GABA transporter (VGAT) contacts. Furthermore, we determined changes in PV-immunoreactive cell density by PV immunolabeling combined with Wisteria floribunda agglutinin (WFA) labeling to detect FSI in a PV-independent manner. We also explored the differential expression of striatal activity-regulated cytoskeleton-associated protein (Arc) and c-Fos in both types of MSNs as a measure of neuronal activation. Our results confirm previous findings of major structural changes in dendritic spine density after nigrostriatal denervation, which are further modified in the dyskinetic condition. Moreover, the finding of differential modifications in perisomatic GABAergic connectivity and neuronal activation in MSNs suggests an attempt by the system to regain homeostasis after denervation and an imbalance between excitation and inhibition leading to the development of dyskinesia after exposure to L-DOPA.


Subject(s)
Dendritic Spines/physiology , Dyskinesias/physiopathology , Nerve Net/physiopathology , Animals , Corpus Striatum/metabolism , Cytoskeletal Proteins/metabolism , Female , Interneurons/metabolism , Levodopa , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Oxidopamine , Parvalbumins/metabolism , Plant Lectins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Receptors, N-Acetylglucosamine/metabolism
11.
J Cell Physiol ; 234(8): 13387-13402, 2019 08.
Article in English | MEDLINE | ID: mdl-30624780

ABSTRACT

We have previously demonstrated that kidney embryonic structures are present in rats, and are still developing until postnatal Day 20. Consequently, at postnatal Day 10, the rat renal papilla contains newly formed collecting duct (CD) cells and others in a more mature stage. Performing primary cultures, combined with immunocytochemical and time-lapse analysis, we investigate the cellular mechanisms that mediate the postnatal CD formation. CD cells acquired a greater degree of differentiation, as we observed that they gradually lose the ability to bind BSL-I lectin, and acquire the capacity to bind Dolichos biflorus. Because CD cells retain the same behavior in culture than in vivo, and by using DBA and BSL-I as markers of cellular lineage besides specific markers of epithelial/mesenchymal phenotype, the experimental results strongly suggest the existence of mesenchymal cell insertion into the epithelial CD sheet. We propose such a mechanism as an alternative strategy for CD growing and development.


Subject(s)
Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/growth & development , Animals , Aquaporin 2/metabolism , Cell Differentiation , Cell Movement , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/metabolism , Glycoconjugates/metabolism , Imaging, Three-Dimensional , Kidney Medulla/cytology , Kidney Medulla/growth & development , Kidney Medulla/metabolism , Kidney Tubules, Collecting/metabolism , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Plant Lectins/metabolism , Rats , Rats, Wistar , Receptor, Bradykinin B2/metabolism , Time-Lapse Imaging
12.
Mol Biochem Parasitol ; 225: 67-72, 2018 10.
Article in English | MEDLINE | ID: mdl-30217772

ABSTRACT

Haemonchus contortus is one of the most economically important parasites infecting small ruminants worldwide. This nematode has shown a great ability to develop resistance to anthelmintic drugs, calling for the development of alternative control approaches. Because lectins recognize and bind to specific carbohydrates and glycan structures present in parasites, they can be considered as an alternative to develop new antiparasitic drugs. Accordingly, this work aimed to investigate the anthelmintic effect of Canavalia brasiliensis (ConBr) lectin against H. contortus and to evaluate a possible interaction of ConBr with glycans of this parasite by molecular docking. ConBr showed significant inhibition of H. contortus larval development with an IC50 of 0.26 mg mL-1. Molecular docking assays revealed that glycans containing the core trimannoside [Man(α1-3)Man(α1-6)Man] of H. contortus interact in the carbohydrate recognition domain of ConBr with an interaction value of MDS = -248.77. Our findings suggest that the inhibition of H. contortus larval development is directly related to the recognition of the core trimannoside present in the glycans of these parasites. This work is the first to report on the structure-function relationships of the anthelmintic activity of plant lectins.


Subject(s)
Anthelmintics/chemistry , Anthelmintics/metabolism , Haemonchus/drug effects , Mannosides/metabolism , Plant Lectins/chemistry , Plant Lectins/metabolism , Animals , Anthelmintics/isolation & purification , Binding Sites , Canavalia/chemistry , Haemonchus/growth & development , Inhibitory Concentration 50 , Larva/drug effects , Larva/growth & development , Molecular Docking Simulation , Plant Lectins/isolation & purification , Protein Binding
13.
Pest Manag Sci ; 74(7): 1593-1599, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29297969

ABSTRACT

BACKGROUND: Lectins, carbohydrate-binding proteins, from the bark (MuBL) and leaf (MuLL) of Myracrodruon urundeuva are termiticidal agents against Nasutitermes corniger workers and have been shown to induce oxidative stress and cell death in the midgut of these insects. In this study, we investigated the binding targets of MuBL and MuLL in the gut of N. corniger workers by determining the effects of these lectins on the activity of digestive enzymes. In addition, we used mass spectrometry to identify peptides from gut proteins that adsorbed to MuBL-Sepharose and MuLL-Sepharose columns. RESULTS: Exoglucanase activity was neutralized in the presence of MuBL and stimulated by MuLL. α-l-Arabinofuranosidase activity was not affected by MuBL but was inhibited by MuLL. Both lectins stimulated α-amylase activity and inhibited protease and trypsin-like activities. Peptides with homology to apolipophorin, trypsin-like enzyme, and ABC transporter substrate-binding protein were detected from proteins that adsorbed to MuBL-Sepharose, while peptides from proteins that bound to MuLL-Sepharose shared homology with apolipophorin. CONCLUSION: This study revealed that digestive enzymes and transport proteins found in worker guts can be recognized by MuBL and MuLL. Thus, the mechanism of their termiticidal activity may involve changes in the digestion and absorption of nutrients. © 2018 Society of Chemical Industry.


Subject(s)
Anacardiaceae/chemistry , Insecticides/metabolism , Isoptera/drug effects , Plant Lectins/metabolism , Animals , Digestive System/drug effects , Digestive System/enzymology , Isoptera/enzymology , Plant Bark/chemistry , Plant Leaves/chemistry , Plant Lectins/administration & dosage
14.
J Photochem Photobiol B ; 178: 85-91, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29127943

ABSTRACT

The optical properties of quantum dots (QDs) make them useful tools for biology, especially when combined with biomolecules such as lectins. QDs conjugated to lectins can be used as nanoprobes for carbohydrate expression analysis, which can provide valuable information about glycosylation changes related to cancer and pathogenicity of microorganisms, for example. In this study, we evaluated the best strategy to conjugate Cramoll lectin to QDs and used the fluorescent labeling of Candida albicans cells as a proof-of-concept. Cramoll is a mannose/glucose-binding lectin with unique biological properties such as immunomodulatory, antiparasitic, and antitumor activities. We probed covalent coupling and adsorption as conjugation strategies at different pH values. QDs conjugated to Cramoll at pH7.0 showed the best labeling efficiency in the fluorescence microscopy analysis. Moreover, QD-Cramoll conjugates remained brightly fluorescent and preserved identical biological activity according to hemagglutination assays. Flow cytometry revealed that approximately 17% of C. albicans cells were labeled after incubation with covalent conjugates, while approximately 92% of cells were labeled by adsorption conjugates (both at pH7.0). Inhibition assays confirmed QD-Cramoll specificity, which reduced the labeling to at most 3%. Therefore, the conjugates obtained by adsorption (pH7.0) proved to be promising and versatile fluorescent tools for glycobiology.


Subject(s)
Glycomics , Plant Lectins/chemistry , Plant Lectins/metabolism , Quantum Dots/chemistry , Candida albicans/metabolism , Hemagglutination/drug effects , Plant Lectins/pharmacology , Staining and Labeling
15.
Int J Biochem Cell Biol ; 92: 79-89, 2017 11.
Article in English | MEDLINE | ID: mdl-28939357

ABSTRACT

Lectins are multidomain proteins that specifically recognize various carbohydrates. The structural characterization of these molecules is crucial in understanding their function and activity in systems and organisms. Most cancer cells exhibit changes in glycosylation patterns, and lectins may be able to recognize these changes. In this work, Dioclea lasiocarpa seed lectin (DLL) was structurally characterized. The lectin presented a high degree of similarity with other lectins isolated from legumes, presenting a jelly roll motif and a metal-binding site stabilizing the carbohydrate-recognition domain. DLL demonstrated differential interactions with carbohydrates, depending on type of glycosidic linkage present in ligands. As observed by the reduction of cell viability in C6 cells, DLL showed strong antiglioma activity by mechanisms involving activation of caspase 3.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Dioclea/chemistry , Glioma/pathology , Plant Lectins/chemistry , Plant Lectins/pharmacology , Animals , Antineoplastic Agents/metabolism , Carbohydrate Metabolism , Cell Line, Tumor , Cell Survival/drug effects , Molecular Docking Simulation , Plant Lectins/metabolism , Protein Conformation , Rats , Seeds/chemistry
16.
Int J Biol Macromol ; 105(Pt 1): 272-280, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28693997

ABSTRACT

With important carbohydrate binding properties, lectins are proteins able to decipher the glycocode, and as such, they can be used in bioassays involving cell-cell communication, protein targeting, inflammation, and hypernociception, among others. In this study, a new glucose/mannose-specific lectin from Canavalia villosa seeds (Cvill) was isolated by a single affinity chromatography step in a Sephadex® G-50 column, with a purification yield of 19.35mg of lectin per gram of powdered seed. Analysis of intact protein by mass spectrometry showed the lectin is composed of three polypeptide chains, including a 25.6kDa α chain, 12.9KDa ß, and 12.6 KDa γ fragments, similar to the profile of ConA-like glucose/mannose-specific lectins. Partial sequence of the protein was obtained by MS-MALDI TOF/TOF covering 41.7% of its primary structure. Cvill presented sugar specificity to d-glucose, α-methyl-d-mannoside, d-mannose, and glycoproteins fetuin and ovoalbumin. The lectin characterization showed that Cvill presents high stability within a broad range of pH and temperature, also showing average toxicity against Artemia nauplii. The proinflammatory effect of Cvill was observed by induction of paw edema and hypernociception in mice, with the participation of the carbohydrate binding site, showing its potential to be used as tool in inflammation studies.


Subject(s)
Analgesics/pharmacology , Canavalia/chemistry , Glucose/metabolism , Mannose-Binding Lectins/pharmacology , Mannose/metabolism , Plant Lectins/pharmacology , Seeds/chemistry , Amino Acid Sequence , Analgesics/chemistry , Analgesics/metabolism , Analgesics/therapeutic use , Animals , Artemia/drug effects , Edema/drug therapy , Hydrogen-Ion Concentration , Inflammation/drug therapy , Male , Mannose-Binding Lectins/chemistry , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/therapeutic use , Mice , Plant Lectins/chemistry , Plant Lectins/metabolism , Plant Lectins/therapeutic use , Temperature
17.
Int J Mol Sci ; 18(6)2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28604616

ABSTRACT

Lectins are a diverse class of proteins distributed extensively in nature. Among these proteins; legume lectins display a variety of interesting features including antimicrobial; insecticidal and antitumor activities. Because lectins recognize and bind to specific glycoconjugates present on the surface of cells and intracellular structures; they can serve as potential target molecules for developing practical applications in the fields of food; agriculture; health and pharmaceutical research. This review presents the current knowledge of the main structural characteristics of legume lectins and the relationship of structure to the exhibited specificities; provides an overview of their particular antimicrobial; insecticidal and antitumor biological activities and describes possible applications based on the pattern of recognized glyco-targets.


Subject(s)
Fabaceae/chemistry , Plant Lectins/pharmacology , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Insecticides/pharmacology , Plant Lectins/chemistry , Plant Lectins/metabolism , Plant Lectins/physiology
18.
Appl Environ Microbiol ; 83(14)2017 07 15.
Article in English | MEDLINE | ID: mdl-28476770

ABSTRACT

The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. The phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against several kinds of stress. PhaP enhances growth and poly(3-hydroxybutyrate) synthesis in polymer-producing recombinant strains and reduces the formation of inclusion bodies during overproduction of heterologous proteins. In this work, the heterologous expression of this phasin in E. coli was used as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which both GroELS and PhaP were observed to exert a beneficial effect that varied depending on the chemical tested. Lastly, the potential of PhaP and GroEL to enhance the accumulation of ethanol or 1,3-propanediol was analyzed in recombinant E. coli Strains that overexpressed either groEL or phaP had increased growth, reflected in a higher final biomass and product titer than the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve the production of biofuels and other chemicals.IMPORTANCE This work has both basic and applied aspects. Our results demonstrate that a phasin with chaperone-like properties can increase bacterial tolerance to several biochemicals, providing further evidence of the diverse properties of these proteins. Additionally, both the PhaP phasin and the well-known chaperone GroEL were used to increase the biosynthesis of the biotechnologically relevant compounds ethanol and 1,3-propanediol in recombinant E. coli These findings open the road for the use of these proteins for the manipulation of bacterial strains to optimize the synthesis of diverse bioproducts from renewable carbon sources.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ethanol/metabolism , Plant Lectins/metabolism , Propylene Glycols/metabolism , Azotobacter/genetics , Bacterial Proteins/genetics , Biofuels , Plant Lectins/genetics
19.
Glycoconj J ; 34(4): 515-522, 2017 08.
Article in English | MEDLINE | ID: mdl-28299519

ABSTRACT

CrataBL is a glycoprotein isolated from Crataeva tapia bark, containing two N-glycosylation sites. It has been identified to present lectin activity with some specificity for binding glucose over galactose. However, to date, no information on the effects of glycosylation or CrataBL monosaccharide-binding sites and monosaccharide specificity has been obtained. Thus, molecular docking and molecular dynamics simulations were employed to characterize the glycosylated CrataBL conformation and dynamics in aqueous solutions, as well as the molecular basis for its binding specificity. The obtained results indicate both local and distant conformational stabilization effects of N-linked glycans over CrataBL protein moiety. Regarding its lectin activity, molecular docking calculations were performed in two possible binding sites, identified through sequence-based, structure-based and evolutionary information, using α- and ß-anomeric states of the monosaccharides. The obtained poses were further refined through molecular dynamics simulations, suggesting that positively-charged amino acids dictate the binding preference for glucose over galactose in both sites. In addition, a possible preference for ß-monosaccharides was proposed. Such data are expected to contribute to a better comprehension of the lectins monosaccharide-binding activities and carbohydrate-binding site structures.


Subject(s)
Monosaccharides/metabolism , Plant Lectins/metabolism , Binding Sites , Glycosylation , Molecular Dynamics Simulation , Monosaccharides/chemistry , Plant Lectins/chemistry , Protein Binding , Protein Multimerization , Thermodynamics
20.
Int J Biol Macromol ; 98: 12-23, 2017 May.
Article in English | MEDLINE | ID: mdl-28130130

ABSTRACT

The three-dimensional structure of Dioclea reflexa seed lectin (DrfL) was studied in detail by a combination of X-ray crystallography, molecular docking and molecular dynamics. DrfL was purified by affinity chromatography using Sephadex G-50 matrix. Its primary structure was obtained by mass spectrometry, and crystals belonging to orthorhombic space group P212121 were grown by the vapor diffusion method at 293K. The crystal structure was solved at 1.765Å and was very similar to that of other lectins from the same subtribe. The structure presented Rfactor and Rfree of 21.69% and 24.89%, respectively, with no residues in nonallowed regions of Ramachandran plot. Similar to other Diocleinae lectins, DrfL was capable of relaxing aortic rings via NO induction, with CRD participation, albeit with low intensity (32%). In silico analysis results demonstrated that DrfL could strongly interact with complex N-glycans, components of blood vessel glycoconjugates. Despite the high similarity among Diocleinae lectins, it was also reported that each lectin has unique CRD properties that influence carbohydrate binding, resulting in different biological effects presented by these molecules.


Subject(s)
Dioclea/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Lectins/chemistry , Plant Lectins/pharmacology , Seeds/chemistry , Amino Acid Sequence , Animals , Crystallography, X-Ray , Mannosides/chemistry , Mannosides/metabolism , Plant Lectins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Domains , Rats , Vasodilator Agents/chemistry , Vasodilator Agents/metabolism , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL