Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 6906, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134551

ABSTRACT

The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.


Subject(s)
Genome, Plant , Lactones , Pennisetum , Striga , Striga/genetics , Lactones/metabolism , Pennisetum/genetics , Pennisetum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Chromosomes, Plant/genetics , Plant Diseases/parasitology , Plant Diseases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Plant Weeds/genetics , Plant Weeds/metabolism , Disease Resistance/genetics , Plant Growth Regulators/metabolism
2.
J Agric Food Chem ; 72(25): 14402-14410, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38875520

ABSTRACT

Tripyrasulfone is currently the only HPPD-inhibiting herbicide that possesses outstanding selectivity even for direct-seeded rice (Oryza sativa) when applied POST to control grass weeds; however, the underlying mechanisms remain unclear. In this study, the inhibitory effects of the real active HDT of tripyrasulfone on recombinant 4-hydroxyphenylpyruvate dioxygenase (HPPDs) from rice and barnyard grass (Echinochloa crus-galli) were similar, with consistent structural interactions and similar binding energies predicted by molecular docking. However, the HPPD expression level in rice was significantly greater than that in barnyard grass after tripyrasulfone treatment. Tripyrasulfone was rapidly taken up and hydrolyzed into HDT, which was similarly distributed within the whole plants of rice and barnyard grass at 24 h after treatment. Compared with barnyard grass, rice has more uniform epicuticular wax in the cuticle of its leaves, absorbing less tripyrasulfone and metabolizing much more tripyrasulfone. Overall, to a greater extent, the different sensitivities to tripyrasulfone between barnyard grass and rice resulted from metabolic variations.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Echinochloa , Herbicides , Molecular Docking Simulation , Oryza , Plant Proteins , Oryza/metabolism , Oryza/chemistry , Echinochloa/drug effects , Echinochloa/genetics , Echinochloa/metabolism , Echinochloa/growth & development , Echinochloa/chemistry , Herbicides/pharmacology , Herbicides/chemistry , Herbicides/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , 4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , 4-Hydroxyphenylpyruvate Dioxygenase/genetics , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , Plant Weeds/drug effects , Plant Weeds/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
3.
Plant Sci ; 346: 112166, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38897545

ABSTRACT

Systemic acquired acclimation and resistance are vital physiological mechanisms, essential for plants to survive challenging conditions, including herbicide stress. Harmonizing this adaptation involves a series of complex communication pathways. Hydrogen peroxide (H2O2) metabolism might play pivotal roles in orchestrating weeds' acclimation and defense responses. In the context of herbicide resistance, the interaction between H2O2 and key stress signaling pathways is crucial in understanding weed physiology and developing effective management strategies. This dynamic interplay might significantly influence how weeds develop resistance to the various challenges posed by herbicides. Moreover, the production and eradication of H2O2 can be highly compartmentalized, depending on the type of herbicide exposure. Till date there have been no studies aiming to explore/discuss these possibilities. Therefore, in this mini-review, our objective is to delve into the potentialities and recent advancements regarding H2O2-mediated signaling of transcriptomic changes during herbicide stress.


Subject(s)
Herbicides , Hydrogen Peroxide , Signal Transduction , Stress, Physiological , Herbicides/toxicity , Herbicides/pharmacology , Hydrogen Peroxide/metabolism , Signal Transduction/drug effects , Plant Weeds/drug effects , Plant Weeds/metabolism , Herbicide Resistance/genetics
4.
J Agric Food Chem ; 72(26): 14592-14600, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38914518

ABSTRACT

This study represents the initial examination of the herbicidal efficacy, crop safety, and degradation patterns of 2,4-D ethylhexyl ester (2,4-D EHE) at the enantiomeric level. Baseline separation of 2,4-D EHE enantiomers was achieved using a superchiral R-AD column, with their absolute configurations determined through chemical reaction techniques. Evaluation of weed control efficacy against sensitive species such as sun spurge and flixweed demonstrated significantly higher inhibition rates for S-2,4-D EHE compared to R-2,4-D EHE. Conversely, no stereoselectivity was observed in the fresh-weight inhibition rates of both enantiomers on crops or nonsensitive weeds. A sensitive HPLC-MS/MS method was developed to simultaneously detect two enantiomers and the metabolite 2,4-D in plants. Investigation into degradation kinetics revealed no substantial difference in the half-lives of R- and S-2,4-D EHE in maize and flixweed. Notably, the metabolite 2,4-D exhibited prolonged persistence at elevated levels on flixweed, while it degraded rapidly on maize.


Subject(s)
Herbicides , Tandem Mass Spectrometry , Zea mays , Zea mays/chemistry , Zea mays/metabolism , Herbicides/chemistry , Herbicides/pharmacology , Herbicides/metabolism , Stereoisomerism , 2,4-Dichlorophenoxyacetic Acid/chemistry , 2,4-Dichlorophenoxyacetic Acid/metabolism , Chromatography, High Pressure Liquid , Plant Weeds/drug effects , Plant Weeds/growth & development , Plant Weeds/metabolism , Plant Weeds/chemistry , Kinetics , Esters/chemistry , Esters/pharmacology , Esters/metabolism , Araceae/chemistry , Araceae/drug effects , Araceae/metabolism
5.
J Agric Food Chem ; 72(20): 11405-11414, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717990

ABSTRACT

This study investigated the multiple herbicide resistance (MHR) mechanism of one Echinochloa crus-galli population that was resistant to florpyrauxifen-benzyl (FPB), cyhalofop-butyl (CHB), and penoxsulam (PEX). This population carried an Ala-122-Asn mutation in the acetolactate synthase (ALS) gene but no mutation in acetyl-CoA carboxylase (ACCase) and transport inhibitor response1 (TIR1) genes. The metabolism rate of PEX was 2-fold higher, and the production of florpyrauxifen-acid and cyhalofop-acid was lower in the resistant population. Malathion and 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) could reverse the resistance, suggesting that cytochrome P450 (CYP450) and glutathione S-transferase (GST) contribute to the enhanced metabolism. According to RNA-seq and qRT-PCR validation, two CYP450 genes (CYP71C42 and CYP71D55), one GST gene (GSTT2), two glycosyltransferase genes (rhamnosyltransferase 1 and IAAGLU), and two ABC transporter genes (ABCG1 and ABCG25) were induced by CHB, FPB, and PEX in the resistant population. This study revealed that the target mutant and enhanced metabolism were involved in the MHR mechanism in E. crus-galli.


Subject(s)
Cytochrome P-450 Enzyme System , Echinochloa , Herbicide Resistance , Herbicides , Mutation , Plant Proteins , Herbicide Resistance/genetics , Herbicides/pharmacology , Herbicides/metabolism , Echinochloa/genetics , Echinochloa/drug effects , Echinochloa/metabolism , Echinochloa/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/metabolism , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Butanes , Nitriles , Sulfonamides , Uridine/analogs & derivatives
6.
J Agric Food Chem ; 72(21): 12014-12028, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748759

ABSTRACT

Alopecurus aequalis Sobol. is a predominant grass weed in Chinese winter wheat fields, posing a substantial threat to crop production owing to its escalating herbicide resistance. This study documented the initial instance of an A. aequalis population (AHFT-3) manifesting resistance to multiple herbicides targeting four distinct sites: acetyl-CoA carboxylase (ACCase), acetolactate synthase, photosystem II, and 1-deoxy-d-xylulose-5-phosphate synthase. AHFT-3 carried an Asp-to-Gly mutation at codon 2078 of ACCase, with no mutations in the remaining three herbicide target genes, and exhibited no overexpression of any target gene. Compared with the susceptible population AHFY-3, AHFT-3 metabolized mesosulfuron-methyl, isoproturon, and bixlozone faster. The inhibition and comparison of herbicide-detoxifying enzyme activities indicated the participation of cytochrome P450s in the resistance to all four herbicides, with glutathione S-transferases specifically linked to mesosulfuron-methyl. Three CYP72As and a Tau class glutathione S-transferase, markedly upregulated in resistant plants, potentially played pivotal roles in the multiple-herbicide-resistance phenotype.


Subject(s)
Acetyl-CoA Carboxylase , Herbicide Resistance , Herbicides , Plant Proteins , Poaceae , Herbicide Resistance/genetics , Herbicides/pharmacology , Herbicides/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Poaceae/genetics , Poaceae/metabolism , Poaceae/drug effects , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Mutation , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/metabolism
7.
Int J Mol Sci ; 25(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38397082

ABSTRACT

Brassicanate A sulfoxide, a secondary metabolite of broccoli, exhibited the inhibition of weed growth, but its mechanism of action on weeds remains unclear. To elucidate the mechanism by which brassicanate A sulfoxide suppresses weeds, this study explores the interaction between brassicanate A sulfoxide and the photosystem II D1 protein through molecular docking and molecular dynamics simulations. This research demonstrates that brassicanate A sulfoxide interacts with the photosystem II D1 protein by forming hydrogen bonds with Phe-261 and His-214. The successful expression of the photosystem II D1 protein in an insect cell/baculovirus system validated the molecular docking and dynamics simulations. Biolayer interferometry experiments elucidated that the affinity constant of brassicanate A sulfoxide with photosystem II was 2.69 × 10-3 M, suggesting that brassicanate A sulfoxide can stably bind to the photosystem II D1 protein. The findings of this study contribute to the understanding of the mode of action of brassicanate A sulfoxide and also aid in the development of natural-product-based photosynthesis-inhibiting herbicides.


Subject(s)
Herbicides , Herbicides/chemistry , Photosystem II Protein Complex/metabolism , Molecular Docking Simulation , Photosynthesis , Plant Weeds/metabolism , Sulfoxides
SELECTION OF CITATIONS
SEARCH DETAIL