Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.363
Filter
1.
Int J Infect Dis ; 143: 107013, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38499057

ABSTRACT

OBJECTIVES: We investigated the diversity and dynamics of Plasmodium infection in serially collected samples from asymptomatic participants of a clinical trial assessing the efficacy and safety of ivermectin in Gabon. We checked whether the baseline sample reflected the P. falciparum genotype and Plasmodium species diversity seen over 7 days of follow-up. METHODS: Blood samples were collected at inclusion, every 8 hours until hour 72, daily until day 7, and on day 14. Plasmodium species was determined by qPCR and pfmsp1 length polymorphism was assessed for P. falciparum genotyping. RESULTS: In 17/48 (35%) individuals, all pfmsp1 genotypes identified during the assessed period were detected at baseline; in 31/48 (65%), new genotypes were found during follow-up. Additional sampling at hour 24 allowed the identification of all genotypes seen over 7 days in 50% of the individuals. Ivermectin did not impact the genotype dynamics. Mixed Plasmodium spp. infections were detected in 28/49 (57%) individuals at baseline, and detection of non-falciparum infections during follow-up varied. CONCLUSIONS: Our results reveal complex intra-host dynamics of P. falciparum genotypes and Plasmodium species and underscore the importance of serial sampling in clinical trials for antimalarial drugs with asymptomatically P. falciparum-infected individuals. This might allow a more accurate identification of genotypes in multiple infections, impacting the assessment of drug efficacy.


Subject(s)
Asymptomatic Infections , Genotype , Ivermectin , Malaria, Falciparum , Humans , Gabon/epidemiology , Asymptomatic Infections/epidemiology , Adult , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/drug therapy , Male , Ivermectin/therapeutic use , Female , Genetic Variation , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Plasmodium/genetics , Plasmodium/classification , Plasmodium/isolation & purification , Plasmodium/drug effects , Young Adult
3.
PLoS Pathog ; 18(10): e1010887, 2022 10.
Article in English | MEDLINE | ID: mdl-36223427

ABSTRACT

Plasmodium parasites are reliant on the Apicomplexan AP2 (ApiAP2) transcription factor family to regulate gene expression programs. AP2 DNA binding domains have no homologs in the human or mosquito host genomes, making them potential antimalarial drug targets. Using an in-silico screen to dock thousands of small molecules into the crystal structure of the AP2-EXP (Pf3D7_1466400) AP2 domain (PDB:3IGM), we identified putative AP2-EXP interacting compounds. Four compounds were found to block DNA binding by AP2-EXP and at least one additional ApiAP2 protein. Our top ApiAP2 competitor compound perturbs the transcriptome of P. falciparum trophozoites and results in a decrease in abundance of log2 fold change > 2 for 50% (46/93) of AP2-EXP target genes. Additionally, two ApiAP2 competitor compounds have multi-stage anti-Plasmodium activity against blood and mosquito stage parasites. In summary, we describe a novel set of antimalarial compounds that interact with AP2 DNA binding domains. These compounds may be used for future chemical genetic interrogation of ApiAP2 proteins or serve as starting points for a new class of antimalarial therapeutics.


Subject(s)
Antimalarials , DNA-Binding Proteins , Plasmodium , Humans , Antimalarials/pharmacology , Antimalarials/metabolism , DNA/metabolism , Plasmodium/drug effects , Plasmodium/genetics , Protozoan Proteins/metabolism , DNA-Binding Proteins/metabolism
4.
Molecules ; 27(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35164267

ABSTRACT

Late-stage modification of drug molecules is a fast method to introduce diversity into the already biologically active scaffold. A notable number of analogs of mefloquine, chloroquine, and hydroxychloroquine have been synthesized, starting from the readily available active pharmaceutical ingredient (API). In the current review, all the modifications sites and reactivity types are summarized and provide insight into the chemistry of these molecules. The approaches include the introduction of simple groups and functionalities. Coupling to other drugs, polymers, or carriers afforded hybrid compounds or conjugates with either easily hydrolyzable or more chemically inert bonds. The utility of some of the compounds was tested in antiprotozoal, antibacterial, and antiproliferative assays, as well as in enantiodifferentiation experiments.


Subject(s)
Antimalarials/chemistry , Hydroxychloroquine/analogs & derivatives , Mefloquine/analogs & derivatives , Quinolines/chemistry , Antimalarials/chemical synthesis , Antimalarials/pharmacology , Chemistry Techniques, Synthetic , Humans , Hydroxychloroquine/chemical synthesis , Hydroxychloroquine/pharmacology , Malaria/drug therapy , Mefloquine/chemical synthesis , Mefloquine/pharmacology , Models, Molecular , Plasmodium/drug effects , Quinolines/chemical synthesis , Quinolines/pharmacology
5.
Bioorg Med Chem ; 57: 116629, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35091169

ABSTRACT

Malaria is a prevalent and lethal disease. The fast emergence and spread of resistance to current therapies is a major concern and the development of a novel line of therapy that could overcome, the problem of drug resistance, is imperative. Screening of a set of compounds with drug/natural product-based sub-structural motifs led to the identification of spirocyclic chroman-4-one 1 with promising antimalarial activity against the chloroquine-resistant Dd2 and chloroquine-sensitive 3D7 strains of the parasite. Extensive structure-activity and structure-property relationship studies were conducted to identify the essential features necessary for its activity and properties.


Subject(s)
Antimalarials/pharmacology , Chromans/pharmacology , Malaria/drug therapy , Plasmodium/drug effects , Spiro Compounds/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Cell Survival/drug effects , Chromans/chemical synthesis , Chromans/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
6.
Molecules ; 27(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35011552

ABSTRACT

Human protozoan diseases represent a serious health problem worldwide, affecting mainly people in social and economic vulnerability. These diseases have attracted little investment in drug discovery, which is reflected in the limited available therapeutic arsenal. Authorized drugs present problems such as low efficacy in some stages of the disease or toxicity, which result in undesirable side effects and treatment abandonment. Moreover, the emergence of drug-resistant parasite strains makes necessary an even greater effort to develop safe and effective antiparasitic agents. Among the chemotypes investigated for parasitic diseases, the indole nucleus has emerged as a privileged molecular scaffold for the generation of new drug candidates. In this review, the authors provide an overview of the indole-based compounds developed against important parasitic diseases, namely malaria, trypanosomiasis and leishmaniasis, by focusing on the design, optimization and synthesis of the most relevant synthetic indole scaffolds recently reported.


Subject(s)
Antiprotozoal Agents/pharmacology , Drug Development , Indoles/pharmacology , Leishmania/drug effects , Plasmodium/drug effects , Trypanosoma/drug effects , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Chemistry Techniques, Synthetic , Drug Development/methods , Drug Development/trends , Humans , Indoles/chemical synthesis , Indoles/chemistry , Indoles/therapeutic use , Leishmaniasis/drug therapy , Malaria/drug therapy , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanosomiasis/drug therapy
7.
Life Sci Alliance ; 5(3)2022 03.
Article in English | MEDLINE | ID: mdl-34857648

ABSTRACT

Artemisinin-based combination therapies (ACT) are the frontline treatments against malaria worldwide. Recently the use of traditional infusions from Artemisia annua (from which artemisinin is obtained) or Artemisia afra (lacking artemisinin) has been controversially advocated. Such unregulated plant-based remedies are strongly discouraged as they might constitute sub-optimal therapies and promote drug resistance. Here, we conducted the first comparative study of the anti-malarial effects of both plant infusions in vitro against the asexual erythrocytic stages of Plasmodium falciparum and the pre-erythrocytic (i.e., liver) stages of various Plasmodium species. Low concentrations of either infusion accounted for significant inhibitory activities across every parasite species and stage studied. We show that these antiplasmodial effects were essentially artemisinin-independent and were additionally monitored by observations of the parasite apicoplast and mitochondrion. In particular, the infusions significantly incapacitated sporozoites, and for Plasmodium vivax and P. cynomolgi, disrupted the hypnozoites. This provides the first indication that compounds other than 8-aminoquinolines could be effective antimalarials against relapsing parasites. These observations advocate for further screening to uncover urgently needed novel antimalarial lead compounds.


Subject(s)
Antimalarials/pharmacology , Artemisia/chemistry , Artemisinins/pharmacology , Plant Extracts/pharmacology , Plasmodium/drug effects , Antimalarials/chemistry , Artemisinins/chemistry , Erythrocytes/drug effects , Erythrocytes/parasitology , Hepatocytes/drug effects , Hepatocytes/parasitology , Humans , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria/parasitology , Parasitic Sensitivity Tests , Plant Extracts/chemistry , Plasmodium/growth & development
8.
ChemMedChem ; 16(23): 3513-3544, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34596961

ABSTRACT

Structures of several dozen of known antibacterial, antifungal or antiprotozoal agents are based on the amino acid scaffold. In most of them, the amino acid skeleton is of a crucial importance for their antimicrobial activity, since very often they are structural analogs of amino acid intermediates of different microbial biosynthetic pathways. Particularly, some aminophosphonate or aminoboronate analogs of protein amino acids are effective enzyme inhibitors, as structural mimics of tetrahedral transition state intermediates. Synthesis of amino acid antimicrobials is a particular challenge, especially in terms of the need for enantioselective methods, including the asymmetric synthesis. All these issues are addressed in this review, summing up the current state-of-the-art and presenting perspectives fur further progress.


Subject(s)
Amino Acids/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Antiprotozoal Agents/chemical synthesis , Amino Acids/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antiprotozoal Agents/pharmacology , Bacteria/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Fungi/drug effects , Microbial Sensitivity Tests , Plasmodium/drug effects , Stereoisomerism , Trypanosoma/drug effects
9.
Bioorg Med Chem ; 50: 116458, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34687983

ABSTRACT

Parasitic diseases remain a major public health concern for humans, claiming millions of lives annually. Although different treatments are required for these diseases, drug usage is limited due to the development of resistance and toxicity, which necessitate alternative therapies. It has been shown in the literature that parasitic lactate dehydrogenases (LDH) and malate dehydrogenases (MDH) have unique pharmacological selective and specificity properties compared to other isoforms, thus highlighting them as viable therapeutic targets involved in aerobic and anaerobic glycolytic pathways. LDH and MDH are important therapeutic targets for invasive parasites because they play a critical role in the progression and development of parasitic diseases. Any strategy to impede these enzymes would be fatal to the parasites, paving the way to develop and discover novel antiparasitic agents. This review aims to highlight the importance of parasitic LDH and MDH as therapeutic drug targets in selected obligate apicoplast parasites. To the best of our knowledge, this review presents the first comprehensive review of LDH and MDH as potential antiparasitic targets for drug development studies.


Subject(s)
Antiparasitic Agents/pharmacology , Drug Development , L-Lactate Dehydrogenase/antagonists & inhibitors , Malate Dehydrogenase/antagonists & inhibitors , Animals , Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/chemistry , Cryptosporidium parvum/drug effects , Cryptosporidium parvum/enzymology , Humans , L-Lactate Dehydrogenase/metabolism , Malate Dehydrogenase/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium/drug effects , Plasmodium/enzymology , Schistosoma/drug effects , Schistosoma/enzymology , Toxoplasma/drug effects , Toxoplasma/enzymology , Trichomonas vaginalis/drug effects , Trichomonas vaginalis/enzymology
10.
Bioorg Chem ; 117: 105359, 2021 12.
Article in English | MEDLINE | ID: mdl-34689083

ABSTRACT

Malaria is a devastating disease caused by Plasmodium parasites. Emerging resistance against current antimalarial therapeutics has engendered the need to develop antimalarials with novel structural classes. We recently described the identification and initial optimization of the 2-anilino quinazoline antimalarial class. Here, we refine the physicochemical properties of this antimalarial class with the aim to improve aqueous solubility and metabolism and to reduce adverse promiscuity. We show the physicochemical properties of this class are intricately balanced with asexual parasite activity and human cell cytotoxicity. Structural modifications we have implemented improved LipE, aqueous solubility and in vitro metabolism while preserving fast acting P. falciparum asexual stage activity. The lead compounds demonstrated equipotent activity against P. knowlesi parasites and were not predisposed to resistance mechanisms of clinically used antimalarials. The optimized compounds exhibited modest activity against early-stage gametocytes, but no activity against pre-erythrocytic liver parasites. Confoundingly, the refined physicochemical properties installed in the compounds did not engender improved oral efficacy in a P. berghei mouse model of malaria compared to earlier studies on the 2-anilino quinazoline class. This study provides the framework for further development of this antimalarial class.


Subject(s)
Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Malaria/drug therapy , Plasmodium/drug effects , Quinazolines/chemistry , Quinazolines/pharmacology , Amination , Aniline Compounds/therapeutic use , Animals , Antimalarials/therapeutic use , Female , Humans , Malaria/parasitology , Mice , Plasmodium/physiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/physiology , Quinazolines/therapeutic use
12.
Elife ; 102021 08 10.
Article in English | MEDLINE | ID: mdl-34372970

ABSTRACT

Background: National Malaria Control Programmes (NMCPs) currently make limited use of parasite genetic data. We have developed GenRe-Mekong, a platform for genetic surveillance of malaria in the Greater Mekong Subregion (GMS) that enables NMCPs to implement large-scale surveillance projects by integrating simple sample collection procedures in routine public health procedures. Methods: Samples from symptomatic patients are processed by SpotMalaria, a high-throughput system that produces a comprehensive set of genotypes comprising several drug resistance markers, species markers and a genomic barcode. GenRe-Mekong delivers Genetic Report Cards, a compendium of genotypes and phenotype predictions used to map prevalence of resistance to multiple drugs. Results: GenRe-Mekong has worked with NMCPs and research projects in eight countries, processing 9623 samples from clinical cases. Monitoring resistance markers has been valuable for tracking the rapid spread of parasites resistant to the dihydroartemisinin-piperaquine combination therapy. In Vietnam and Laos, GenRe-Mekong data have provided novel knowledge about the spread of these resistant strains into previously unaffected provinces, informing decision-making by NMCPs. Conclusions: GenRe-Mekong provides detailed knowledge about drug resistance at a local level, and facilitates data sharing at a regional level, enabling cross-border resistance monitoring and providing the public health community with valuable insights. The project provides a rich open data resource to benefit the entire malaria community. Funding: The GenRe-Mekong project is funded by the Bill and Melinda Gates Foundation (OPP11188166, OPP1204268). Genotyping and sequencing were funded by the Wellcome Trust (098051, 206194, 203141, 090770, 204911, 106698/B/14/Z) and Medical Research Council (G0600718). A proportion of samples were collected with the support of the UK Department for International Development (201900, M006212), and Intramural Research Program of the National Institute of Allergy and Infectious Diseases.


Subject(s)
Communicable Disease Control/statistics & numerical data , Disease Eradication/statistics & numerical data , Drug Resistance/genetics , Malaria/prevention & control , Plasmodium/genetics , Animals , Asia, Southeastern , Bangladesh , Democratic Republic of the Congo , India , Plasmodium/drug effects
13.
Malar J ; 20(1): 349, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34433465

ABSTRACT

BACKGROUND: Malaria still constitutes a major public health menace, especially in tropical and subtropical countries. Close to half a million people mainly children in Africa, die every year from the disease. With the rising resistance to frontline drugs (artemisinin-based combinations), there is a need to accelerate the discovery and development of newer anti-malarial drugs. A systematic review was conducted to identify the African medicinal plants with significant antiplasmodial and/or anti-malarial activity, toxicity, as wells as assessing the variation in their activity between study designs (in vitro and in vivo). METHODS: Key health-related databases including Google Scholar, PubMed, PubMed Central, and Science Direct were searched for relevant literature on the antiplasmodial and anti-malarial activities of African medicinal plants. RESULTS: In total, 200 research articles were identified, a majority of which were studies conducted in Nigeria. The selected research articles constituted 722 independent experiments evaluating 502 plant species. Of the 722 studies, 81.9%, 12.4%, and 5.5% were in vitro, in vivo, and combined in vitro and in vivo, respectively. The most frequently investigated plant species were Azadirachta indica, Zanthoxylum chalybeum, Picrilima nitida, and Nauclea latifolia meanwhile Fabaceae, Euphorbiaceae, Annonaceae, Rubiaceae, Rutaceae, Meliaceae, and Lamiaceae were the most frequently investigated plant families. Overall, 248 (34.3%), 241 (33.4%), and 233 (32.3%) of the studies reported very good, good, and moderate activity, respectively. Alchornea cordifolia, Flueggea virosa, Cryptolepis sanguinolenta, Zanthoxylum chalybeum, and Maytenus senegalensis gave consistently very good activity across the different studies. In all, only 31 (4.3%) of studies involved pure compounds and these had significantly (p = 0.044) higher antiplasmodial activity relative to crude extracts. Out of the 198 plant species tested for toxicity, 52 (26.3%) demonstrated some degree of toxicity, with toxicity most frequently reported with Azadirachta indica and Vernonia amygdalina. These species were equally the most frequently inactive plants reported. The leaves were the most frequently reported toxic part of plants used. Furthermore, toxicity was observed to decrease with increasing antiplasmodial activity. CONCLUSIONS: Although there are many indigenous plants with considerable antiplasmodial and anti-malarial activity, the progress in the development of new anti-malarial drugs from African medicinal plants is still slothful, with only one clinical trial with Cochlospermum planchonii (Bixaceae) conducted to date. There is, therefore, the need to scale up anti-malarial drug discovery in the African region.


Subject(s)
Antimalarials , Plant Extracts , Plants, Medicinal/chemistry , Plasmodium/drug effects , Africa , Animals , Antimalarials/pharmacology , Antimalarials/toxicity , Humans , Malaria/drug therapy , Medicine, African Traditional/statistics & numerical data , Mice , Phytotherapy/statistics & numerical data , Plant Extracts/pharmacology , Plant Extracts/toxicity
14.
Chem Biodivers ; 18(9): e2100310, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34231306

ABSTRACT

Propolis is a bee product that has been used in medicine since ancient times. Although its anti-inflammatory, antioxidant, antimicrobial, antitumor, and immunomodulatory activities have been investigated, its anti-parasitic properties remain poorly explored, especially regarding helminths. This review surveys the results obtained with propolis around the world against human parasites. Regarding protozoa, studies carried out with the protozoa Trypanosoma spp. and Leishmania spp. have demonstrated promising results in vitro and in vivo. However, there are fewer studies for Plasmodium spp., the etiological agent of malaria and less so for helminths, particularly for Fasciola spp. and Schistosoma spp. Despite the favorable in vitro results with propolis, helminth assays need to be further investigated. However, propolis has shown itself to be an excellent natural product for parasitology, thus opening new paths and approaches in its activity against protozoa and helminths.


Subject(s)
Antiparasitic Agents/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Propolis/chemistry , Animals , Antiparasitic Agents/chemistry , Antiparasitic Agents/isolation & purification , Brazil , Helminths/drug effects , Leishmania/drug effects , Molecular Structure , Parasitic Sensitivity Tests , Phenols/chemistry , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plasmodium/drug effects , Trypanosoma/drug effects
15.
Malar J ; 20(1): 321, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34281554

ABSTRACT

BACKGROUND: Several studies that aim to enhance the understanding of malaria transmission and persistence in urban settings failed to address its underlining complexity. This study aims at doing that by applying qualitative and participatory-based system analysis and mapping to elicit the system's emergent properties. METHODS: In two experts' workshops, the system was sketched and refined. This system was represented through a causal loop diagram, where the identification of leverage points was done using network analysis. RESULTS: 45 determinants interplaying through 56 linkages, and three subsystems: urbanization-related transmission, infection-prone behaviour and healthcare efficiency, and Plasmodium resistance were identified. Apart from the number of breeding sites and malaria-positive cases, other determinants such as drug prescription and the awareness of householders were identified by the network analysis as leverage points and emergent properties of the system of transmission and persistence of malaria. CONCLUSION: Based on the findings, the ongoing efforts to control malaria, such as the use of insecticide-treated bed nets and larvicide applications should continue, and new ones focusing on the public awareness and malaria literacy of city dwellers should be included. The participatory approach strengthened the legitimacy of the recommendations and the co-learning of participants.


Subject(s)
Drug Resistance , Health Risk Behaviors , Malaria/transmission , Patient Acceptance of Health Care/statistics & numerical data , Plasmodium/drug effects , Urbanization , Cities , Ghana , Humans , Urban Population/statistics & numerical data
16.
Bioorg Med Chem Lett ; 47: 128196, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34116159

ABSTRACT

Endoperoxides are a class of compounds, which is well-known for their antimalarial properties, but few reports exist about 3,5-disubstituted 1,2-dioxolanes. After having designed a new synthetic route for the preparation of these substances, they were evaluated against 4 different agents of infectious diseases, protozoa (Plasmodium and Leishmania) and Fungi (Candida and Aspergillus). Whereas moderate antifungal activity was found for our products, potent antimalarial and antileishmanial activities were observed for a few compounds. The nature of the substituents linked to the endoperoxide ring seems to play an important role in the bioactivities.


Subject(s)
Antifungal Agents/pharmacology , Antiprotozoal Agents/pharmacology , Dioxolanes/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Aspergillus/drug effects , Candida/drug effects , Dioxolanes/chemical synthesis , Dioxolanes/chemistry , Dose-Response Relationship, Drug , Leishmania/drug effects , Microbial Sensitivity Tests , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium/drug effects , Structure-Activity Relationship
17.
Chem Pharm Bull (Tokyo) ; 69(6): 564-572, 2021.
Article in English | MEDLINE | ID: mdl-34078803

ABSTRACT

Novel derivatives of puberulic acid were synthesized and their antimalarial properties were evaluated in vitro against the Plasmodium falciparum K1 parasite strain, cytotoxicity against a human diploid embryonic cell line MRC-5, and in vivo efficacy using a Plasmodium berghei-infected mouse model. From previous information that three hydroxy groups on the tropone framework were essential for antimalarial activity, we converted the carboxylic acid moiety into the corresponding esters, amides, and ketones. These derivatives showed antimalarial activity against chloroquine-resistant Plasmodium in vitro equivalent to puberulic acid. We identified that the pentane-3-yl ester, cyclohexyl ester, iso-butyl ketone, cyclohexyl methyl ketone all show an especially potent antiparasitic effect in vivo at an oral dose of 15 mg/kg without any apparent toxicity. These esters were more effective than the existing commonly used antimalarial drug, artesunate.


Subject(s)
Antimalarials/pharmacology , Carboxylic Acids/pharmacology , Malaria/drug therapy , Plasmodium/drug effects , Tropolone/analogs & derivatives , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Humans , Malaria/parasitology , Male , Mice , Mice, Inbred ICR , Molecular Structure , Parasitic Sensitivity Tests , Tropolone/chemical synthesis , Tropolone/chemistry , Tropolone/pharmacology
18.
Microbiol Res ; 249: 126784, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33989978

ABSTRACT

Millions of people worldwide lie at the risk of parasitic protozoic infections that kill over a million people each year. The rising inefficacy of conventional therapeutics to combat these diseases, mainly due to the development of drug resistance to a handful of available licensed options contributes substantially to the rising burden of these ailments. Cysteine proteases are omnipresent enzymes that are critically implicated in the pathogenesis of protozoic infections. Despite their significance and druggability, cysteine proteases as therapeutic targets have not yet been translated into the clinic. The review presents the significance of cysteine proteases of members of the genera Plasmodium, Entamoeba, and Leishmania, known to cause Malaria, Amoebiasis, and Leishmaniasis, respectively, the protozoic diseases with the highest morbidity and mortality. Further, projecting them as targets for molecular tools like the CRISPR-Cas technology for favorable manipulation, exploration of obscure genomes, and achieving a better insight into protozoic functioning. Overcoming the hurdles that prevent us from gaining a better insight into the functioning of these enzymes in protozoic systems is a necessity. Managing the burden of parasitic protozoic infections pivotally depends upon the betterment of molecular tools and therapeutic concepts that will pave the path to an array of diagnostic and therapeutic applications.


Subject(s)
Antiprotozoal Agents/pharmacology , Cysteine Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Entamoeba histolytica/enzymology , Leishmania/enzymology , Plasmodium/enzymology , Animals , CRISPR-Cas Systems , Cysteine Endopeptidases/metabolism , Entamoeba histolytica/drug effects , Entamoeba histolytica/genetics , Entamoebiasis/drug therapy , Entamoebiasis/parasitology , Humans , Leishmania/drug effects , Leishmania/genetics , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Malaria/drug therapy , Malaria/parasitology , Plasmodium/drug effects , Plasmodium/genetics
19.
Eur J Med Chem ; 218: 113400, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-33823394

ABSTRACT

Malaria is a major parasitic disease in tropical and sub-tropical regions. Pertaining to the sustaining resistance in malarial parasite against the available drugs, novel treatment options are the need of the hour. In this resolve recently, focus has shifted to finding the natural alternatives that possess anti-plasmodial activity for combatting malaria. Drawing on the text written in ancient scriptures and Ayurveda, natural compounds are now being screened for their therapeutic properties. Indole is one such natural compound, present in all living organisms, it displays a range of therapeutic activities including anticancer, anti-inflammatory, antimalarial etc. In this review, we have discussed various indole scaffold as well as the semi-synthetic drugs containing indole moiety that have been synthesized for malaria treatment.


Subject(s)
Antimalarials/pharmacology , Malaria/drug therapy , Plasmodium/drug effects , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Humans
20.
Eur J Med Chem ; 219: 113439, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33887681

ABSTRACT

The synthesis and antimicrobial activity of new spiro-ß-lactams is reported. The design of the new molecules was based on the structural modulation of two previously identified lead spiro-penicillanates with dual activity against HIV and Plasmodium. The spiro-ß-lactams synthesized were assayed for their in vitro activity against HIV-1, providing relevant structure-activity relationship information. Among the tested compounds, two spirocyclopentenyl-ß-lactams were identified as having remarkable nanomolar activity against HIV-1. Additionally, the same molecules showed promising antiplasmodial activity, inhibiting both the hepatic and blood stages of Plasmodium infection.


Subject(s)
Anti-HIV Agents/pharmacology , Antimalarials/pharmacology , HIV-1/drug effects , Plasmodium/drug effects , beta-Lactams/chemistry , Anti-HIV Agents/chemical synthesis , Antimalarials/chemical synthesis , Cell Line , Cell Survival/drug effects , Drug Design , HIV-1/isolation & purification , Humans , Life Cycle Stages/drug effects , Molecular Conformation , Plasmodium/growth & development , Spiro Compounds/chemistry , Stereoisomerism , Structure-Activity Relationship , beta-Lactams/chemical synthesis , beta-Lactams/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...