Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.674
Filter
1.
Biomed Khim ; 70(2): 99-108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38711409

ABSTRACT

Platelet functional activity was assessed in healthy volunteers (HV, n=92), patients with stable angina pectoris (SA, n=42) and acute coronary syndrome (ACS, n=73), treated with acetylsalicylic acid (ASA) + clopidogrel and ASA + ticagrelor, respectively. In all HV and patients we have compared parameters of platelet aggregation (maximum light transmission and velocity, Tmax and Vmax) and parameters, characterizing exposure of platelet activation markers, evaluated by flow cytometry. HV platelets were activated by 10 µM, 1 µM TRAP, and 20 µM, 5 µM, 2.5 µM ADP; patient platelets were activated by 10 µM TRAP and by 20 µM and 5 µM ADP. Strong and significant correlations between the aggregation and flow cytometry parameters (the r correlation coefficient from 0.4 up to >0.6) most frequently were registered in HV platelet during activation by 1 µM TRAP and in SA patients during platelet activation by 20 µM and 5 µM ADP. However, in many other cases these correlations were rather weak (r < 0.3) and sometimes statistically insignificant. In HV the differences in PAC-1 binding parameters between platelets activated by 10 µM TRAP (the strongest agonist) and all ADP concentrations were negligible (≤ 10%), while CD62P binding (at all ADP concentrations) and LTA parameters for (5 µM and 2.5 µM ADP) were significantly lower (by 40-60%). Antiplatelet therapy in patients decreased all parameters as compared to HV, but to varying extents. For 10 µM TRAP the MFI index for PAC-1 binding (40-50% decrease) and for both ADP concentrations the Tmax values (60-85% decrease) appeared to be the most sensitive in comparison with the other parameters that decreased to a lesser extent. The data obtained indicate a possibility of inconsistency between different LTA and flow cytometry parameters in assessing platelet activity and efficacy of antiplatelet drugs.


Subject(s)
Acute Coronary Syndrome , Aspirin , Blood Platelets , Clopidogrel , Flow Cytometry , Platelet Aggregation Inhibitors , Platelet Aggregation , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Male , Aspirin/pharmacology , Aspirin/therapeutic use , Female , Blood Platelets/drug effects , Blood Platelets/metabolism , Middle Aged , Clopidogrel/pharmacology , Aged , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/blood , Adult , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , Platelet Function Tests/methods , Platelet Activation/drug effects , Angina, Stable/drug therapy , Angina, Stable/blood , Adenosine Diphosphate/pharmacology
2.
Exp Clin Transplant ; 22(4): 284-293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38742319

ABSTRACT

OBJECTIVES: Splenectomy during liver transplant can affect platelet function. In this study, our primary aim was to assess the perioperative platelet function by rotational thromboelastometry and the effects of splenectomy on platelet function. MATERIALS AND METHODS: We studied 40 consecutive liver transplant recipients with end-stage liver disease (50% as a result of hepatitis C). Patients with splenectomy were compared with patients without splenectomy (n = 20/group). Three platelet function parameters by rotational thromboelastometry were studied: platelet activation with arachidonic acid, platelet activation with adenosine diphosphate, and platelet activation with thrombin receptor-activating peptide 6. Patients were monitored perioperatively and until postoperative day 21. Heparin was infused for 2 days postoperatively (60-180 U/kg/day), followed by administration of subcutaneous low-molecular-weight heparin (40 mg/24 h) on postoperative days 2 and 3 and oral acetylsalicylic acid when platelet count was >50 × 103/µL. RESULTS: Liver disease contributed to low perioperative platelet count and function. Patients showed significant improvement by postoperative day 14 and day 21, particularly after splenectomy. Platelet count was significantly correlated with the 3 platelet function parameters by rotational thromboelastometry (P < .001). Acetyl salicylic acid was required earlier (postoperative day 3) for patients with splenectomy (8/20) but only affected the platelet function represented by platelet activation with arachidonic acid, whereas other platelet activation pathways were less affected. Patients received no transfusions of platelet units. CONCLUSIONS: End-stage liver disease significantly contributed to low platelet function and counts before transplant. Two weeks were required for recovery of patients posttransplant, with further enhancement by splenectomy. Some recipients showed recovery that exceeded the normal reference range, which warranted monitoring. Acetyl salicylic acid only affected 1 platelet activation receptor.


Subject(s)
Blood Coagulation , Blood Platelets , End Stage Liver Disease , Liver Transplantation , Predictive Value of Tests , Splenectomy , Thrombelastography , Humans , Liver Transplantation/adverse effects , Male , Female , Middle Aged , Splenectomy/adverse effects , Treatment Outcome , Blood Coagulation/drug effects , Adult , End Stage Liver Disease/surgery , End Stage Liver Disease/diagnosis , End Stage Liver Disease/blood , Time Factors , Blood Platelets/drug effects , Platelet Activation/drug effects , Platelet Function Tests , Platelet Aggregation Inhibitors/administration & dosage , Anticoagulants/administration & dosage , Platelet Count , Blood Coagulation Tests , Aspirin/administration & dosage , Prospective Studies
3.
Signal Transduct Target Ther ; 9(1): 110, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724491

ABSTRACT

Previous studies have shown that low platelet count combined with high plasma total homocysteine (tHcy) increased stroke risk and can be lowered by 73% with folic acid. However, the combined role of other platelet activation parameters and the methylenetetrahydrofolate reductase (MTHFR) C677T genotypes on stroke risk and folic acid treatment benefit remain to be examined. This study aimed to investigate if platelet activation parameters and MTHFR genotypes jointly impact folic acid treatment efficacy in first stroke prevention. Data were derived from the China Stroke Primary Prevention Trial. This study includes a total of 11,185 adult hypertensive patients with relevant platelet activation parameters and MTHFR genotype data. When simultaneously considering both platelet activation parameters (plateletcrit, platelet count, mean platelet volume, platelet distribution width) and MTHFR genotypes, patients with both low plateletcrit (Q1) and the TT genotype had the highest stroke incidence rate (5.6%) in the enalapril group. This subgroup significantly benefited from folic acid treatment, with a 66% reduction in first stroke (HR: 0.34; 95% CI: 0.14-0.82; p = 0.016). Consistently, the subgroup with low plateletcrit (Q1) and the CC/CT genotype also benefited from folic acid treatment (HR: 0.40; 95% CI: 0.23-0.70; p = 0.001). In Chinese hypertensive adults, low plateletcrit can identify those who may greatly benefit from folic acid treatment, in particular, those with the TT genotype, a subpopulation known to have the highest stroke risk.


Subject(s)
Folic Acid , Genotype , Methylenetetrahydrofolate Reductase (NADPH2) , Stroke , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Folic Acid/administration & dosage , Folic Acid/genetics , Stroke/genetics , Stroke/prevention & control , Male , Female , Middle Aged , Aged , Hypertension/genetics , Platelet Activation/genetics , Platelet Activation/drug effects , China/epidemiology , Blood Platelets/metabolism , Blood Platelets/drug effects , Platelet Count , Adult
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732081

ABSTRACT

Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.


Subject(s)
Blood Platelets , Flavonoids , Platelet Activation , Platelet Aggregation Inhibitors , Reactive Oxygen Species , Flavonoids/pharmacology , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Activation/drug effects , Blood Platelets/metabolism , Blood Platelets/drug effects , Reactive Oxygen Species/metabolism , Apigenin/pharmacology , Quercetin/pharmacology , Luteolin/pharmacology , Signal Transduction/drug effects , Kaempferols/pharmacology , Thrombin/metabolism , Flavanones
5.
Thromb Res ; 237: 100-107, 2024 May.
Article in English | MEDLINE | ID: mdl-38579511

ABSTRACT

BACKGROUND: Reduced effect of antiplatelet therapy has been reported in patients with ST-segment elevation myocardial infarction (STEMI). Multiple factors may concur to explain this, including increased amount of highly reactive immature platelets. OBJECTIVES: To investigate the association between immature platelets and reactivity determined with multicolour flow cytometry using the SYTO-13 dye in STEMI patients. METHODS: We conducted an observational study of 59 patients with acute STEMI. Blood samples were obtained within 24 h after admission and after loading doses of dual antiplatelet therapy. For comparison, samples were obtained from 50 healthy individuals. Immature platelets and platelet reactivity were investigated using multicolour flow cytometry including the SYTO-13 dye that binds to platelet RNA and thus provides a method for subdividing platelets into immature and mature platelets. Additionally, we assessed platelet aggregation, serum-thromboxane B2 levels and standard immature platelet markers. RESULTS: Immature platelets were more reactive than mature platelets in both STEMI patients and healthy individuals (p-values < 0.05). STEMI patients had lower platelet aggregation and thromboxane B2 levels than healthy individuals. We found a positive association between automatically determined immature platelet markers and CD63 expression on activated platelets (Spearman's rho: 0.27 to 0.58, p-values < 0.05). CONCLUSIONS: Our study shows that immature platelets identified with a multicolour flow cytometric method using the SYTO-13 dye are more reactive than mature platelets in patients with acute STEMI and in healthy individuals. The presence of immature platelets may be important for the overall platelet reactivity, which may have implications for the effect of antiplatelet therapy.


Subject(s)
Blood Platelets , Flow Cytometry , ST Elevation Myocardial Infarction , Humans , ST Elevation Myocardial Infarction/blood , Blood Platelets/metabolism , Flow Cytometry/methods , Male , Female , Middle Aged , Aged , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Platelet Activation/drug effects
6.
Biochemistry (Mosc) ; 89(3): 417-430, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648762

ABSTRACT

Platelets are known for their indispensable role in hemostasis and thrombosis. However, alteration in platelet function due to oxidative stress is known to mediate various health complications, including cardiovascular diseases and other health complications. To date, several synthetic molecules have displayed antiplatelet activity; however, their uses are associated with bleeding and other adverse effects. The commercially available curcumin is generally a mixture of three curcuminoids: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Although crude curcumin is known to inhibit platelet aggregation, the effect of purified curcumin on platelet apoptosis, activation, and aggregation remains unclear. Therefore, in this study, curcumin was purified from a crude curcumin mixture and the effects of this preparation on the oxidative stress-induced platelet apoptosis and activation was evaluated. 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) compound was used as an inducer of oxidative stress. Purified curcumin restored AAPH-induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release from mitochondria to the cytosol, and phosphatidyl serine externalization. Further, it inhibited the agonist-induced platelet activation and aggregation, demonstrating its antiplatelet activity. Western blot analysis confirms protective effect of the purified curcumin against oxidative stress-induced platelet apoptosis and activation via downregulation of MAPKs protein activation, including ASK1, JNK, and p-38. Together, these results suggest that the purified curcumin could be a potential therapeutic bioactive molecule to treat the oxidative stress-induced platelet activation, apoptosis, and associated complications.


Subject(s)
Apoptosis , Blood Platelets , Curcumin , MAP Kinase Kinase Kinase 5 , Oxidative Stress , Curcumin/pharmacology , Curcumin/analogs & derivatives , Curcumin/chemistry , Apoptosis/drug effects , Oxidative Stress/drug effects , MAP Kinase Kinase Kinase 5/metabolism , Humans , Blood Platelets/drug effects , Blood Platelets/metabolism , MAP Kinase Signaling System/drug effects , Reactive Oxygen Species/metabolism , Platelet Activation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Membrane Potential, Mitochondrial/drug effects , Platelet Aggregation/drug effects
7.
J Ethnopharmacol ; 330: 118211, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38636580

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qilong capsule (QC) is developed from the traditional Chinese medicine formula Buyang Huanwu Decoction, which has been clinically used to invigorate Qi and promote blood circulation to eliminate blood stasis. Myocardial ischemia‒reperfusion injury (MIRI) can be attributed to Qi deficiency and blood stasis. However, the effects of QC on MIRI remain unclear. AIM OF THE STUDY: This study aimed to investigate the protective effect and possible mechanism of QC on platelet function in MIRI rats. MATERIALS AND METHODS: The left anterior descending artery of adult Sprague‒Dawley rats was ligated for 30 min and then reperfused for 120 min with or without QC treatment. Then, the whole blood viscosity, plasma viscosity, coagulation, platelet adhesion rate, platelet aggregation, and platelet release factors were evaluated. Platelet CD36 and its downstream signaling pathway-related proteins were detected by western blotting. Furthermore, the active components of QC and the molecular mechanism by which QC regulates platelet function were assessed via molecular docking, platelet aggregation tests in vitro and BLI analysis. RESULTS: We found that QC significantly reduced the whole blood viscosity, plasma viscosity, platelet adhesion rate, and platelet aggregation induced by ADP or AA in rats with MIRI. The inhibition of platelet activation by QC was associated with reduced levels of ß-TG, PF-4, P-selectin and PAF. Mechanistically, QC effectively attenuated the expression of platelet CD36 and thus inhibited the activation of Src, ERK5, and p38. The active components of QC apparently suppressed platelet aggregation in vitro and regulated the CD36 signaling pathway. CONCLUSIONS: QC improves MIRI-induced hemorheological disorders, which might be partly attributed to the inhibition of platelet activation via CD36-mediated platelet signaling pathways.


Subject(s)
Blood Platelets , CD36 Antigens , Drugs, Chinese Herbal , Myocardial Reperfusion Injury , Platelet Activation , Platelet Aggregation , Rats, Sprague-Dawley , Signal Transduction , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Signal Transduction/drug effects , Male , Platelet Activation/drug effects , CD36 Antigens/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Platelet Aggregation/drug effects , Rats , Molecular Docking Simulation
8.
Redox Biol ; 72: 103142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581860

ABSTRACT

Platelets are the critical target for preventing and treating pathological thrombus formation. However, despite current antiplatelet therapy, cardiovascular mortality remains high, and cardiovascular events continue in prescribed patients. In this study, first results were obtained with ortho-carbonyl hydroquinones as antiplatelet agents; we found that linking triphenylphosphonium cation to a bicyclic ortho-carbonyl hydroquinone moiety by a short alkyl chain significantly improved their antiplatelet effect by affecting the mitochondrial functioning. The mechanism of action involves uncoupling OXPHOS, which leads to an increase in mitochondrial ROS production and a decrease in the mitochondrial membrane potential and OCR. This alteration disrupts the energy production by mitochondrial function necessary for the platelet activation process. These effects are responsive to the complete structure of the compounds and not to isolated parts of the compounds tested. The results obtained in this research can be used as the basis for developing new antiplatelet agents that target mitochondria.


Subject(s)
Blood Platelets , Hydroquinones , Membrane Potential, Mitochondrial , Mitochondria , Organophosphorus Compounds , Platelet Aggregation Inhibitors , Reactive Oxygen Species , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/chemistry , Hydroquinones/pharmacology , Hydroquinones/chemistry , Blood Platelets/metabolism , Blood Platelets/drug effects , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/chemistry , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Platelet Aggregation/drug effects , Platelet Activation/drug effects , Oxidative Phosphorylation/drug effects
9.
Transfusion ; 64 Suppl 2: S146-S154, 2024 May.
Article in English | MEDLINE | ID: mdl-38491915

ABSTRACT

BACKGROUND: Platelet concentrates (PCs) used for transfusion can be produced by apheresis or derived from whole blood (WB). The Reveos device is the first US Food and Drug Administration-approved automated blood processing system that can produce PCs. In this work, we evaluated the quality and function of Reveos-collected PCs stored for 7 days at room temperature. STUDY DESIGN AND METHODS: WB was collected from healthy donors and componentized on the day of collection (Fresh) or after an overnight hold (Overnight). PCs were produced (n = 7 Fresh; n = 6 Overnight), stored at room temperature in plasma, and evaluated on days 1 and 7 for quality metrics, platelet activation, clot formation, and aggregation response. RESULTS: Platelet count was comparable between Fresh and Overnight PCs. A drop in pH was reported in Fresh day 7 PCs (p < .001, vs. day 1) but not in Overnight. Overnight units displayed the lowest levels of P-selectin expression (p = .0008, vs. day 7 Fresh). Reduced clot strength and increased lysis were observed in both Fresh and Overnight units on day 7 (vs. day 1). Overnight-hold PCs resulted in the highest clot strength on day 7 (p = .0084, vs. Fresh). No differences in aggregation were reported between groups. CONCLUSION: Reveos-processed PCs produced from overnight-hold WB performed better in hemostatic function assays and displayed reduced activation compared to fresh WB-derived PCs, although both PC groups maintained platelet quality throughout storage. Utilization of overnight WB for PC preparation with Reveos holds promise as an alternative method of producing platelets for transfusion purposes.


Subject(s)
Blood Platelets , Blood Preservation , Temperature , Humans , Blood Preservation/methods , Blood Platelets/metabolism , Blood Platelets/cytology , Platelet Activation/drug effects , Time Factors , Plateletpheresis/methods , Platelet Count , Platelet Transfusion/methods
10.
Expert Opin Pharmacother ; 25(3): 281-294, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38465524

ABSTRACT

INTRODUCTION: Fcγ-receptors (FcγR) are membrane receptors expressed on a variety of immune cells, specialized in recognition of the Fc part of immunoglobulin G (IgG) antibodies. FcγRIIA-dependent platelet activation in platelet factor 4 (PF4) antibody-related disorders have gained major attention, when these antibodies were identified as the cause of the adverse vaccination event termed vaccine-induced immune thrombocytopenia and thrombosis (VITT) during the COVID-19 vaccination campaign. With the recognition of anti-PF4 antibodies as cause for severe spontaneous and sometimes recurrent thromboses independent of vaccination, their clinical relevance extended far beyond heparin-induced thrombocytopenia (HIT) and VITT. AREAS COVERED: Patients developing these disorders show life-threatening thromboses, and the outcome is highly dependent on effective treatment. This narrative literature review summarizes treatment options for HIT and VITT that are currently available for clinical application and provides the perspective toward new developments. EXPERT OPINION: Nearly all these novel approaches are based on in vitro, preclinical observations, or case reports with only limited implementation in clinical practice. The therapeutic potential of these approaches still needs to be proven in larger cohort studies to ensure treatment efficacy and long-term patient safety.


Subject(s)
COVID-19 Vaccines , Heparin , Receptors, IgG , Thrombocytopenia , Thrombosis , Humans , Anticoagulants/adverse effects , COVID-19/complications , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Heparin/adverse effects , Platelet Activation/drug effects , Platelet Factor 4/immunology , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/immunology , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Receptors, IgG/metabolism , Receptors, IgG/immunology , Thrombocytopenia/chemically induced , Thrombocytopenia/immunology , Thromboinflammation/drug therapy , Thrombosis/drug therapy , Thrombosis/immunology
11.
J Thromb Haemost ; 22(5): 1489-1495, 2024 May.
Article in English | MEDLINE | ID: mdl-38325597

ABSTRACT

BACKGROUND: The recruitment of activated factor VIII (FVIII) at the surface of activated platelets is a key step toward the burst of thrombin and fibrin generation during thrombus formation at the site of vascular injury. It involves binding to phosphatidylserine and, possibly, to fibrin-bound αIIbß3. Seminal work had shown the binding of FVIII to resting platelets, yet without a clear understanding of a putative physiological relevance. OBJECTIVES: To characterize the effects of FVIII-platelet interaction and its potential modulation of platelet function. METHODS: FVIII was incubated with washed platelets. The effects on platelet activation (spontaneously or triggered by collagen and thrombin) were studied by flow cytometry and light transmission aggregometry. We explored the involvement of downstream pathways by studying phosphorylation profiles (Western blot). The FVIII-glycoprotein (GP) VI interaction was investigated by ELISA, confocal microscopy, and proximity ligation assay. RESULTS: FVIII bound to the surface of resting and activated platelets in a dose-dependent manner. FVIII at supraphysiological concentrations did not induce platelet activation but rather specifically inhibited collagen-induced platelet aggregation and altered glycoprotein VI (GPVI)-dependent phosphorylation. FVIII, freed of its chaperone protein von Willebrand factor (VWF), interacted in close proximity with GPVI at the platelet surface. CONCLUSION: We showed that VWF-free FVIII binding to, or close to, GPVI modulates platelet activation in vitro. This may represent an uncharacterized negative feedback loop to control overt platelet activation. Whether locally activated FVIII concentrations achieved during platelet accumulation and thrombus formation at the site of vascular injury in vivo are compatible with such a function remains to be determined.


Subject(s)
Blood Platelets , Factor VIII , Platelet Activation , Platelet Aggregation , Platelet Membrane Glycoproteins , Humans , Platelet Membrane Glycoproteins/metabolism , Platelet Activation/drug effects , Blood Platelets/metabolism , Phosphorylation , Factor VIII/metabolism , Collagen/metabolism , Protein Binding , Flow Cytometry , Thrombin/metabolism , Dose-Response Relationship, Drug , Microscopy, Confocal
12.
Phytother Res ; 38(5): 2128-2153, 2024 May.
Article in English | MEDLINE | ID: mdl-38400575

ABSTRACT

Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.


Subject(s)
Biological Products , Fibrinolytic Agents , Thrombosis , Biological Products/pharmacology , Biological Products/therapeutic use , Humans , Thrombosis/drug therapy , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Animals , Platelet Activation/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
13.
Coron Artery Dis ; 35(4): 292-298, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38241058

ABSTRACT

BACKGROUND: Radial access is preferred in patients with chronic coronary syndromes (CCSs) treated with ad hoc percutaneous coronary intervention (PCI). Antithrombotic and antiplatelet treatment before PCI may affect outcomes at vascular access sites. QuikClot Radial is a kaolin-based band that may shorten hemostasis time. Using point-of-care testing, we investigated the effect of antithrombotic and antiplatelet treatment on access-site complications. METHODS: This prospective observational study included consecutive patients with CCS on chronic aspirin therapy referred for ad hoc PCI. The activated clotting time (ACT), global thrombosis test and VerifyNow P2Y 12 test were done sequentially after unfractionated heparin (UFH) and clopidogrel administration. Patients were monitored for radial artery patency, bleeding and local hematoma until discharge. RESULTS: We enrolled 40 patients [mean age, 68.8 ±â€…8.8 years; men, 30 (75%)] who received UFH (median dose, 8000 IU; interquartile range, 7000-9000 IU) and clopidogrel (600 mg). All radial arteries remained patent during follow-up. Local bleeding and hematomas were noted in 11 patients (27.5%) each. Patients with bleeding had lower mean platelet activity at 2 h [122.5 ±â€…51 platelet reactivity units (PRU) vs. 158.7 ±â€…43 PRU, P  = 0.04] and higher ACT (216.9 ±â€…40 s vs. 184.6 ±â€…28 s, P = 0.006) than patients without bleeding. An ACT >196 s at 2 h predicted bleeding or hematoma (AUC, 0.72; 95% CI, 0.56-0.85, P = 0.008). CONCLUSION: Lower platelet activity and higher ACT after PCI were associated with higher bleeding risk at a vascular access site. Point-of-care testing of ACT after the procedure may help identify patients with CCS undergoing PCI who are at higher risk of access-site bleeding.


Subject(s)
Clopidogrel , Percutaneous Coronary Intervention , Platelet Aggregation Inhibitors , Radial Artery , Humans , Male , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Female , Aged , Prospective Studies , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/adverse effects , Clopidogrel/adverse effects , Middle Aged , Whole Blood Coagulation Time , Hemorrhage/chemically induced , Heparin/adverse effects , Platelet Activation/drug effects , Chronic Disease , Hematoma/etiology , Hematoma/blood , Blood Coagulation/drug effects , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Aspirin/therapeutic use , Aspirin/adverse effects , Predictive Value of Tests , Vascular Patency , Risk Factors , Point-of-Care Testing
14.
Immunobiology ; 228(1): 152311, 2023 01.
Article in English | MEDLINE | ID: mdl-36495598

ABSTRACT

Immune checkpoint inhibitors (ICIs) are effective oncological drugs which block cellular check-point receptors typically targeted by tumor immune evasion strategies. Despite their benefits, clinicians have reported treatment-associated thromboembolism during ICI therapy in recent years. Though several theories on this ICI-associated pathogenesis exist, the direct effects of ICIs on platelets remains unknown. We therefore investigated the potential direct and indirect effect of PD-1, PD-L1 and CTLA-4-targeting ICIs on platelet functionality in multifaceted in vitro experiments. Interestingly, we could not observe a clear effect of ICI on platelet aggregation and primary hemostasis in whole blood and platelet concentrate-based assays. Furthermore, the presence of ICIs in toll-like receptor stimulation had no significant impact on platelet surface marker expression. In a second approach, we investigated the indirect immunological impact of ICIs on platelet activation by exposing platelets to supernatants from ICI- and Staphylococcal enterotoxin B-exposed PBMCs. Whereas ICIs affected IL-2 levels in supernatants, we could not detect clear differences in the secretion of pro-thrombogenic factors and platelet responses. The obtained data suggest that the direct influence of ICIs on platelet activation or the influence of altered T cell function on platelet activation cannot be considered a major factor in the development of thrombotic events.


Subject(s)
Immune Checkpoint Inhibitors , Immunotherapy , Platelet Activation , B7-H1 Antigen , Immune Checkpoint Inhibitors/adverse effects , Platelet Activation/drug effects , Programmed Cell Death 1 Receptor , Humans
15.
Biomed Pharmacother ; 153: 113453, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076567

ABSTRACT

Atrial fibrillation significantly increases the risk of thromboembolism and stroke. Wenxin Keli (WXKL) is a widely used Chinese patent medicine against arrhythmia but if it has antithrombotic activity is unknown. Since platelet activation is a critical factor in thrombosis and the key target for many antithrombotic drugs, this study aims to demonstrate the antithrombotic efficacy of WXKL. In vitro platelet activation experiments showed that WXKL significantly inhibited platelet adhesion and aggregation. The potential active monomers in WXKL were screened by in silico prediction and in vitro platelet aggregation/adhesion assays. From WXKL chemical fractions and more than 40 monomers, linoleic acid (LA) was identified as the strongest antiplatelet compound. Oral administration of WXKL (1.2 g/kg/day) and LA (50 mg/kg/day) for 7 days significantly improved FeCl3-induced carotid thrombus formation in ICR mice without prolonging bleeding time. Flow cytometry showed that both WXKL and LA inhibited the release of p-selectin after platelet activation. ELISA showed that WXKL and LA also inhibited the expression of 6-Keto-PGF1α in plasma of mice with thrombus, but had no obvious effect on the expression of TXB2. WXKL inhibited platelet activation by broadly inhibiting the phosphorylation of protein kinase B (Akt), mitogen-activated protein kinases (MAPKs) and phospholipase C (PLC) ß3. In contrast, LA only inhibited the phosphorylation of PLCß3. In conclusion, WXKL and its active component LA showed good antiplatelet and antithrombotic efficacy in vivo and in vitro. Mechanistically, the multicomponent Chinese medicine WXKL acts on multiple targets in the platelet activation pathway whereas its active monomer linoleic acid acts specifically on phospholipase C ß3.


Subject(s)
Atrial Fibrillation , Linoleic Acid , Platelet Activation , Thrombosis , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Fibrinolytic Agents/pharmacology , Linoleic Acid/pharmacology , Linoleic Acid/therapeutic use , Mice , Mice, Inbred ICR , P-Selectin/drug effects , P-Selectin/metabolism , Platelet Activation/drug effects , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology , Thrombosis/drug therapy
16.
Adv Clin Exp Med ; 31(12): 1375-1384, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36135815

ABSTRACT

BACKGROUND: Platelets play a fundamental role in myocardial infarction and the pathogenesis of ischemia/reoxygenation (I/R) injuries. They contain matrix metalloproteinases (MMPs) that are involved in arterial thrombosis. The MMP inhibitor doxycycline has been shown to exert protective effects in I/R injuries involving various organs and mechanisms. OBJECTIVES: To explore the influence of doxycycline on platelet activation and MMP-2 activity during I/R. MATERIAL AND METHODS: Platelets isolated from the blood of healthy human volunteers were subjected to chemical I/R conditions. The study included aerobic controls (AERO), I/R platelets and I/R platelets pretreated with doxycycline (I/R+D). The concentration of doxycycline used was standardized to 10 µM. The analysis of platelet activation markers and platelet microvesicles (PMVs) was performed using flow cytometry. Adenosine diphosphate (ADP)-induced and collagen-induced aggregation, as well as MMP-2 activity and its concentration in platelets were evaluated. RESULTS: Doxycycline decreased the expression of activated glycoprotein IIb/IIIa on platelets (p = 0.043). Additionally, an increased expression of CD63 was observed in buffers containing PMVs after doxycycline administration (p = 0.043). The ADP-dependent aggregation of I/R platelets was significantly lower in comparison to AERO (p = 0.022). Furthermore, there was a stronger tendency of enhanced ADP-dependent aggregation in I/R platelets pretreated with doxycycline compared to platelets that underwent I/R without doxycycline. Higher MMP-2 activity was observed in I/R+D platelets compared to I/R platelets (p < 0.01). CONCLUSIONS: The inhibition of platelet MMP-2 by doxycycline attenuated platelet activation and protected platelets by preserving their aggregation ability.


Subject(s)
Matrix Metalloproteinase 2 , Platelet Activation , Humans , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Blood Platelets , Doxycycline/metabolism , Doxycycline/pharmacology , Ischemia/drug therapy , Ischemia/metabolism , Matrix Metalloproteinase 2/drug effects , Matrix Metalloproteinase 2/metabolism , Platelet Activation/drug effects , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/pharmacology , Matrix Metalloproteinase Inhibitors/pharmacology
18.
ACS Appl Mater Interfaces ; 14(9): 11116-11123, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35225600

ABSTRACT

Blood-contacting medical devices (BCMDs) are inevitably challenged by thrombi formation, leading to occlusion of flow and device failure. Ideal BCMDs seek to mimic the intrinsic antithrombotic properties of the human vasculature to locally prevent thrombotic complications, negating the need for systemic anticoagulation. An emerging category of BCMD technology utilizes nitric oxide (NO) as a hemocompatible agent, as the vasculature's endothelial layer naturally releases NO to inhibit platelet activation and consumption. In this paper, we report for the first time the novel impregnation of S-nitrosoglutathione (GSNO) into polymeric poly(vinyl chloride) (PVC) tubing via an optimized solvent-swelling method. Material testing revealed an optimized GSNO-PVC material that had adequate GSNO loading to achieve NO flux values within the physiological endothelial NO flux range for a 4 h period. Through in vitro hemocompatibility testing, the optimized material was deemed nonhemolytic (hemolytic index <2%) and capable of reducing platelet activation, suggesting that the material is suitable for contact with whole blood. Furthermore, an in vivo 4 h extracorporeal circulation (ECC) rabbit thrombogenicity model confirmed the blood biocompatibility of the optimized GSNO-PVC. Platelet count remained near 100% for the novel GSNO-impregnated PVC loops (1 h, 91.08 ± 6.27%; 2 h, 95.68 ± 0.61%; 3 h, 97.56 ± 8.59%; 4 h, 95.11 ± 8.30%). In contrast, unmodified PVC ECC loops occluded shortly after the 2 h time point and viable platelet counts quickly diminished (1 h, 85.67 ± 12.62%; 2 h, 54.46 ± 10.53%; 3 h, n/a; 4 h, n/a). The blood clots for GSNO-PVC loops (190.73 ± 72.46 mg) compared to those of unmodified PVC loops (866.50 ± 197.98 mg) were significantly smaller (p < 0.01). The results presented in this paper recommend further investigation in long-term animal models and suggest that GSNO-PVC has the potential to serve as an alternative to systemic anticoagulation in BCMD applications.


Subject(s)
Polymers/pharmacology , S-Nitrosoglutathione/pharmacology , Animals , Blood Coagulation/drug effects , Extracorporeal Circulation/methods , Hemolysis/drug effects , Male , Materials Testing , Models, Animal , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Platelet Activation/drug effects , Polymers/therapeutic use , Polyvinyl Chloride/chemistry , Rabbits , S-Nitrosoglutathione/chemistry , S-Nitrosoglutathione/therapeutic use , Surface Properties , Swine , Thrombosis/prevention & control
19.
Molecules ; 27(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35056795

ABSTRACT

Platelets play a critical role in arterial thrombosis. Rutaecarpine (RUT) was purified from Tetradium ruticarpum, a well-known Chinese medicine. This study examined the relative activity of RUT with NF-κB inhibitors in human platelets. BAY11-7082 (an inhibitor of IκB kinase [IKK]), Ro106-9920 (an inhibitor of proteasomes), and RUT concentration-dependently (1-6 µM) inhibited platelet aggregation and P-selectin expression. RUT was found to have a similar effect to that of BAY11-7082; however, it exhibits more effectiveness than Ro106-9920. RUT suppresses the NF-κB pathway as it inhibits IKK, IκBα, and p65 phosphorylation and reverses IκBα degradation in activated platelets. This study also investigated the role of p38 and NF-κB in cell signaling events and found that SB203580 (an inhibitor of p38) markedly reduced p38, IKK, and p65 phosphorylation and reversed IκBα degradation as well as p65 activation in a confocal microscope, whereas BAY11-7082 had no effects in p38 phosphorylation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay shows that RUT and BAY11-7082 did not exhibit free radical scavenging activity. In the in vivo study, compared with BAY11-7082, RUT more effectively reduced mortality in adenosine diphosphate (ADP)-induced acute pulmonary thromboembolism without affecting the bleeding time. In conclusion, a distinctive pathway of p38-mediated NF-κB activation may involve RUT-mediated antiplatelet activation, and RUT could act as a strong prophylactic or therapeutic drug for cardiovascular diseases.


Subject(s)
Fibrinolytic Agents/pharmacology , Indole Alkaloids/pharmacology , NF-kappa B/metabolism , Nitriles/pharmacology , Quinazolines/pharmacology , Sulfones/pharmacology , Thrombosis/drug therapy , Thrombosis/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Disease Models, Animal , Fibrinolytic Agents/therapeutic use , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Free Radicals/antagonists & inhibitors , Humans , I-kappa B Kinase/antagonists & inhibitors , Imidazoles/pharmacology , Imidazoles/therapeutic use , Indole Alkaloids/therapeutic use , Male , Mice, Inbred ICR , NF-kappa B/antagonists & inhibitors , Nitriles/therapeutic use , P-Selectin/metabolism , Platelet Activation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pulmonary Embolism/drug therapy , Pulmonary Embolism/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Quinazolines/therapeutic use , Sulfones/therapeutic use , Transcription Factor RelA/metabolism
20.
JAMA ; 327(3): 227-236, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35040887

ABSTRACT

Importance: Platelets represent a potential therapeutic target for improved clinical outcomes in patients with COVID-19. Objective: To evaluate the benefits and risks of adding a P2Y12 inhibitor to anticoagulant therapy among non-critically ill patients hospitalized for COVID-19. Design, Setting, and Participants: An open-label, bayesian, adaptive randomized clinical trial including 562 non-critically ill patients hospitalized for COVID-19 was conducted between February 2021 and June 2021 at 60 hospitals in Brazil, Italy, Spain, and the US. The date of final 90-day follow-up was September 15, 2021. Interventions: Patients were randomized to a therapeutic dose of heparin plus a P2Y12 inhibitor (n = 293) or a therapeutic dose of heparin only (usual care) (n = 269) in a 1:1 ratio for 14 days or until hospital discharge, whichever was sooner. Ticagrelor was the preferred P2Y12 inhibitor. Main Outcomes and Measures: The composite primary outcome was organ support-free days evaluated on an ordinal scale that combined in-hospital death (assigned a value of -1) and, for those who survived to hospital discharge, the number of days free of respiratory or cardiovascular organ support up to day 21 of the index hospitalization (range, -1 to 21 days; higher scores indicate less organ support and better outcomes). The primary safety outcome was major bleeding by 28 days as defined by the International Society on Thrombosis and Hemostasis. Results: Enrollment of non-critically ill patients was discontinued when the prespecified criterion for futility was met. All 562 patients who were randomized (mean age, 52.7 [SD, 13.5] years; 41.5% women) completed the trial and 87% received a therapeutic dose of heparin by the end of study day 1. In the P2Y12 inhibitor group, ticagrelor was used in 63% of patients and clopidogrel in 37%. The median number of organ support-free days was 21 days (IQR, 20-21 days) among patients in the P2Y12 inhibitor group and was 21 days (IQR, 21-21 days) in the usual care group (adjusted odds ratio, 0.83 [95% credible interval, 0.55-1.25]; posterior probability of futility [defined as an odds ratio <1.2], 96%). Major bleeding occurred in 6 patients (2.0%) in the P2Y12 inhibitor group and in 2 patients (0.7%) in the usual care group (adjusted odds ratio, 3.31 [95% CI, 0.64-17.2]; P = .15). Conclusions and Relevance: Among non-critically ill patients hospitalized for COVID-19, the use of a P2Y12 inhibitor in addition to a therapeutic dose of heparin, compared with a therapeutic dose of heparin only, did not result in an increased odds of improvement in organ support-free days within 21 days during hospitalization. Trial Registration: ClinicalTrials.gov Identifier: NCT04505774.


Subject(s)
Anticoagulants/administration & dosage , COVID-19 Drug Treatment , Heparin/administration & dosage , Inpatients , Purinergic P2Y Receptor Antagonists/administration & dosage , Aged , Aged, 80 and over , Anticoagulants/adverse effects , COVID-19/blood , COVID-19/mortality , Clopidogrel/administration & dosage , Clopidogrel/adverse effects , Comorbidity , Extracorporeal Membrane Oxygenation/statistics & numerical data , Female , Hemorrhage/chemically induced , Heparin/adverse effects , Hospital Mortality , Humans , Male , Medical Futility , Middle Aged , Outcome Assessment, Health Care , Oxygen Inhalation Therapy/statistics & numerical data , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/adverse effects , Purinergic P2Y Receptor Antagonists/adverse effects , Receptors, Purinergic P2Y12 , Respiration, Artificial/statistics & numerical data , Thrombosis/epidemiology , Ticagrelor/administration & dosage , Ticagrelor/adverse effects , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...