Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34445691

ABSTRACT

The essential role of G-protein coupled receptors (GPCRs) in tumor growth is recognized, yet a GPCR based drug in cancer is rare. Understanding the molecular path of a tumor driver gene may lead to the design and development of an effective drug. For example, in members of protease-activated receptor (PAR) family (e.g., PAR1 and PAR2), a novel PH-binding motif is allocated as critical for tumor growth. Animal models have indicated the generation of large tumors in the presence of PAR1 or PAR2 oncogenes. These tumors showed effective inhibition when the PH-binding motif was either modified or were inhibited by a specific inhibitor targeted to the PH-binding motif. In the second part of the review we discuss several aspects of some cardinal GPCRs in tumor angiogenesis.


Subject(s)
Neoplasms/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Proteinase-Activated/metabolism , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplasms/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/physiopathology , Pleckstrin Homology Domains/genetics , Pleckstrin Homology Domains/physiology , Protein Domains/genetics , Protein Domains/physiology , Receptor, PAR-1/metabolism , Receptor, PAR-2/metabolism , Receptors, G-Protein-Coupled/physiology , Receptors, Proteinase-Activated/genetics , Signal Transduction/physiology
2.
J Biol Chem ; 295(50): 16920-16928, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33023908

ABSTRACT

Gα proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13 Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (GαsQ227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gs-coupled receptors, but not by those coupled to Gi or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with GαsQ227L's ability to guide PRG's interaction with Cdc42. Endogenous Gs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42.


Subject(s)
Cell Movement , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Pleckstrin Homology Domains/genetics , Pseudopodia/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , cdc42 GTP-Binding Protein/metabolism , Animals , Cell Line , Humans , Mice , Phosphorylation
3.
Sci Rep ; 10(1): 11831, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678143

ABSTRACT

A meta-analysis of genome-wide association studies (GWAS) identified eight loci that are associated with heart rate variability (HRV), but candidate genes in these loci remain uncharacterized. We developed an image- and CRISPR/Cas9-based pipeline to systematically characterize candidate genes for HRV in live zebrafish embryos. Nine zebrafish orthologues of six human candidate genes were targeted simultaneously in eggs from fish that transgenically express GFP on smooth muscle cells (Tg[acta2:GFP]), to visualize the beating heart. An automated analysis of repeated 30 s recordings of beating atria in 381 live, intact zebrafish embryos at 2 and 5 days post-fertilization highlighted genes that influence HRV (hcn4 and si:dkey-65j6.2 [KIAA1755]); heart rate (rgs6 and hcn4); and the risk of sinoatrial pauses and arrests (hcn4). Exposure to 10 or 25 µM ivabradine-an open channel blocker of HCNs-for 24 h resulted in a dose-dependent higher HRV and lower heart rate at 5 days post-fertilization. Hence, our screen confirmed the role of established genes for heart rate and rhythm (RGS6 and HCN4); showed that ivabradine reduces heart rate and increases HRV in zebrafish embryos, as it does in humans; and highlighted a novel gene that plays a role in HRV (KIAA1755).


Subject(s)
Bradycardia/genetics , Heart Rate/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Myocardial Contraction/physiology , RGS Proteins/genetics , Animals , Animals, Genetically Modified , Bradycardia/diagnostic imaging , Bradycardia/metabolism , Bradycardia/physiopathology , CRISPR-Cas Systems , Cardiovascular Agents/pharmacology , Embryo, Nonmammalian , Genes, Reporter , Genome-Wide Association Study , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heart Rate/drug effects , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ivabradine/pharmacology , Meta-Analysis as Topic , Myocardial Contraction/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Optical Imaging/methods , Pleckstrin Homology Domains/genetics , RGS Proteins/metabolism , Zebrafish
4.
Int J Mol Sci ; 21(10)2020 May 17.
Article in English | MEDLINE | ID: mdl-32429563

ABSTRACT

The Pleckstrin Homology-like Domain (PHLD) class of proteins are multifunctional proteins. The class is comprised of two families of proteins, PHLDA and PHLDB, each with 3 members. All members of the families possess a pleckstrin homology (PH) domain. Though identified nearly 30 years ago, this class of proteins remains understudied with PHLDA family members receiving most of the research attention. Recent studies have also begun to reveal the functions of the PHLDB family proteins in regulation of p53 and AKT signaling pathways important for cancer and metabolism. This review will discuss current research and offer some prospects on the possible roles of both families in cancer and metabolism.


Subject(s)
Neoplasms/metabolism , Pleckstrin Homology Domains/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Humans , Neoplasms/genetics , Protein Binding , Proto-Oncogene Proteins c-akt/genetics , Tumor Suppressor Protein p53/genetics
5.
Int J Mol Sci ; 21(4)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079204

ABSTRACT

Grb7 is a signalling adapter protein that engages activated receptor tyrosine kinases at cellular membranes to effect downstream pathways of cell migration, proliferation and survival. Grb7's cellular location was shown to be regulated by the small calcium binding protein calmodulin (CaM). While evidence for a Grb7/CaM interaction is compelling, a direct interaction between CaM and purified Grb7 has not been demonstrated and quantitated. In this study we sought to determine this, and prepared pure full-length Grb7, as well as its RA-PH and SH2 subdomains, and tested for CaM binding using surface plasmon resonance. We report a direct interaction between full-length Grb7 and CaM that occurs in a calcium dependent manner. While no binding was observed to the SH2 domain alone, we observed a high micromolar affinity interaction between the Grb7 RA-PH domain and CaM, suggesting that the Grb7/CaM interaction is mediated through this region of Grb7. Together, our data support the model of a CaM interaction with Grb7 via its RA-PH domain.


Subject(s)
Calmodulin/genetics , GRB7 Adaptor Protein/genetics , Pleckstrin Homology Domains/genetics , Calmodulin/metabolism , Cell Movement , Cell Proliferation , Escherichia coli/genetics , Escherichia coli/metabolism , GRB7 Adaptor Protein/metabolism , Protein Binding , Protein Conformation , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Surface Plasmon Resonance , src Homology Domains/genetics
6.
J Biol Chem ; 294(46): 17354-17370, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31591270

ABSTRACT

Arf GAP with Src homology 3 domain, ankyrin repeat, and pleckstrin homology (PH) domain 1 (ASAP1) is a multidomain GTPase-activating protein (GAP) for ADP-ribosylation factor (ARF)-type GTPases. ASAP1 affects integrin adhesions, the actin cytoskeleton, and invasion and metastasis of cancer cells. ASAP1's cellular function depends on its highly-regulated and robust ARF GAP activity, requiring both the PH and the ARF GAP domains of ASAP1, and is modulated by phosphatidylinositol 4,5-bisphosphate (PIP2). The mechanistic basis of PIP2-stimulated GAP activity is incompletely understood. Here, we investigated whether PIP2 controls binding of the N-terminal extension of ARF1 to ASAP1's PH domain and thereby regulates its GAP activity. Using [Δ17]ARF1, lacking the N terminus, we found that PIP2 has little effect on ASAP1's activity. A soluble PIP2 analog, dioctanoyl-PIP2 (diC8PIP2), stimulated GAP activity on an N terminus-containing variant, [L8K]ARF1, but only marginally affected activity on [Δ17]ARF1. A peptide comprising residues 2-17 of ARF1 ([2-17]ARF1) inhibited GAP activity, and PIP2-dependently bound to a protein containing the PH domain and a 17-amino acid-long interdomain linker immediately N-terminal to the first ß-strand of the PH domain. Point mutations in either the linker or the C-terminal α-helix of the PH domain decreased [2-17]ARF1 binding and GAP activity. Mutations that reduced ARF1 N-terminal binding to the PH domain also reduced the effect of ASAP1 on cellular actin remodeling. Mutations in the ARF N terminus that reduced binding also reduced GAP activity. We conclude that PIP2 regulates binding of ASAP1's PH domain to the ARF1 N terminus, which may partially regulate GAP activity.


Subject(s)
ADP-Ribosylation Factor 1/genetics , ADP-Ribosylation Factors/genetics , Adaptor Proteins, Signal Transducing/genetics , Phosphatidylinositol 4,5-Diphosphate/genetics , ADP-Ribosylation Factor 1/chemistry , ADP-Ribosylation Factors/chemistry , Actins/chemistry , Actins/genetics , Adaptor Proteins, Signal Transducing/chemistry , GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/genetics , Humans , Neoplasms/genetics , Phosphatidylinositol 4,5-Diphosphate/chemistry , Pleckstrin Homology Domains/genetics , Point Mutation/genetics , Protein Binding/genetics
7.
Diabetes ; 68(11): 2049-2062, 2019 11.
Article in English | MEDLINE | ID: mdl-31439647

ABSTRACT

Disruption of the adaptor protein SH2B1 (SH2-B, PSM) is associated with severe obesity, insulin resistance, and neurobehavioral abnormalities in mice and humans. Here, we identify 15 SH2B1 variants in severely obese children. Four obesity-associated human SH2B1 variants lie in the Pleckstrin homology (PH) domain, suggesting that the PH domain is essential for SH2B1's function. We generated a mouse model of a human variant in this domain (P322S). P322S/P322S mice exhibited substantial prenatal lethality. Examination of the P322S/+ metabolic phenotype revealed late-onset glucose intolerance. To circumvent P322S/P322S lethality, mice containing a two-amino acid deletion within the SH2B1 PH domain (ΔP317, R318 [ΔPR]) were studied. Mice homozygous for ΔPR were born at the expected Mendelian ratio and exhibited obesity plus insulin resistance and glucose intolerance beyond that attributable to their increased adiposity. These studies demonstrate that the PH domain plays a crucial role in how SH2B1 controls energy balance and glucose homeostasis.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adiposity/genetics , Energy Metabolism/genetics , Insulin Resistance/genetics , Pediatric Obesity/genetics , Pleckstrin Homology Domains/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adolescent , Animals , Child , Child, Preschool , Female , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Homeostasis/genetics , Humans , Male , Mice , Mice, Transgenic , Pediatric Obesity/metabolism
8.
J Microbiol Biotechnol ; 28(8): 1401-1411, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30301316

ABSTRACT

The serine-threonine kinase AKT plays a pivotal role in tumor progression and is frequently overactivated in cancer cells; this protein is therefore a critical therapeutic target for cancer intervention. We aimed to identify small molecule inhibitors of the pleckstrin homology (PH) domain of AKT to disrupt binding of phosphatidylinositol-3,4,5-trisphosphate (PIP3), thereby downregulating AKT activity. Liposome pulldown assays coupled with fluorescence spectrometry were used to screen flavonoids for inhibition of the AKT PH-PIP3 interaction. Western blotting was used to determine the effects of the inhibitors on AKT activation in cancer cells, and in silico docking was used for structural analysis and optimization of inhibitor structure. Several flavonoids showing up to 50% inhibition of the AKT PH-PIP3 interaction decreased the level of AKT activation at the cellular level. In addition, the modified flavonoid showed increased inhibitory effects and the approach would be applied to develop anticancer drug candidates. In this study, we provide a rationale for targeting the lipid-binding domain of AKT, rather than the catalytic kinase domain, in anticancer drug development.


Subject(s)
Antineoplastic Agents/pharmacology , Flavonoids/metabolism , Phosphatidylinositol Phosphates/metabolism , Pleckstrin Homology Domains/physiology , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/classification , Antineoplastic Agents/metabolism , Binding Sites , Cell Line, Tumor , Drug Discovery , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Liposomes/chemistry , Liposomes/metabolism , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Phosphatidylinositol Phosphates/chemistry , Pleckstrin Homology Domains/genetics , Protein Binding/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/chemistry , Quantitative Structure-Activity Relationship , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
9.
Sci Rep ; 8(1): 12910, 2018 08 27.
Article in English | MEDLINE | ID: mdl-30150713

ABSTRACT

Targeting proteins to regions where they are required is essential for proper development of organisms. For achievement of this, subcellular mRNA localization is one of the critical mechanisms. Subcellular mRNA localization is an evolutionarily conserved phenomenon from E. coli to human and contributes to limiting the regions at which its products function and efficiently supplies substrates for protein translation. During early Drosophila embryogenesis, while 71% of the 3370 mRNAs analyzed have shown prominent subcellular localization, the underlying molecular mechanisms have not been elucidated. Here, we reveal that anillin mRNA, one of the localized mRNAs in early Drosophila embryo, localizes to the tip of the pseudo-cleavage furrow in the Drosophila syncytial blastoderm using in situ hybridization combined with immunohistochemistry. Localization analyses with transgenic fly lines carrying a series of deletion mRNAs indicate that this localization is dependent on its own nascent polypeptides including the actin binding domain (ABD). In addition to the mRNA localization, it is revealed that the pleckstrin homology (PH) domain of Anillin protein is also required for its proper localization. Thus, we indicate that the precise localization of Anillin protein is tightly regulated by the ABD on the nascent polypeptide and PH domain in the Drosophila syncytial blastoderm.


Subject(s)
Contractile Proteins/metabolism , Drosophila Proteins/metabolism , Microfilament Proteins/metabolism , Peptides/metabolism , Animals , Blastoderm/metabolism , Cell Cycle/genetics , Cell Cycle/physiology , Contractile Proteins/genetics , Drosophila , Drosophila Proteins/genetics , Microfilament Proteins/genetics , Peptides/genetics , Pleckstrin Homology Domains/genetics , Pleckstrin Homology Domains/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Expert Rev Clin Immunol ; 14(1): 83-93, 2018 01.
Article in English | MEDLINE | ID: mdl-29202590

ABSTRACT

BACKGROUND: X-linked agammaglobulinemia (XLA) is characterized by the absence of immunoglobulin and B cells. Patients suffer from recurrent bacterial infections from early childhood, and require lifelong immunoglobulin replacement therapy. Mutations in BTK (Bruton's Tyrosine Kinase) are associated with this phenotype. Some patients that present XLA do not show typical clinical symptoms, resulting in delayed diagnosis due to the lack of a severe phenotype. This study presents a report of five XLA patients from four different families and attempts to determine a relationship between delayed diagnosis and the occurrence of BTK mutations. METHODS: Samples from patients with antibody deficiency were analyzed to determine BTK expression, immunophenotyping and mutation analysis. Clinical and laboratory data was analyzed and presented for each patient. RESULTS: Most patients presented here showed atypical clinical and laboratory data for XLA, including normal IgM, IgG, or IgA levels. Most patients expressed detectable BTK protein. Sequencing of BTK showed that these patients harbored missense mutations in the pleckstrin homology and Src-homology-2 domains. When it was compared to public databases, BTK sequencing exhibited a new change, along with three other previously reported changes. CONCLUSIONS: Delayed diagnosis and atypical manifestations in XLA might be related to mutation type and BTK expression.


Subject(s)
Agammaglobulinemia/diagnosis , B-Lymphocytes/immunology , Genetic Diseases, X-Linked/diagnosis , Infections/diagnosis , Mutation, Missense/genetics , Pleckstrin Homology Domains/genetics , Protein-Tyrosine Kinases/genetics , src Homology Domains/genetics , Adolescent , Adult , Agammaglobulinaemia Tyrosine Kinase , Child , Child, Preschool , DNA Mutational Analysis , Delayed Diagnosis , Humans , Immunoglobulins/blood , Immunoglobulins/deficiency , Immunophenotyping , Phenotype , Young Adult
11.
Exp Cell Res ; 362(2): 349-361, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29208460

ABSTRACT

RalGPS2 is a Ras-independent Guanine Nucleotide Exchange Factor (GEF) for RalA containing a PH domain and an SH3-binding region and it is involved in several cellular processes, such as cytokinesis, control of cell cycle progression, differentiation, cytoskeleton organization and rearrangement. Up to now, few data have been published regarding RalGPS2 role in cancer cells, and its involvement in bladder cancer is yet to be established. In this paper we demonstrated that RalGPS2 is expressed in urothelial carcinoma-derived 5637 cancer cells and is essential for cellular growth. These cells produces thin membrane protrusions that displayed the characteristics of actin rich tunneling nanotubes (TNTs) and here we show that RalGPS2 is involved in the formation of these cellular protrusions. In fact the overexpression of RalGPS2 or of its PH-domain increased markedly the number and the length of nanotubes, while the knock-down of RalGPS2 caused a strong reduction of these structures. Moreover, using a series of RalA mutants impaired in the interaction with different downstream components (Sec5, Exo84, RalBP1) we demonstrated that the interaction of RalA with Sec5 is required for TNTs formation. Furthermore, we found that RalGPS2 interacts with the transmembrane MHC class III protein leukocyte specific transcript 1 (LST1) and RalA, leading to the formation of a complex which promotes TNTs generation. These findings allow us to add novel elements to molecular models that have been previously proposed regarding TNTs formation.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Nanotubes , Urinary Bladder Neoplasms/genetics , ral GTP-Binding Proteins/genetics , Animals , Cell Differentiation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins , Membrane Proteins/genetics , Pleckstrin Homology Domains/genetics , Urinary Bladder Neoplasms/pathology , Vesicular Transport Proteins/genetics , src Homology Domains/genetics
12.
Mol Biol Cell ; 28(1): 152-160, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28035046

ABSTRACT

Classical dynamins bind the plasma membrane-localized phosphatidylinositol-4,5-bisphosphate using the pleckstrin-homology domain (PHD) and engage in rapid membrane fission during synaptic vesicle recycling. This domain is conspicuously absent among extant bacterial and mitochondrial dynamins, however, where loop regions manage membrane recruitment. Inspired by the core design of bacterial and mitochondrial dynamins, we reengineered the classical dynamin by replacing its PHD with a polyhistidine or polylysine linker. Remarkably, when recruited via chelator or anionic lipids, respectively, the reengineered dynamin displayed the capacity to constrict and sever membrane tubes. However, when analyzed at single-event resolution, the tube-severing process displayed long-lived, highly constricted prefission intermediates that contributed to 10-fold reduction in bulk rates of membrane fission. Our results indicate that the PHD acts as a catalyst in dynamin-induced membrane fission and rationalize its adoption to meet the physiologic requirement of a fast-acting membrane fission apparatus.


Subject(s)
Dynamins/metabolism , Dynamins/ultrastructure , Mitochondrial Dynamics/physiology , Cell Membrane/metabolism , Constriction , Dynamins/genetics , Endocytosis/physiology , GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/metabolism , Humans , Membranes/metabolism , Membranes/physiology , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositols/metabolism , Pleckstrin Homology Domains/genetics , Pleckstrin Homology Domains/physiology , Protein Domains , Protein Structure, Tertiary
13.
Proc Natl Acad Sci U S A ; 113(43): 12310-12315, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27791021

ABSTRACT

Active G protein-coupled receptor (GPCR) conformations not only are promoted by agonists but also occur in their absence, leading to constitutive activity. Association of GPCRs with intracellular protein partners might be one of the mechanisms underlying GPCR constitutive activity. Here, we show that serotonin 5 hydroxytryptamine 6 (5-HT6) receptor constitutively activates the Gs/adenylyl cyclase pathway in various cell types, including neurons. Constitutive activity is strongly reduced by silencing expression of the Ras-GTPase activating protein (Ras-GAP) neurofibromin, a 5-HT6 receptor partner. Neurofibromin is a multidomain protein encoded by the NF1 gene, the mutation of which causes Neurofibromatosis type 1 (NF1), a genetic disorder characterized by multiple benign and malignant nervous system tumors and cognitive deficits. Disrupting association of 5-HT6 receptor with neurofibromin Pleckstrin Homology (PH) domain also inhibits receptor constitutive activity, and PH domain expression rescues 5-HT6 receptor-operated cAMP signaling in neurofibromin-deficient cells. Furthermore, PH domains carrying mutations identified in NF1 patients that prevent interaction with the 5-HT6 receptor fail to rescue receptor constitutive activity in neurofibromin-depleted cells. Further supporting a role of neurofibromin in agonist-independent Gs signaling elicited by native receptors, the phosphorylation of cAMP-responsive element-binding protein (CREB) is strongly decreased in prefrontal cortex of Nf1+/- mice compared with WT mice. Moreover, systemic administration of a 5-HT6 receptor inverse agonist reduces CREB phosphorylation in prefrontal cortex of WT mice but not Nf1+/- mice. Collectively, these findings suggest that disrupting 5-HT6 receptor-neurofibromin interaction prevents agonist-independent 5-HT6 receptor-operated cAMP signaling in prefrontal cortex, an effect that might underlie neuronal abnormalities in NF1 patients.


Subject(s)
Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Receptors, Serotonin/genetics , Serotonin/metabolism , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Animals , Cyclic AMP/metabolism , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Mice , Mice, Knockout , Mutation , Neurofibromatosis 1/pathology , Neurofibromin 1/metabolism , Neurons/metabolism , Neurons/pathology , Phosphorylation , Pleckstrin Homology Domains/genetics , Prefrontal Cortex/drug effects , Prefrontal Cortex/pathology , Serotonin/genetics
14.
Mol Biochem Parasitol ; 207(1): 39-44, 2016 05.
Article in English | MEDLINE | ID: mdl-27063980

ABSTRACT

The phosphoinositide phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) plays crucial roles in the maintenance of lysosome/vacuole morphology, membrane trafficking and regulation of endolysosome-localized membrane channel activity. In Toxoplasma gondii, we previously reported that PI(3,5)P2 is essential for parasite survival by controlling homeostasis of the apicoplast, a particular organelle of algal origin. Here, by using a phosphoinositide pull-down assay, we identified TgPH1 in Toxoplasma a protein conserved in many apicomplexan parasites. TgPH1 binds specifically to PI(3,5)P2, shows punctate intracellular localization, but plays no vital role for tachyzoite growth in vitro. TgPH1 is a protein predominantly formed by a pleckstrin homology (PH) domain. So far, PH domains have been described to bind preferentially to bis- or trisphosphate phosphoinositides containing two adjacent phosphates (i.e. PI(3,4)P2, PI(4,5)P2, PI(3,4,5)P3). Therefore, our study reveals an unusual feature of TgPH1 which binds preferentially to PI(3,5)P2.


Subject(s)
Phosphatidylinositol Phosphates/metabolism , Pleckstrin Homology Domains , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Amino Acid Sequence , Binding Sites , Gene Deletion , Gene Expression , Pleckstrin Homology Domains/genetics , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Toxoplasma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...