Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Stem Cell Reports ; 16(7): 1697-1704, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34214485

ABSTRACT

Eosinophils are attractive innate immune cells to use to potentiate T cell antitumor efficacy because they are capable of infiltrating tumors at early stages and modulating the tumor microenvironment. However, the limited number of functional eosinophils caused by the scarcity and short life of primary eosinophils in peripheral blood has greatly impeded the development of eosinophil-based immunotherapy. In this study, we established an efficient chemically defined protocol to generate a large quantity of functional eosinophils from human pluripotent stem cells (hPSCs) with nearly 100% purity expressing eosinophil peroxidase. These hPSC-derived eosinophils transcriptionally resembled their primary counterpart. Moreover, hPSC-derived eosinophils showed competent tumor killing capacity in established solid tumors. Furthermore, the combination of hPSC-derived eosinophils with CAR-T cells exhibited potential synergistic effects, inhibiting tumor growth and enhancing mouse survival. Our study opens up new avenues for the development of eosinophil-based immunotherapies to treat cancer.


Subject(s)
Cytotoxicity, Immunologic , Eosinophils/cytology , Neoplasms/immunology , Neoplasms/pathology , Pluripotent Stem Cells/cytology , Animals , Cell Differentiation , Eosinophils/ultrastructure , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/ultrastructure , Humans , Mice , Pluripotent Stem Cells/ultrastructure , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism , Transcription, Genetic
2.
Hum Mol Genet ; 29(15): 2535-2550, 2020 08 29.
Article in English | MEDLINE | ID: mdl-32628253

ABSTRACT

The transcription factor zinc finger E-box binding protein 2 (ZEB2) controls embryonic and adult cell fate decisions and cellular maturation in many stem/progenitor cell types. Defects in these processes in specific cell types underlie several aspects of Mowat-Wilson syndrome (MOWS), which is caused by ZEB2 haplo-insufficiency. Human ZEB2, like mouse Zeb2, is located on chromosome 2 downstream of a ±3.5 Mb-long gene-desert, lacking any protein-coding gene. Using temporal targeted chromatin capture (T2C), we show major chromatin structural changes based on mapping in-cis proximities between the ZEB2 promoter and this gene desert during neural differentiation of human-induced pluripotent stem cells, including at early neuroprogenitor cell (NPC)/rosette state, where ZEB2 mRNA levels increase significantly. Combining T2C with histone-3 acetylation mapping, we identified three novel candidate enhancers about 500 kb upstream of the ZEB2 transcription start site. Functional luciferase-based assays in heterologous cells and NPCs reveal co-operation between these three enhancers. This study is the first to document in-cis Regulatory Elements located in ZEB2's gene desert. The results further show the usability of T2C for future studies of ZEB2 REs in differentiation and maturation of multiple cell types and the molecular characterization of newly identified MOWS patients that lack mutations in ZEB2 protein-coding exons.


Subject(s)
Chromatin/ultrastructure , Enhancer Elements, Genetic/genetics , Hirschsprung Disease/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Zinc Finger E-box Binding Homeobox 2/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Chromatin/genetics , Facies , Gene Expression Regulation/genetics , Hirschsprung Disease/pathology , Homeodomain Proteins/genetics , Humans , Intellectual Disability/pathology , Mice , Microcephaly/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/ultrastructure , Regulatory Sequences, Nucleic Acid
3.
J Mol Histol ; 51(3): 241-250, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32399704

ABSTRACT

Using a large-scale quantitative mesenchymal stem cells (MSCs) membrane proteomics analysis, we identified a large group of ciliary proteins in the MSCs membrane fraction, which prompted us to examine the cilia, intricate organelles that were originally discovered approximately 100 years ago. Here we characterize their primary structure and function in MSCs. We first characterized the primary cilia on undifferentiated human MSCs by immunostaining and verified these observation with scanning and 3D electronic microscopy. To investigate the function of the primary cilia of the MSCs we induced loss of function by means of siRNA knockdown (targeted to two known ciliary proteins: IFT172 and KIF3A). After either of these two proteins was knocked down by the respective siRNA, the MSCs showed fewer and shortened primary cilia. The MSCs proliferation assays showed increased cell proliferative activity under confluent conditions after the siRNA knockdown of IFT172 or KIF3A; among these MSCs, the proportion in S phase was increased in the IFT172 siRNA knockdown group. The expression of stem cell markers on the MSCs, namely, Oct4, Nanog and Sox2, were downregulated after the siRNA-induced knockdown of IFT172 or KIF3A, and the gene expression upregulation of ectoderm lineage markers was notable. Furthermore, manipulation of the primary cilia-dependent Shh pathway, using the Shh activator SAG (smoothened agonist), upregulated the gene expression of pluripotency markers, including Nanog and Oct4, and transcriptional target genes in the Shh pathway. This study confirms that MSCs have primary cilia and provides evidence that primary cilia-dependent signaling pathways play functional roles in MSCs proliferation and stemness maintenance.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Cilia/ultrastructure , Cytoskeletal Proteins/genetics , Kinesins/genetics , Mesenchymal Stem Cells/ultrastructure , Pluripotent Stem Cells/ultrastructure , Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cells, Cultured , Cilia/genetics , Cilia/metabolism , Cytoskeletal Proteins/metabolism , Gene Expression , Gene Knockdown Techniques , Humans , Kinesins/metabolism , Mesenchymal Stem Cells/metabolism , Microscopy, Electron, Transmission , Pluripotent Stem Cells/metabolism , Proteomics , RNA, Small Interfering/genetics
4.
Cells ; 9(3)2020 02 27.
Article in English | MEDLINE | ID: mdl-32120775

ABSTRACT

Application of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is limited by the challenges in their efficient differentiation. Recently, the Wingless (Wnt) signaling pathway has emerged as the key regulator of cardiomyogenesis. In this study, we evaluated the effects of cyclooxygenase inhibitors on cardiac differentiation of hPSCs. Cardiac differentiation was performed by adherent monolayer based method using 4 hPSC lines (HES3, H9, IMR90, and ES4SKIN). The efficiency of cardiac differentiation was evaluated by flow cytometry and RT-qPCR. Generated hPSC-CMs were characterised using immunocytochemistry, electrophysiology, electron microscopy, and calcium transient measurements. Our data show that the COX inhibitors Sulindac and Diclofenac in combination with CHIR99021 (GSK-3 inhibitor) efficiently induce cardiac differentiation of hPSCs. In addition, inhibition of COX using siRNAs targeted towards COX-1 and/or COX-2 showed that inhibition of COX-2 alone or COX-1 and COX-2 in combination induce cardiomyogenesis in hPSCs within 12 days. Using IMR90-Wnt reporter line, we showed that inhibition of COX-2 led to downregulation of Wnt signalling activity in hPSCs. In conclusion, this study demonstrates that COX inhibition efficiently induced cardiogenesis via modulation of COX and Wnt pathway and the generated cardiomyocytes express cardiac-specific structural markers as well as exhibit typical calcium transients and action potentials. These cardiomyocytes also responded to cardiotoxicants and can be relevant as an in vitro cardiotoxicity screening model.


Subject(s)
Cyclooxygenase Inhibitors/pharmacology , Myocytes, Cardiac/cytology , Organogenesis/drug effects , Pluripotent Stem Cells/cytology , Cardiotoxicity/pathology , Cell Differentiation/drug effects , Doxorubicin/adverse effects , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/ultrastructure , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Models, Biological , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/ultrastructure , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/ultrastructure , Sulindac/pharmacology
5.
Sci Rep ; 9(1): 1777, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30741960

ABSTRACT

Pluripotent stem cells (PSCs) have various degrees of pluripotency, which necessitates selection of PSCs with high pluripotency before their application to regenerative medicine. However, the quality control processes for PSCs are costly and time-consuming, and it is essential to develop inexpensive and less laborious selection methods for translation of PSCs into clinical applications. Here we developed an imaging system, termed Phase Distribution (PD) imaging system, which visualizes subcellular structures quantitatively in unstained and unlabeled cells. The PD image and its derived PD index reflected the mitochondrial content, enabling quantitative evaluation of the degrees of somatic cell reprogramming and PSC differentiation. Moreover, the PD index allowed unbiased grouping of PSC colonies into those with high or low pluripotency without the aid of invasive methods. Finally, the PD imaging system produced three-dimensional images of PSC colonies, providing further criteria to evaluate pluripotency of PSCs. Thus, the PD imaging system may be utilized for screening of live PSCs with potentially high pluripotency prior to more rigorous quality control processes.


Subject(s)
Microscopy, Fluorescence/methods , Pluripotent Stem Cells/cytology , Subcellular Fractions/ultrastructure , Animals , Cell Differentiation , Fluorescent Dyes , Humans , Mice , Mitochondria/ultrastructure , NIH 3T3 Cells , Pluripotent Stem Cells/ultrastructure
6.
Development ; 146(1)2019 01 09.
Article in English | MEDLINE | ID: mdl-30567931

ABSTRACT

Numerous protocols have been described for producing neural retina from human pluripotent stem cells (hPSCs), many of which are based on the culture of 3D organoids. Although nearly all such methods yield at least partial segments of retinal structure with a mature appearance, variabilities exist within and between organoids that can change over a protracted time course of differentiation. Adding to this complexity are potential differences in the composition and configuration of retinal organoids when viewed across multiple differentiations and hPSC lines. In an effort to understand better the current capabilities and limitations of these cultures, we generated retinal organoids from 16 hPSC lines and monitored their appearance and structural organization over time by light microscopy, immunocytochemistry, metabolic imaging and electron microscopy. We also employed optical coherence tomography and 3D imaging techniques to assess and compare whole or broad regions of organoids to avoid selection bias. Results from this study led to the development of a practical staging system to reduce inconsistencies in retinal organoid cultures and increase rigor when utilizing them in developmental studies, disease modeling and transplantation.


Subject(s)
Organoids/cytology , Pluripotent Stem Cells/cytology , Retina/cytology , Cell Differentiation , Cell Line , Cell Proliferation , Cell Shape , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Humans , Interneurons/cytology , Interneurons/metabolism , Models, Biological , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/ultrastructure , Reproducibility of Results , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Synapses/metabolism , Tomography, Optical Coherence
7.
Cell Death Dis ; 9(12): 1183, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30518789

ABSTRACT

Planar cell polarity (PCP) and intercellular junctional complexes establish tissue structure and coordinated behaviors across epithelial sheets. In multiciliated ependymal cells, rotational and translational PCP coordinate cilia beating and direct cerebrospinal fluid circulation. Thus, PCP disruption results in ciliopathies and hydrocephalus. PCP establishment depends on the polarization of cytoskeleton and requires the asymmetric localization of core and global regulatory modules, including membrane proteins like Vangl1/2 or Frizzled. We analyzed the subcellular localization of select proteins that make up these modules in ependymal cells and the effect of Trp73 loss on their localization. We identify a novel function of the Trp73 tumor suppressor gene, the TAp73 isoform in particular, as an essential regulator of PCP through the modulation of actin and microtubule cytoskeleton dynamics, demonstrating that Trp73 is a key player in the organization of ependymal ciliated epithelia. Mechanistically, we show that p73 regulates translational PCP and actin dynamics through TAp73-dependent modulation of non-musclemyosin-II activity. In addition, TAp73 is required for the asymmetric localization of PCP-core and global signaling modules and regulates polarized microtubule dynamics, which in turn set up the rotational PCP. Therefore, TAp73 modulates, directly and/or indirectly, transcriptional programs regulating actin and microtubules dynamics and Golgi organization signaling pathways. These results shed light into the mechanism of ependymal cell planar polarization and reveal p73 as an epithelial architect during development regulating the cellular cytoskeleton.


Subject(s)
Cell Polarity/genetics , Cytoskeleton/metabolism , Ependyma/metabolism , Microtubules/metabolism , Pluripotent Stem Cells/metabolism , Tumor Protein p73/genetics , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cilia/metabolism , Cilia/ultrastructure , Cytoskeleton/ultrastructure , Ependyma/cytology , Female , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Gene Expression Regulation , Gene Ontology , HCT116 Cells , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubules/ultrastructure , Molecular Sequence Annotation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nonmuscle Myosin Type IIA/genetics , Nonmuscle Myosin Type IIA/metabolism , Pluripotent Stem Cells/ultrastructure , Signal Transduction , Tumor Protein p73/deficiency
8.
Integr Biol (Camb) ; 10(5): 278-289, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29756146

ABSTRACT

Mechanical stimuli and geometrical constraints transmitted across the cytoskeleton to the nucleus affect the nuclear morphology and cell function. Human pluripotent stem cells (hPSCs) represent an effective tool for evaluating transitions in nuclear deformability from the pluripotent to differentiated stage, and for deciphering the underlying mechanisms. We report the first study that investigates the nuclear deformability induced by geometrical constraints of hPSCs both in the pluripotent stage and during early germ layer specification. We specifically developed micro-structured surfaces coupled with high-content imaging analysis algorithms to quantitatively characterize nuclear deformability. Our results show that hPSCs possess high nuclear deformability, which does not alter pluripotency. We observed nuclear deformability transition along early germ layer specification: during early ectoderm differentiation nuclear deformability is strongly reduced, during early endoderm differentiation nuclei keep a deformed shape and during early mesoderm specification they show an intermediate behaviour. Different mRNA expressions between hPSCs differentiated on flat and micro-structured surfaces have been observed along early mesoderm and early endoderm specification. In order to better understand the mechanisms of the nuclear deformability transition observed during early ectoderm differentiation, we also employed cytoskeletal and nuclear protein inhibitors to evaluate their role in determining the nuclear shape. Actin and nesprin are essential for maintaining deformed nuclei, while lamin A/C and intermediate filaments confer rigidity to the nucleus. This study suggests that nuclear deformability is highly regulated during differentiation.


Subject(s)
Cell Nucleus/ultrastructure , Pluripotent Stem Cells/ultrastructure , Biophysical Phenomena , Cell Differentiation , Cell Line , Cell Nucleus/metabolism , Endoderm/cytology , Endoderm/metabolism , Humans , Mesoderm/cytology , Mesoderm/metabolism , Multipotent Stem Cells/ultrastructure , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Surface Properties
9.
Eur Heart J ; 39(20): 1835-1847, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29420830

ABSTRACT

Aims: We have shown that extracellular vesicles (EVs) secreted by embryonic stem cell-derived cardiovascular progenitor cells (Pg) recapitulate the therapeutic effects of their parent cells in a mouse model of chronic heart failure (CHF). Our objectives are to investigate whether EV released by more readily available cell sources are therapeutic, whether their effectiveness is influenced by the differentiation state of the secreting cell, and through which mechanisms they act. Methods and results: The total EV secreted by human induced pluripotent stem cell-derived cardiovascular progenitors (iPSC-Pg) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) were isolated by ultracentrifugation and characterized by Nanoparticle Tracking Analysis, western blot, and cryo-electron microscopy. In vitro bioactivity assays were used to evaluate their cellular effects. Cell and EV microRNA (miRNA) content were assessed by miRNA array. Myocardial infarction was induced in 199 nude mice. Three weeks later, mice with left ventricular ejection fraction (LVEF) ≤ 45% received transcutaneous echo-guided injections of iPSC-CM (1.4 × 106, n = 19), iPSC-Pg (1.4 × 106, n = 17), total EV secreted by 1.4 × 106 iPSC-Pg (n = 19), or phosphate-buffered saline (control, n = 17) into the peri-infarct myocardium. Seven weeks later, hearts were evaluated by echocardiography, histology, and gene expression profiling, blinded to treatment group. In vitro, EV were internalized by target cells, increased cell survival, cell proliferation, and endothelial cell migration in a dose-dependent manner and stimulated tube formation. Extracellular vesicles were rich in miRNAs and most of the 16 highly abundant, evolutionarily conserved miRNAs are associated with tissue-repair pathways. In vivo, EV outperformed cell injections, significantly improving cardiac function through decreased left ventricular volumes (left ventricular end systolic volume: -11%, P < 0.001; left ventricular end diastolic volume: -4%, P = 0.002), and increased LVEF (+14%, P < 0.0001) relative to baseline values. Gene profiling revealed that EV-treated hearts were enriched for tissue reparative pathways. Conclusion: Extracellular vesicles secreted by iPSC-Pg are effective in the treatment of CHF, possibly, in part, through their specific miRNA signature and the associated stimulation of distinct cardioprotective pathways. The processing and regulatory advantages of EV could make them effective substitutes for cell transplantation.


Subject(s)
Extracellular Vesicles/transplantation , Heart Failure/therapy , Animals , Cell Proliferation , Cell Survival , Embryonic Stem Cells/ultrastructure , Extracellular Vesicles/genetics , Heart Failure/pathology , Humans , Mice, Nude , MicroRNAs/analysis , Myocardial Infarction/pathology , Myocardial Infarction/therapy , Myocytes, Cardiac/ultrastructure , Pluripotent Stem Cells/ultrastructure , Treatment Outcome
10.
J Cell Biol ; 216(12): 3981-3990, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29021220

ABSTRACT

Human pluripotent stem cells (hPSCs) self-organize into apicobasally polarized cysts, reminiscent of the lumenal epiblast stage, providing a model to explore key morphogenic processes in early human embryos. Here, we show that apical polarization begins on the interior of single hPSCs through the dynamic formation of a highly organized perinuclear apicosome structure. The membrane surrounding the apicosome is enriched in apical markers and displays microvilli and a primary cilium; its lumenal space is rich in Ca2+ Time-lapse imaging of isolated hPSCs reveals that the apicosome forms de novo in interphase, retains its structure during mitosis, is asymmetrically inherited after mitosis, and relocates to the recently formed cytokinetic plane, where it establishes a fully polarized lumen. In a multicellular aggregate of hPSCs, intracellular apicosomes from multiple cells are trafficked to generate a common lumenal cavity. Thus, the apicosome is a unique preassembled apical structure that can be rapidly used in single or clustered hPSCs to initiate self-organized apical polarization and lumenogenesis.


Subject(s)
Cytokinesis , Germ Layers/ultrastructure , Morphogenesis/genetics , Pluripotent Stem Cells/ultrastructure , Actins/genetics , Actins/metabolism , Biomarkers/metabolism , Calcium/metabolism , Calnexin/genetics , Calnexin/metabolism , Cell Line , Cell Polarity , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Gene Expression , Germ Layers/cytology , Germ Layers/metabolism , Humans , Interphase , Lamin Type A/genetics , Lamin Type A/metabolism , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Mitosis , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Single-Cell Analysis , Time-Lapse Imaging
11.
Sci Transl Med ; 9(409)2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28954928

ABSTRACT

The production of erythropoietin (EPO) by the kidneys, a principal hormone for the hematopoietic system, is reduced in patients with chronic kidney disease (CKD), eventually resulting in severe anemia. Although recombinant human EPO treatment improves anemia in patients with CKD, returning to full red blood cell production without fluctuations does not always occur. We established a method to generate EPO-producing cells from human induced pluripotent stem cells (hiPSCs) by modifying previously reported hepatic differentiation protocols. These cells showed increased EPO expression and secretion in response to low oxygen conditions, prolyl hydroxylase domain-containing enzyme inhibitors, and insulin-like growth factor 1. The EPO protein secreted from hiPSC-derived EPO-producing (hiPSC-EPO) cells induced the erythropoietic differentiation of human umbilical cord blood progenitor cells in vitro. Furthermore, transplantation of hiPSC-EPO cells into mice with CKD induced by adenine treatment improved renal anemia. Thus, hiPSC-EPO cells may be a useful tool for clarifying the mechanisms of EPO production and may be useful as a therapeutic strategy for treating renal anemia.


Subject(s)
Anemia/therapy , Erythropoietin/biosynthesis , Kidney/pathology , Pluripotent Stem Cells/cytology , Stem Cell Transplantation , Anemia/pathology , Animals , Cell Differentiation/drug effects , Cell Hypoxia/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Erythropoiesis/drug effects , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/ultrastructure , Insulin-Like Growth Factor I/pharmacology , Mice , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/ultrastructure , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/ultrastructure
12.
Sci Rep ; 7(1): 8590, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28819274

ABSTRACT

The immature phenotype of human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) constrains their potential in cell therapy and drug testing. In this study, we report that shifting hPSC-CMs from glucose-containing to galactose- and fatty acid-containing medium promotes their fast maturation into adult-like CMs with higher oxidative metabolism, transcriptional signatures closer to those of adult ventricular tissue, higher myofibril density and alignment, improved calcium handling, enhanced contractility, and more physiological action potential kinetics. Integrated "-Omics" analyses showed that addition of galactose to culture medium improves total oxidative capacity of the cells and ameliorates fatty acid oxidation avoiding the lipotoxicity that results from cell exposure to high fatty acid levels. This study provides an important link between substrate utilization and functional maturation of hPSC-CMs facilitating the application of this promising cell type in clinical and preclinical applications.


Subject(s)
Carbon/pharmacology , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/metabolism , Biomarkers/metabolism , Calcium/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Culture Media, Conditioned/pharmacology , Fatty Acids/toxicity , Galactose/pharmacology , Glucose/deficiency , Glycolysis/drug effects , Heart Ventricles/cytology , Humans , Kinetics , Lactose/pharmacology , Models, Biological , Myocytes, Cardiac/drug effects , Oxidation-Reduction , Oxidative Phosphorylation/drug effects , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/ultrastructure , Transcription, Genetic/drug effects , Transcriptome/genetics
13.
Stem Cell Reports ; 9(1): 67-76, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28625538

ABSTRACT

Cell-type-specific functions and identity are tightly regulated by interactions between the cell cytoskeleton and the extracellular matrix (ECM). Human pluripotent stem cells (hPSCs) have ultimate differentiation capacity and exceptionally low-strength ECM contact, yet the organization and function of adhesion sites and associated actin cytoskeleton remain poorly defined. We imaged hPSCs at the cell-ECM interface with total internal reflection fluorescence microscopy and discovered that adhesions at the colony edge were exceptionally large and connected by thick ventral stress fibers. The actin fence encircling the colony was found to exert extensive Rho-ROCK-myosin-dependent mechanical stress to enforce colony morphology, compaction, and pluripotency and to define mitotic spindle orientation. Remarkably, differentiation altered adhesion organization and signaling characterized by a switch from ventral to dorsal stress fibers, reduced mechanical stress, and increased integrin activity and cell-ECM adhesion strength. Thus, pluripotency appears to be linked to unique colony organization and adhesion structure.


Subject(s)
Actins/metabolism , Focal Adhesions/metabolism , Pluripotent Stem Cells/cytology , Actins/ultrastructure , Biomechanical Phenomena , Cell Adhesion , Cell Differentiation , Cell Division , Cell Line , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Focal Adhesions/ultrastructure , Humans , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/ultrastructure , Signal Transduction , Stress Fibers/metabolism , Stress Fibers/ultrastructure
14.
Stem Cells Transl Med ; 5(5): 658-69, 2016 May.
Article in English | MEDLINE | ID: mdl-27025693

ABSTRACT

UNLABELLED: To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. SIGNIFICANCE: The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs.


Subject(s)
Cold Temperature , Cryopreservation , Cryoprotective Agents/pharmacology , Myocytes, Cardiac/drug effects , Pluripotent Stem Cells/drug effects , Toxicity Tests/methods , Animals , Cell Culture Techniques , Cell Line , Cell Survival/drug effects , Cold Temperature/adverse effects , Feasibility Studies , Gene Expression Regulation , Genetic Markers , Genotype , Humans , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Phenotype , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/transplantation , Pluripotent Stem Cells/ultrastructure , Time Factors , Transportation
15.
Cell Reprogram ; 18(1): 48-53, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26757253

ABSTRACT

Culture conditions have been established to maintain the pluripotency of mouse naïve and primed embryonic stem cells (ESCs) using human amnion epithelial cells (hAECs) as the feeder layer. In this study, the ultrastructures of mouse primed ESCs grown on hAECs were analyzed by transmission electron microscopy. Consistent with mouse naïve ESCs, the undifferentiated mouse primed ESC line ESD-EpiSC [ESC-derived epiblast stem cells (EpiSCs)] revealed typical characteristics, including large nuclei, reticulated nucleoli, scanty cytoplasm, and low cytoplasm-to-nuclear ratios. Cells had prominent Golgi apparatus and well-developed endoplasmic reticulum. Adjacent cells were tightly in contact with dense junction desmosomes. However, in EpiSC colonies, cell contact was no longer close like naïve ESCs, and differentiated cells existed. The differentiated cells had small nucleoli with large cytoplasm, which represented primitive mesenchyme. Phagosomes or apoptotic cells were also common in the cytoplasm of differentiated cells, which suggests a differentiation potential. When exposed to leukemia inhibitory factor (LIF), ESD-EpiSCs could convert to naïve-like cells. We further analyzed the ultrastructure of converted EpiSCs (cESCs). As compared to ESD-EpiSCs, cESCs showed similar ultrastructural characteristics as naïve ESCs. These findings suggest that ultrastructure could be used to evaluate the pluripotency of ESCs.


Subject(s)
Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/ultrastructure , Amnion/cytology , Animals , Cell Differentiation , Cells, Cultured , Feeder Cells , Germ Layers/cytology , Germ Layers/ultrastructure , Humans , Mice , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/ultrastructure
16.
Exp Eye Res ; 146: 26-34, 2016 05.
Article in English | MEDLINE | ID: mdl-26658714

ABSTRACT

Corneal epithelium is renewed by limbal epithelial stem cells (LESCs), a type of tissue-specific stem cells located in the limbal palisades of Vogt at the corneo-scleral junction. Acute trauma or inflammatory disorders of the ocular surface can destroy these stem cells, leading to limbal stem cell deficiency (LSCD) - a painful and vision-threatening condition. Treating these disorders is often challenging and complex, especially in bilateral cases with extensive damage. Human pluripotent stem cells (hPSCs) provide new opportunities for corneal reconstruction using cell-based therapy. Here, we investigated the use of hPSC-derived LESC-like cells on bioengineered collagen matrices in serum-free conditions, aiming for clinical applications to reconstruct the corneal epithelium and partially replace the damaged stroma. Differentiation of hPSCs towards LESC-like cells was directed using small-molecule induction followed by maturation in corneal epithelium culture medium. After four to five weeks of culture, differentiated cells were seeded onto bioengineered matrices fabricated as transparent membranes of uniform thickness, using medical-grade porcine collagen type I and a hybrid cross-linking technology. The bioengineered matrices were fully transparent, with high water content and swelling capacity, and parallel lamellar microstructure. Cell proliferation of hPSC-LESCs was significantly higher on bioengineered matrices than on collagen-coated control wells after two weeks of culture, and LESC markers p63 and cytokeratin 15, along with proliferation marker Ki67 were expressed even after 30 days in culture. Overall, hPSC-LESCs retained their capacity to self-renew and proliferate, but were also able to terminally differentiate upon stimulation, as suggested by protein expression of cytokeratins 3 and 12. We propose the use of bioengineered collagen matrices as carriers for the clinically-relevant hPSC-derived LESC-like cells, as a novel tissue engineering approach for corneal reconstruction.


Subject(s)
Corneal Diseases/surgery , Corneal Transplantation/methods , Epithelium, Corneal/ultrastructure , Limbus Corneae/ultrastructure , Pluripotent Stem Cells/ultrastructure , Stem Cell Transplantation , Tissue Engineering/methods , Biomarkers/metabolism , Cell Count , Cell Differentiation , Cell Proliferation , Cells, Cultured , Corneal Diseases/pathology , Culture Media, Serum-Free , Epithelium, Corneal/metabolism , Epithelium, Corneal/transplantation , Humans , Limbus Corneae/metabolism , Microscopy, Electron, Scanning , Pluripotent Stem Cells/metabolism
17.
Stem Cell Reports ; 5(6): 954-962, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26626176

ABSTRACT

We demonstrate that dissociated human pluripotent stem cells (PSCs) are intrinsically programmed to form lumens. PSCs form two-cell cysts with a shared apical domain within 20 hr of plating; these cysts collapse to form monolayers after 5 days. Expression of pluripotency markers is maintained throughout this time. In two-cell cysts, an apical domain, marked by EZRIN and atypical PKCζ, is surrounded by apically targeted organelles (early endosomes and Golgi). Molecularly, actin polymerization, regulated by ARP2/3 and mammalian diaphanous-related formin 1 (MDIA), promotes lumen formation, whereas actin contraction, mediated by MYOSIN-II, inhibits this process. Finally, we show that lumenal shape can be manipulated in bioengineered micro-wells. Since lumen formation is an indispensable step in early mammalian development, this system can provide a powerful model for investigation of this process in a controlled environment. Overall, our data establish that lumenogenesis is a fundamental cell biological property of human PSCs.


Subject(s)
Pluripotent Stem Cells/cytology , Actins/metabolism , Actins/ultrastructure , Animals , Cell Culture Techniques , Cell Line , Cell Separation , Cell Shape , Dogs , Humans , Mice , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/ultrastructure
18.
Life Sci ; 141: 61-73, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26408916

ABSTRACT

AIMS: In vitro expansion changes replication and differentiation capacity of mesenchymal stem cells (MSCs), increasing challenges and risks, while limiting the sufficient number of MSCs required for cytotherapy. Here, we characterized and compared proliferation, differentiation, telomere length and pluripotency marker expression in MSCs of various origins. MAIN METHODS: Immunophenotyping, proliferation and differentiation assays were performed. Pluripotency marker (Nanog, Oct-4, SOX-2, SSEA-4) expression was determined by immunofluorescence. Quantitative PCR was performed for relative telomere length (RTL) analyses, while expression of relevant genes for pluripotency markers, differentiation state (Cbfa1, human placental alkaline phosphatase, peroxisome proliferator activated receptor, Sox9 and Collagen II a1), and telomerase reverse transcriptase (hTERT) was determined by semiquantitative RT-PCR. KEY FINDINGS: Peripheral blood MSCs (PB-MSCs) and umbilical cord MSCs (UC-MSCs) showed the highest, while periodontal ligament MSCs (PDL-MSCs) and adipose tissue MSCs (AT-MSCs) the lowest values of both the replication potential and RTL. Although MSCs from exfoliated deciduous teeth (SHEDs), PDL-MSCs and AT-MSCs showed higher mRNA expression of pluripotency markers, all MSCs expressed pluripotency marker proteins. SHEDs and PDL-MSCs showed prominent capacity for osteogenesis, PB-MSCs and UC-MSCs showed strengthened adipogenic differentiation potential, while AT-MSCs displayed similar differentiation into both lines. SIGNIFICANCE: The MSCs populations derived from different sources, although displaying similar phenotype, exhibited high degree of variability regarding biological properties related to their self-renewal and differentiation capacity. These data indicate that for more accurate use in cell therapy, individualities of MSCs isolated from different tissues should be identified and taken into consideration when planning their use in clinical protocols.


Subject(s)
Mesenchymal Stem Cells/physiology , Pluripotent Stem Cells/physiology , Telomere/ultrastructure , Adipogenesis/genetics , Adipose Tissue/cytology , Biomarkers/analysis , Blood Cells/physiology , Cell Differentiation , Cell Line , Cell Proliferation , Humans , Ligaments/cytology , Mesenchymal Stem Cells/chemistry , Mesenchymal Stem Cells/ultrastructure , Osteogenesis/genetics , Pluripotent Stem Cells/chemistry , Pluripotent Stem Cells/ultrastructure , Telomere Shortening , Tooth, Deciduous/cytology , Umbilical Cord/cytology
19.
Am J Physiol Renal Physiol ; 309(4): F341-58, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26062877

ABSTRACT

Modified vascular smooth muscle cells of the kidney afferent arterioles have recently been shown to serve as progenitors for glomerular epithelial cells in response to glomerular injury. To determine whether such cells of renin lineage (CoRL) serve as progenitors for other cells in kidney disease characterized by both glomerular and tubulointerstitial injury, permanent genetic cell fate mapping of adult CoRL using Ren1cCreER × Rs-tdTomato-R reporter mice was performed. TdTomato-labeled CoRL were almost completely restricted to the juxtaglomerular compartment in healthy kidneys. Following 2 wk of antibody-mediated focal segmental glomerulosclerosis (FSGS) or 16 wk of ⅚ nephrectomy-induced chronic kidney diseases, tdTomato-mapped CoRL were identified in both interstitial and glomerular compartments. In the interstitium, PDGFß receptor (R)-expressing cells significantly increased, and a portion of these expressed tdTomato. This was accompanied by a decrease in native pericyte number, but an increase in the number of tdTomato cells that coexpressed the pericyte markers PDGFß-R and NG2. These cells surrounded vessels and coexpressed the pericyte markers CD73 and CD146, but not the endothelial marker ERG. Within glomeruli of reporter mice with the ⅚ nephrectomy model, a subset of labeled CoRL migrated to the glomerular tuft and coexpressed podocin and synaptopodin. By contrast, labeled CoRL were not detected in glomerular or interstitial compartments following uninephrectomy. These observations indicate that in addition to supplying new adult podocytes to glomeruli, CoRL have the capacity to become new adult pericytes in the setting of interstitial disease. We conclude that CoRL have the potential to function as progenitors for multiple adult cell types in kidney disease.


Subject(s)
Adult Stem Cells/metabolism , Cell Lineage , Glomerulosclerosis, Focal Segmental/metabolism , Kidney Glomerulus/metabolism , Nephritis, Interstitial/metabolism , Pluripotent Stem Cells/metabolism , Podocytes/metabolism , Renal Insufficiency, Chronic/metabolism , Renin/metabolism , Adult Stem Cells/ultrastructure , Animals , Biomarkers/metabolism , Cell Differentiation , Cell Movement , Disease Models, Animal , Gene Expression Regulation , Genes, Reporter , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/pathology , Kidney Glomerulus/ultrastructure , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Nephritis, Interstitial/genetics , Nephritis, Interstitial/pathology , Pericytes/metabolism , Pericytes/ultrastructure , Phenotype , Pluripotent Stem Cells/ultrastructure , Podocytes/ultrastructure , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Renin/genetics
20.
J Microsc ; 260(1): 86-99, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26046924

ABSTRACT

New microscopy technologies are enabling image acquisition of terabyte-sized data sets consisting of hundreds of thousands of images. In order to retrieve and analyze the biological information in these large data sets, segmentation is needed to detect the regions containing cells or cell colonies. Our work with hundreds of large images (each 21,000×21,000 pixels) requires a segmentation method that: (1) yields high segmentation accuracy, (2) is applicable to multiple cell lines with various densities of cells and cell colonies, and several imaging modalities, (3) can process large data sets in a timely manner, (4) has a low memory footprint and (5) has a small number of user-set parameters that do not require adjustment during the segmentation of large image sets. None of the currently available segmentation methods meet all these requirements. Segmentation based on image gradient thresholding is fast and has a low memory footprint. However, existing techniques that automate the selection of the gradient image threshold do not work across image modalities, multiple cell lines, and a wide range of foreground/background densities (requirement 2) and all failed the requirement for robust parameters that do not require re-adjustment with time (requirement 5). We present a novel and empirically derived image gradient threshold selection method for separating foreground and background pixels in an image that meets all the requirements listed above. We quantify the difference between our approach and existing ones in terms of accuracy, execution speed, memory usage and number of adjustable parameters on a reference data set. This reference data set consists of 501 validation images with manually determined segmentations and image sizes ranging from 0.36 Megapixels to 850 Megapixels. It includes four different cell lines and two image modalities: phase contrast and fluorescent. Our new technique, called Empirical Gradient Threshold (EGT), is derived from this reference data set with a 10-fold cross-validation method. EGT segments cells or colonies with resulting Dice accuracy index measurements above 0.92 for all cross-validation data sets. EGT results has also been visually verified on a much larger data set that includes bright field and Differential Interference Contrast (DIC) images, 16 cell lines and 61 time-sequence data sets, for a total of 17,479 images. This method is implemented as an open-source plugin to ImageJ as well as a standalone executable that can be downloaded from the following link: https://isg.nist.gov/.


Subject(s)
Image Processing, Computer-Assisted , Myocytes, Smooth Muscle/ultrastructure , Pluripotent Stem Cells/ultrastructure , Animals , Cell Line , Datasets as Topic , Humans , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Mice , Microscopy, Fluorescence/methods , Microscopy, Phase-Contrast/methods , Models, Theoretical , Muscle, Smooth, Vascular/cytology , NIH 3T3 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...