Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 297, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491031

ABSTRACT

Poa pratensis L. (Poaceae) is a valuable grass across the north hemisphere, inhabiting diverse environments with wide altitudinal span, where ubiquitous various kinds of stresses. Phytohormones would be helpful to improve tolerance to abiotic and biotic stresses, but the responses of transcriptome regulation of P. pratensis to exogenous phytohormones application remain unclear. In this study, we explored the alteration of plant physiological responses by the application of phytohormones. Aiming to achieve this knowledge, we got full-length transcriptome data 42.76 Gb, of which 74.9% of transcripts were completed. Then used 27 samples representing four treatments conducted at two time points (1 h and 6 h after application) to generate RNA-seq data. 371 and 907 common DEGs were identified in response to four phytohormones application, respectively, these DEGs were involved in "plant hormone signal transduction", "carbon metabolism" and "plant-pathogen interaction". Finally, P. pratensis basic research can gain valuable information regarding the responses to exogenous application of phytohormones in physiological indicators and transcriptional regulations in order to facilitate the development of new cultivars.


Subject(s)
Poa , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Growth Regulators/pharmacology , Poa/genetics , Stress, Physiological
2.
Physiol Plant ; 176(1): e14186, 2024.
Article in English | MEDLINE | ID: mdl-38351885

ABSTRACT

Kentucky bluegrass (Poa pratensis L.), one of the most widely used cool-season turfgrasses around the world, is sensitive to powdery mildew (PM; Blumeria graminis). The PM strain identification and regulation mechanisms of Kentucky bluegrass in response to pathogens still remain unclear. Through morphological and molecular analyses, we identified that the pathogen in Kentucky bluegrass was B. graminis f. sp. poae. The infection of B. graminis led to a reduction of the sclerenchyma area, expansion of vesicular cells and movement of chloroplasts. The infected leaves had significantly lower values in net photosynthesis, stomatal conductance and transpiration rate, maximal quantum yield of PSII photochemistry, photochemical quenching and non-regulated energy dissipation compared to mock-inoculated leaves. Expressions of light-harvesting antenna protein genes LHCA and LHCB and photosynthetic electron transport genes petE and petH decreased significantly in infected leaves. Furthermore, upregulations of genes involved in plant-pathogen interaction, such as HSP90, RBOH, and RPM and downregulations of EDS, RPS and WRKY were observed in infected leaves. The findings may help design a feasible approach to effectively control the PM disease in Kentucky bluegrass and other related perennial grass species.


Subject(s)
Poa , Poa/genetics , Poa/metabolism , Kentucky , Photosynthesis/physiology , Plants , Plant Leaves/metabolism
3.
BMC Genomics ; 24(1): 350, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365554

ABSTRACT

BACKGROUND: Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua's diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua's evolutionary novelty. RESULTS: We find that the diploids diverged from their common ancestor 5.5 - 6.3 million years ago and hybridized to form P. annua ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua's B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. CONCLUSIONS: The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding.


Subject(s)
Poa , Poa/genetics , DNA Transposable Elements , Plant Breeding , Genes, Plant , Polyploidy , Genome, Plant , Evolution, Molecular
4.
G3 (Bethesda) ; 13(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37002915

ABSTRACT

Poa pratensis, commonly known as Kentucky bluegrass, is a popular cool-season grass species used as turf in lawns and recreation areas globally. Despite its substantial economic value, a reference genome had not previously been assembled due to the genome's relatively large size and biological complexity that includes apomixis, polyploidy, and interspecific hybridization. We report here a fortuitous de novo assembly and annotation of a P. pratensis genome. Instead of sequencing the genome of a C4 grass, we accidentally sampled and sequenced tissue from a weedy P. pratensis whose stolon was intertwined with that of the C4 grass. The draft assembly consists of 6.09 Gbp with an N50 scaffold length of 65.1 Mbp, and a total of 118 scaffolds, generated using PacBio long reads and Bionano optical map technology. We annotated 256K gene models and found 58% of the genome to be composed of transposable elements. To demonstrate the applicability of the reference genome, we evaluated population structure and estimated genetic diversity in P. pratensis collected from three North American prairies, two in Manitoba, Canada and one in Colorado, USA. Our results support previous studies that found high genetic diversity and population structure within the species. The reference genome and annotation will be an important resource for turfgrass breeding and study of bluegrasses.


Subject(s)
Plant Breeding , Poa , Genome , Poa/genetics , Plant Weeds/genetics , Base Sequence , Molecular Sequence Annotation
5.
Mol Biotechnol ; 65(1): 84-96, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35835891

ABSTRACT

Poa pratensis L. is a perennial turfgrass with high regeneration and fertility, resistance to cold and drought, and quick colonization. By facultative apomixis, this plant can create a wide range of ploidy levels (2n = 22 to 2n = 154), resulting in a wide range of chromosomal numbers and sexual and apomictic reproductive diversity. The plant materials included fifty accessions from Iran's Center, South, North, North-East, North-West, and West ecoregions. UPOV standards were used to measure the qualities that were researched. The squash technique of chromosome counting revealed that Iranian Kentucky bluegrass accessions had chromosomal counts ranging from 24 to 87. The relative sizes of the 2C genomes were measured using laser flow cytometry. The range of DNA content was fairly wide, ranging from 4.92 to 11.52 pg. DNA content has a strong positive correlation with elevation, a moderately positive correlation with flag leaf length and leaf sheath width, and a negative correlation with inflorescence anthocyanin color and leaf anthocyanin color. The genotypes and ecological zones of this plant in Iran were distinguished based on morphological diversity and DNA content. The results from this study could be useful in identifying and studying wild Kentucky bluegrass genotypes. It aids in predicting the location of rare genotypes used as breeding materials. It can also increase the plant's variability for future generations by introducing new ecotypes, with particular genomic and morphological traits, to previously cultivated populations. We expect that the findings of this study will aid in understanding the evolution of this plant in the context of Iran's climatic variety.


Subject(s)
Poa , Poa/genetics , Iran , Kentucky , Anthocyanins , Plant Breeding , Genetic Variation , DNA
6.
Genome Biol Evol ; 15(1)2023 01 04.
Article in English | MEDLINE | ID: mdl-36574983

ABSTRACT

Poa annua L. is a globally distributed grass with economic and horticultural significance as a weed and as a turfgrass. This dual significance, and its phenotypic plasticity and ecological adaptation, have made P. annua an intriguing plant for genetic and evolutionary studies. Because of the lack of genomic resources and its allotetraploid (2n = 4x = 28) nature, a reference genome sequence would be a valuable asset to better understand the significance and polyploid origin of P. annua. Here we report a genome assembly with scaffolds representing the 14 haploid chromosomes that are 1.78 Gb in length with an N50 of 112 Mb and 96.7% of BUSCO orthologs. Seventy percent of the genome was identified as repetitive elements, 91.0% of which were Copia- or Gypsy-like long-terminal repeats. The genome was annotated with 76,420 genes spanning 13.3% of the 14 chromosomes. The two subgenomes originating from Poa infirma (Knuth) and Poa supina (Schrad) were sufficiently divergent to be distinguishable but syntenic in sequence and annotation with repetitive elements contributing to the expansion of the P. infirma subgenome.


Subject(s)
Poa , Poa/genetics , Repetitive Sequences, Nucleic Acid , Synteny , Genome, Plant , Chromosomes , Molecular Sequence Annotation
7.
BMC Plant Biol ; 22(1): 509, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36319971

ABSTRACT

BACKGROUND: Poa pratensis is one of the most common cold-season turfgrasses used for urban turf building, and it is also widely used in ecological environment management worldwide. Powdery mildew is a common disease of P. pratensis. To scientifically and ecologically control lawn powdery mildew, the molecular mechanism underlying the response of P. pratensis to powdery mildew infection must better understood. RESULTS: To explore molecular mechanism underlying the response of P. pratensis to powdery mildew infection, this study compared physiological changes and transcriptomic level differences between the highly resistant variety 'BlackJack' and the extremely susceptible variety 'EverGlade' under powdery mildew infection conditions. We analyzed DEGs using reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the results showed that "starch and sucrose metabolism", "photosynthesis" and "fatty acid metabolism"pathways were only enriched in 'BlackJack', and the expression of DEGs such as HXK, INV, GS, SS, AGpase and ß-amylase in "starch and sucrose metabolism" pathway of 'BlackJack' were closely related to powdery mildew resistance. Meanwhile, compared with 'EverGlade', powdery mildew infection promoted synthesis of sucrose, expression of photosynthesis parameters and photosynthesis-related enzymes in leaves of 'BlackJack' and decreased accumulation of monosaccharides such as glucose and fructose. CONCLUSIONS: This study identified the key metabolic pathways of a P. pratensis variety with high resistance to powdery mildew infection and explored the differences in physiological characteristics and key genes related to sugar metabolism pathways under powdery mildew stress. These findings provide important insights for studying underlying molecular response mechanism.


Subject(s)
Ascomycota , Poa , Transcriptome , Disease Resistance/genetics , Poa/genetics , Ascomycota/physiology , Plant Diseases/genetics , Kentucky , Gene Expression Profiling , Erysiphe , Sucrose , Starch
8.
Mol Biotechnol ; 64(11): 1244-1258, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35556219

ABSTRACT

Poa pratensis L. is a commonly used cool-season turfgrass and endemic to Iran. This research was carried out to examine the genetic diversity of this plant within and between ecoregions of Iran and the impact of climatic variables and elevation on the distribution of its genotypes, as well as habitat suitability modeling. We used fifty accessions collected from six ecoregions (West, South, North, North-West and North-East) for genetic diversity assessment using 20 ISSR marker primers. The prospective ecoregions for Kentucky bluegrass production were projected using habitat suitability modeling, which took into account important environmental parameters, such as annual mean temperature, annual mean rainfall, and elevation. According to the UPMGA dendrogram, the accessions were divided into two major types and four subclasses. The genetic distance between the North and North-east accessions, as well as the Center accessions, was greater than that of the other genotypes. Center accessions had the greatest levels of polymorphism, effective number of alleles, Shannon index, and Nei's genetic diversity. The FR method was used to create the habitat suitability map based on environmental factors. Rainfall had the largest influence on the genotype distribution of P. pratensis L. The findings of this study can be used as raw materials in future breeding programs to improve and generate new cultivars with superior characteristics. It can also assist programs in identifying rare cultivars as well as preserving and developing native P. pratensis L. genotypes.


Subject(s)
Poa , Biomarkers , Ecosystem , Genetic Variation , Iran , Kentucky , Microsatellite Repeats , Phylogeny , Plant Breeding , Poa/genetics , Polymorphism, Genetic , Prospective Studies
9.
Pest Manag Sci ; 78(3): 1164-1175, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34821014

ABSTRACT

BACKGROUND: Metabolic resistance is a worldwide concern for weed control but has not yet been well-characterized at the genetic level. Previously, we have identified an Asia minor bluegrass (Polypogon fugax Nees ex Steud.) population AHHY exhibiting cytochrome P450 (P450)-involved metabolic resistance to fenoxaprop-P-ethyl. In this study, we aimed to confirm the metabolic fenoxaprop-P-ethyl resistance in AHHY and uncover the potential herbicide metabolism-related genes in this economically damaging weed species. RESULTS: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays indicated the metabolic rates of fenoxaprop-P-ethyl were significantly faster in resistant (R, AHHY) than in susceptible (S, SDTS) plants. The amount of phytotoxic fenoxaprop-P peaked at 12 h after herbicide treatment (HAT) and started to decrease at 24 HAT in both biotypes. R and S plants at 24 HAT were sampled to conduct isoform-sequencing (Iso-Seq) and RNA-sequencing (RNA-Seq). A reference transcriptome containing 24 972 full-length isoforms was obtained, of which 24 329 unigenes were successfully annotated. Transcriptomic profiling identified 28 detoxifying enzyme genes constitutively and/or herbicide-induced up-regulated in R than in S plants. Real-time quantitative polymerase chain reaction (RT-qPCR) confirmed 17 genes were consistently up-regulated in R and its F1 generation plants. They were selected as potential fenoxaprop-P-ethyl metabolism-related genes, including ten P450s, one glutathione-S-transferase, one UDP-glucosyltransferase, and five adenosine triphosphate (ATP)-binding cassette transporters. CONCLUSION: This study revealed that the enhanced rates of fenoxaprop-P-ethyl metabolism in P. fugax were very likely driven by the herbicide metabolism-related genes. The transcriptome data generated by Iso-Seq combined with RNA-Seq will provide abundant gene resources for understanding the molecular mechanisms of resistance in P. fugax.


Subject(s)
Herbicides , Poa , Acetyl-CoA Carboxylase/genetics , Chromatography, Liquid , Genes, Essential , Herbicide Resistance/genetics , Herbicides/pharmacology , Plant Proteins/genetics , Poa/genetics , Poaceae/genetics , Tandem Mass Spectrometry
10.
PLoS One ; 16(12): e0261472, 2021.
Article in English | MEDLINE | ID: mdl-34914788

ABSTRACT

Kentucky bluegrass (Poa pratensis L.) is an excellent cool-season turfgrass utilized widely in Northern China. However, turf quality of Kentucky bluegrass declines significantly due to drought. Ethephon seeds-soaking treatment has been proved to effectively improve the drought tolerance of Kentucky bluegrass seedlings. In order to investigate the effect of ethephon leaf-spraying method on drought tolerance of Kentucky bluegrass and understand the underlying mechanism, Kentucky bluegrass plants sprayed with and without ethephon are subjected to either drought or well watered treatments. The relative water content and malondialdehyde conent were measured. Meanwhile, samples were sequenced through Illumina. Results showed that ethephon could improve the drought tolerance of Kentucky bluegrass by elevating relative water content and decreasing malondialdehyde content under drought. Transcriptome analysis showed that 58.43% transcripts (254,331 out of 435,250) were detected as unigenes. A total of 9.69% (24,643 out of 254,331) unigenes were identified as differentially expressed genes in one or more of the pairwise comparisons. Differentially expressed genes due to drought stress with or without ethephon pre-treatment showed that ethephon application affected genes associated with plant hormone, signal transduction pathway and plant defense, protein degradation and stabilization, transportation and osmosis, antioxidant system and the glyoxalase pathway, cell wall and cuticular wax, fatty acid unsaturation and photosynthesis. This study provides a theoretical basis for revealing the mechanism for how ethephon regulates drought response and improves drought tolerance of Kentucky bluegrass.


Subject(s)
Acclimatization/drug effects , Droughts , Organophosphorus Compounds/pharmacology , Poa/genetics , Stress, Physiological/drug effects , China , Environment , Gene Expression Profiling , Gene Expression Regulation, Plant , Malondialdehyde/metabolism , Photosynthesis/drug effects , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Poa/metabolism , Seedlings/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Transcriptome/genetics , Water/metabolism
11.
Plant Physiol Biochem ; 159: 312-321, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33421907

ABSTRACT

Poa pratensis is a perennial turfgrass used worldwide. However, shortage of irrigation and drought induced by climate change adversely affect plant growth and turf quality. Cuticular wax covers plant aerial parts and plays important roles in decreasing plant water loss under drought-stressed conditions. Previous research proposed two candidate genes that were involved in wax very-long-chain alkane biosynthesis based on the transcriptome of Poa pratensis leaf. Here, one of the candidate genes, PpCER1-2 was further characterized. A subcellular localization study revealed that PpCER1-2 was localized on the endoplasmic reticulum. The expression of PpCER1-2 could be induced by drought and salt stresses. Overexpression of PpCER1-2 in Brachypodium distachyon increased the alkane amount, whereas decreased the amounts of primary alcohols and total wax. The relative abundance of C25 and C27 alkane and C26 aldehyde increased significantly, but the relative abundance of C29 and C31 alkane and C28 aldehyde decreased. Meanwhile, PpCER1-2 overexpression lines exhibited reduced cuticle permeability and enhanced drought tolerance. These results suggested that PpCER1-2 relatively promoted alkane biosynthesis by converting more very long chain fatty acids precursors into the decarbonylation pathway from the acyl-reduction pathway. Taken together, our data suggest that PpCER1-2 is involved in wax alkane biosynthesis in P. pratensis and plays important roles in improving plant drought tolerance.


Subject(s)
Alkanes , Droughts , Poa , Stress, Physiological , Waxes , Alkanes/metabolism , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Poa/genetics , Poa/metabolism , Stress, Physiological/genetics , Waxes/metabolism
12.
Pest Manag Sci ; 77(4): 1903-1914, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33284481

ABSTRACT

BACKGROUND: Annual bluegrass is a troublesome weed in managed turf systems. A survey was conducted to evaluate the prevalence of herbicide resistance in golf course populations of annual bluegrass in eastern Texas. Screenings were conducted for two photosystem II (PS II)-inhibitor herbicides [simazine preemergence (PRE), amicarbazone postemergence (POST)], two acetolactate synthase (ALS) inhibitors (foramsulfuron POST, trifloxysulfuron POST) and one microtubule assembly inhibitor (pronamide PRE/POST). RESULTS: Ninety percent of the populations were found to be resistant to at least one of the tested herbicides. The TX15-14 population was >490-, 178-, 10-, 26-, 4.3- and 3.8-fold, and the TX15-27 population was >490-, 16-, 28-, 84-, 5.2- and 4.1-fold less sensitive to simazine, amicarbazone, foramsulfuron, trifloxysulfuron, pronamide POST and pronamide PRE, respectively, compared to the susceptible standard TX15-SUS. Populations resistant to pronamide POST were completely controlled by pronamide PRE at the label recommended rate. The ALS and psbA gene sequence analysis indicated the presence of target site mutations (Ser-264-Gly in the psbA gene of TX15-14 and Trp-574-Leu in the ALS gene of TX15-27). However, given the absence of any target-site mutation in the ALS gene of TX15-14, the psbA gene of TX15-27 and α-tubulin of both populations, nontarget site mechanisms of resistance are suspected. CONCLUSION: This is the first case of multiple herbicide resistance in annual bluegrass populations to three herbicide modes of action. Results show the widespread occurrence of multiple herbicide resistance in golf course annual bluegrass populations in eastern Texas and emphasize the need for the development and implementation of effective resistance management practices. © 2020 Society of Chemical Industry.


Subject(s)
Acetolactate Synthase , Golf , Herbicides , Poa , Acetolactate Synthase/genetics , Herbicide Resistance/genetics , Herbicides/pharmacology , Mutation , Plant Proteins/genetics , Poa/genetics , Texas
13.
DNA Cell Biol ; 39(9): 1606-1620, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32749870

ABSTRACT

The sugars will eventually be exported transporters (SWEET) gene family is a glycoprotein gene family that can regulate the transport of sugar in plants and plays an important role in plant growth and development, as well as in response to environmental stress. In this study, Kentucky bluegrass (cv. Baron) seedlings were grown in various treatments, including heavy metal cadmium, salt, drought, cold, and heat stress for 6 h, 24 h, 48 h, and 7 day. The relative expression of the identified PpSWEET genes in Kentucky bluegrass was measured. The results showed there were a total of 13 SWEET genes, which could be divided into four clades by phylogenetic analysis. Most PpSWEET genes are alkali proteins with seven transmembrane helices. Moreover, almost all PpSWEET proteins possess similar conserved motifs and active sites. In addition, an analysis of the relative expression of PpSWEET genes under various stress treatments indicated that PpSWEET12 and PpSWEET15 had very high expression under the five types of stress, meaning they can be used as important candidate genes for studying responses to environmental stresses of turfgrass. Furthermore, certain genes only showed changes in expression under one or two specific stress treatments. This study provides important insight into the SWEET gene family in Kentucky bluegrass and its functional roles in responses to various environmental stresses.


Subject(s)
Monosaccharide Transport Proteins/genetics , Plant Proteins/genetics , Poa/genetics , Stress, Physiological , Conserved Sequence , Gene Expression Regulation, Plant , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Poa/classification , Poa/metabolism , Protein Domains
14.
BMC Plant Biol ; 20(1): 362, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32736517

ABSTRACT

BACKGROUND: Low temperature limits the growth and development and geographical distribution of plants. Poa pratensis is a cool-season turfgrass mainly grown in urban areas. However, low winter temperature or cold events in spring and autumn may cause P.pratensis mortality, affecting the appearance of lawns. P.pratensis var. anceps cv. Qinghai (PQ) is widely distributed in the Qinghai-Tibet Plateau above 3000 m. PQ has greater cold tolerance than the commercially cultivated P.pratensis varieties. However, existing studies on the response mechanism of PQ to low temperatures have mainly focused on physiological and biochemical perspectives, while changes in the PQ transcriptome during the response to cold stress have not been reported. RESULTS: To investigate the molecular mechanism of the PQ cold response and identify genes to improve the low-temperature tolerance of P.pratensis, we analyzed and compared the transcriptomes of PQ and the cold-sensitive P.pratensis cv. 'Baron' (PB) under cold stress using RNA sequencing. We identified 5996 and 3285 differentially expressed genes (DEGs) between the treatment vs control comparison of PQ and PB, respectively, with 5612 DEGs specific to PQ. Based on the DEGs, important Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as "starch and sucrose metabolism", "protein processing in endoplasmic reticulum", "phenylalanine metabolism" and "glycolysis/gluconeogenesis" were significantly enriched in PQ, and "starch and sucrose metabolism", "phenylpropanoid biosynthesis", "galactose metabolism" and "glutathione metabolism" were significantly enriched in PB. In addition, the "glycolysis" and "citrate cycle (TCA cycle)" pathways were identified as involved in cold tolerance of P.pratensis. CONCLUSIONS: As we know, this is the first study to explore the transcriptome of P.pratensis var. anceps cv. Qinghai. Our study not noly provides important insights into the molecular mechanisms of P.pratensis var. anceps cv. Qinghai responds to cold stress, but also systematically reveals the changes of key genes and products of glycolysis and TCA cycle in response to cold stress, which is conductive to the breeding of cold-tolerance P.pratensis genotype.


Subject(s)
Cold-Shock Response/genetics , Poa/physiology , Citric Acid/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Genome, Plant , Glycolysis , Molecular Sequence Annotation , Phenotype , Poa/genetics , Poa/metabolism , RNA-Seq
15.
BMC Genet ; 20(1): 92, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31801460

ABSTRACT

BACKGROUND: Grasslands in the Arctic tundra undergo irreversible degradation due to climatic changes and also over-exploitation and depletion of scarce resources. Comprehensive investigations of cytogenomic structures of valuable Arctic and sub-Arctic grassland species is essential for clarifying their genetic peculiarities and phylogenetic relationships, and also successful developing new forage grass cultivars with high levels of adaptation, stable productivity and longevity. We performed molecular cytogenetic characterization of insufficiently studied pasture grass species (Poaceae) from related genera representing two neighboring clades: 1) Deschampsia and Holcus; 2) Alopecurus, Arctagrostis and Beckmannia, which are the primary fodder resources in the Arctic tundra. RESULTS: We constructed the integrated schematic maps of distribution of these species in the northern, central and eastern parts of Eurasia based on the currently available data as only scattered data on their occurrence is currently available. The species karyotypes were examined with the use of DAPI-banding, multicolour FISH with 35S rDNA, 5S rDNA and the (GTT)9 microsatellite motif and also sequential rapid multocolour GISH with genomic DNAs of Deschampsia sukatschewii, Deschampsia flexuosa and Holcus lanatus belonging to one of the studied clades. Cytogenomic structures of the species were specified; peculiarities and common features of their genomes were revealed. Different chromosomal rearrangements were detected in Beckmannia syzigachne, Deschampsia cespitosa and D. flexuosa; B chromosomes with distinct DAPI-bands were observed in karyotypes of D. cespitosa and H. lanatus. CONCLUSIONS: The peculiarities of distribution patterns of the examined chromosomal markers and also presence of common homologous DNA repeats in karyotypes of the studies species allowed us to verify their relationships. The obtained unique data on distribution areas and cytogenomic structures of the valuable Arctic and sub-Arctic pasture species are important for further genetic and biotechnological studies and also plant breeding progress.


Subject(s)
Avena/genetics , Cytogenetic Analysis/methods , Poa/genetics , Chromosome Aberrations , Chromosomes, Plant/genetics , Demography , Karyotype , Tundra
16.
Int J Mol Sci ; 20(6)2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30901811

ABSTRACT

In plant cells, the nucleus DNA is considered the primary site of injury by the space environment, which could generate genetic alteration. As the part of genomic mutation, genetic variation in the promoter region could regulate gene expression. In the study, it is observed that there is a deletion in the upstream regulatory region of the 1-deoxy-d-xylulose-5-phosphate synthase 1 gene (PpDXS1) of Poa pratensis dwarf mutant and the PpDXS1 transcript abundance is lower in the dwarf mutant. It is indicated that the deletion in the promoter region between wild type and dwarf mutant could be responsible for the regulation of PpDXS1 gene expression. The PpDXS1 promoter of dwarf mutant shows a lower activity as determined by dual luciferase assay in Poa pratensis protoplast, as well as the GUS activity is lower in transgenic Poa pratensis plant. To further investigate the effect of the deletion in the promoter region on PpDXS1 transcript accumulation, the transient assay and yeast one-hybrid experiment demonstrate that the deletion comprises a motif which is a target of G-box binding factor (GBF1), and the motif correlates with an increase in transactivation by GBF1 protein. Taken together, these results indicate that the deletion in the promoter of PpDXS1 isolated from dwarf mutant is sufficient to account for the decrease in PpDXS1 transcript level and GBF1 can regulate the PpDXS1 gene expression, and subsequently affect accumulation of various isoprenoids throughout the plant.


Subject(s)
G-Box Binding Factors/metabolism , Gene Expression Regulation, Plant , Poa/genetics , Poa/metabolism , Promoter Regions, Genetic , Seeds , Transferases/genetics , Weightlessness , Genes, Reporter , Genetic Association Studies , Mutation , Phenotype , Regulatory Sequences, Nucleic Acid , Space Flight
17.
Int J Mol Sci ; 20(6)2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30875790

ABSTRACT

Kentucky bluegrass (KB, Poa pratensis) is one of the most widely used cool-season turfgrass species, but it is sensitive to drought stress. Molecular studies in KB are hindered by its large and complex genome structure. In this study, a comparative transcriptomic study was conducted between a short and long period of water deficiency. Three transcriptome libraries were constructed and then sequenced by using leaf RNA samples of plants at 0, 2, and 16 h after PEG6000 treatment. A total of 199,083 differentially expressed genes (DEGs) were found. The Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation revealed that DEGs were enriched in "Plant hormone signal transduction" and "MAPK signaling pathway-Plant". Some key up-regulated genes, including PYL, JAZ, and BSK, were involved in hormone signaling transduction of abscisic acid, jasmonic acid, and brassinosteroid and possibly these genes play important roles in coping with drought stress in KB. Furthermore, our results showed that the concentrations of ABA, JA and BR increased significantly with the extension of the drought period. The specific DEGs encoding functional proteins, kinase and transcription factors, could be valuable information for genetic manipulation to promote drought tolerance of KB in the future.


Subject(s)
Gene Expression Profiling/methods , Gene Regulatory Networks , Poa/growth & development , Stress, Physiological , Abscisic Acid/biosynthesis , Brassinosteroids/biosynthesis , Cyclopentanes/metabolism , Droughts , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Kentucky , Molecular Sequence Annotation , Oxylipins/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/genetics , Poa/genetics , Poa/metabolism , Sequence Analysis, RNA
18.
Metabolomics ; 15(4): 47, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30877485

ABSTRACT

BACKGROUND: Transgenic herbicide-resistant (HR) turfgrass together with its associated, broad spectrum herbicides promise cheap, selective and efficient weed control by excluding infested weeds resulting in turf lawn with high uniformity and aesthetic value. The concept of this "weeding program" initiated from modern biotechnology has been widely implemented in several principal crops including maize, soybean, canola and cotton as early as the 1990s. Transgenic HR turfgrass classified as a genetically modified organism (GMO) has undoubtedly caused public concern with respect to its biosafety and legalities similar to well-established HR crops. Nevertheless, applying metabolomics-based approaches which focuses on the identification of the global metabolic state of a biological system in response to either internal or external stimuli can also provide a comprehensive characterization of transgenic grass metabolism and its involvement in biosecurity and public perception. AIM OF REVIEW: This review summaries the recent applications of metabolomics applied to HR crops to predict the molecular and physiological phenotypes of HR turfgrass species, glyphosate-resistant Kentucky bluegrass (Poa pratensis L.) and glufosinate-resistant creeping bentgrass (Agrotis stonifera L.). Additionally, this review also presents background knowledge with respect to the application of metabolomics, transformation of HR crops and its biosafety concerns, turfgrass botanical knowledge and its economic and aesthetic value. KEY SCIENTIFIC CONCEPTS OF REVIEW: The purpose of this review is to demonstrate the molecular and physiological phenotypes of HR turfgrass based on several lines of evidence primarily derived from metabolomics data applied to HR crops to identify alterations on HR turfgrass metabolism as a result of genetic modification that confers resistant traits.


Subject(s)
Agrostis/metabolism , Herbicide Resistance/genetics , Poa/metabolism , Agrostis/genetics , Biotechnology , Crops, Agricultural , Herbicides , Metabolomics/methods , Plant Weeds , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Poa/genetics , Poaceae/metabolism , Research , Weed Control
19.
Pest Manag Sci ; 75(6): 1663-1670, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30506940

ABSTRACT

BACKGROUND: Poa annua is a widespread winter annual weed species in California. Recently, poor control of this species with glyphosate was reported by growers in an almond orchard in California with a history of repetitive glyphosate use. The objectives of this research were to evaluate the level of glyphosate resistance in a developed S4 P. annua line (R) and identify the mechanisms of resistance involved. RESULTS: Whole-plant dose-response experiments confirmed glyphosate resistance in R, which required 18-fold more glyphosate to achieve a 50% growth reduction compared with a susceptible line (S), results that were supported by the lower shikimate accumulation observed in R compared with S. No differences in glyphosate absorption, translocation, or metabolism were observed, suggesting that non-target-site mechanisms of resistance are not involved in the resistance phenotype. A missense single nucleotide polymorphism was observed in EPSPS coding position 106 in R, resulting in a leucine to proline substitution. This polymorphism was observed exclusively in P. supina EPSPS homeologs. A seven-fold increase in the number of copies of EPSPS alleles was observed in R compared with S. CONCLUSIONS: We report the first case of glyphosate resistance associated with both EPSPS duplication and target-site mutation at position 106, leading to high levels of glyphosate resistance in the allotetraploid weed species Poa annua L. Data obtained in this research will be useful for the development of diagnostic tools for rapid glyphosate resistance identification, monitoring and containment. © 2018 Society of Chemical Industry.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Gene Duplication , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Poa/enzymology , Poa/genetics , Dose-Response Relationship, Drug , Mutation , Poa/metabolism , Shikimic Acid/metabolism , Glyphosate
20.
BMC Genomics ; 18(1): 953, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29212446

ABSTRACT

BACKGROUND: Asia minor bluegrass (Polypogon fugax, P. fugax), a weed that is both distributed across China and associated with winter crops, has evolved resistance to acetyl-CoA carboxylase (ACCase) herbicides, but the resistance mechanism remains unclear. The goal of this study was to analyze the transcriptome between resistant and sensitive populations of P. fugax at the flowering stage. RESULTS: Populations resistant and susceptible to clodinafop-propargyl showed distinct transcriptome profiles. A total of 206,041 unigenes were identified; 165,901 unique sequences were annotated using BLASTX alignment databases. Among them, 5904 unigenes were classified into 58 transcription factor families. Nine families were related to the regulation of plant growth and development and to stress responses. Twelve unigenes were differentially expressed between the clodinafop-propargyl-sensitive and clodinafop-propargyl-resistant populations at the early flowering stage; among those unigenes, three belonged to the ABI3VP1, BHLH, and GRAS families, while the remaining nine belonged to the MADS family. Compared with the clodinafop-propargyl-sensitive plants, the resistant plants exhibited different expression pattern of these 12 unigenes. CONCLUSION: This study identified differentially expressed unigenes related to ACCase-resistant P. fugax and thus provides a genomic resource for understanding the molecular basis of early flowering.


Subject(s)
Gene Expression Profiling/methods , Herbicide Resistance/genetics , Herbicides/pharmacology , Magnoliopsida/genetics , Plant Proteins/genetics , Poa/genetics , Acetyl-CoA Carboxylase/genetics , Gene Expression Regulation, Plant , Poa/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...