Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.513
Filter
1.
Water Sci Technol ; 89(9): 2523-2537, 2024 May.
Article in English | MEDLINE | ID: mdl-38747965

ABSTRACT

Miscanthus sacchariflorus is previously demonstrated to be a potential candidate for remediation of cadmium (Cd) pollution. To explore its resistance strategy to Cd, a hydroponic experiment was conducted to determine the variations of photosynthetic activity in leaves and physiological response in roots of this plant. Results showed that the root of M. sacchariflorus was the primary location for Cd accumulation. The bioconcentration factor in the roots and rhizomes was >1, and the translocation factor from underground to aboveground was <1. Throughout the experimental period, treatment with 0.06 mM Cd2+ did not significantly alter the contents of chlorophyll a, chlorophyll b, or carotenoid. By contrast, treatment with 0.15 and 0.30 mM Cd2+ decreased the contents of chlorophyll a, chlorophyll b, and carotenoid; caused the deformation of the chlorophyll fluorescence transient curve; reduced the photochemical efficiency of photosystem II; and increased the contents of non-protein thiols, total flavone, and total phenol. These results indicate that M. sacchariflorus has good adaptability to 0.06 mM Cd2+. Moreover, the accumulation of the non-protein thiols, total flavone, and total phenol in roots may promote the chelation of Cd2+, thus alleviating Cd toxicity. This study provides theoretical support for using M. sacchariflorus to remediate Cd-polluted wetlands.


Subject(s)
Cadmium , Photosynthesis , Poaceae , Sulfhydryl Compounds , Cadmium/toxicity , Cadmium/metabolism , Photosynthesis/drug effects , Poaceae/metabolism , Poaceae/drug effects , Sulfhydryl Compounds/metabolism , Chlorophyll/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Biodegradation, Environmental
2.
PLoS One ; 19(5): e0302940, 2024.
Article in English | MEDLINE | ID: mdl-38748679

ABSTRACT

Miscanthus lutarioriparia is a promising energy crop that is used for abandoned mine soil phytoremediation because of its high biomass yield and strong tolerance to heavy metals. However, the biological mechanism of heavy metal resistance is limited, especially for applications in the soil restoration of mining areas. Here, through the investigation of soil cadmium(Cd) in different mining areas and soil potted under Cd stress, the adsorption capacity of Miscanthus lutarioriparia was analyzed. The physiological and transcriptional effects of Cd stress on M. lutarioriparia leaves and roots under hydroponic conditions were analyzed. The results showed that M. lutarioriparia could reduce the Cd content in mining soil by 29.82%. Moreover, different Cd varieties have different Cd adsorption capacities in soils with higher Cd concentration. The highest cadmium concentrations in the aboveground and belowground parts of the plants were 185.65 mg/kg and 186.8 mg/kg, respectively. The total chlorophyll content, superoxide dismutase and catalase activities all showed a trend of increasing first and then decreasing. In total, 24,372 differentially expressed genes were obtained, including 7735 unique to leaves, 7725 unique to roots, and 8912 unique to leaves and roots, which showed differences in gene expression between leaves and roots. These genes were predominantly involved in plant hormone signal transduction, glutathione metabolism, flavonoid biosynthesis, ABC transporters, photosynthesis and the metal ion transport pathway. In addition, the number of upregulated genes was greater than the number of downregulated genes at different stress intervals, which indicated that M. lutarioriparia adapted to Cd stress mainly through positive regulation. These results lay a solid foundation for breeding excellent Cd resistant M. lutarioriparia and other plants. The results also have an important theoretical significance for further understanding the detoxification mechanism of Cd stress and the remediation of heavy metal pollution in mining soil.


Subject(s)
Cadmium , Gene Expression Regulation, Plant , Poaceae , Soil Pollutants , Cadmium/toxicity , Cadmium/metabolism , Gene Expression Regulation, Plant/drug effects , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Poaceae/genetics , Poaceae/drug effects , Poaceae/metabolism , Gene Expression Profiling , Biodegradation, Environmental , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/drug effects , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Transcriptome , Soil/chemistry , Stress, Physiological , Mining
3.
Sci Rep ; 14(1): 8704, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622291

ABSTRACT

Grasslands cover approximately 24% of the Earth's surface and are the main feed source for cattle and other ruminants. Sustainable and efficient grazing systems require regular monitoring of the quantity and nutritive value of pastures. This study demonstrates the potential of estimating pasture leaf forage mass (FM), crude protein (CP) and fiber content of tropical pastures using Sentinel-2 satellite images and machine learning algorithms. Field datasets and satellite images were assessed from an experimental area of Marandu palisade grass (Urochloa brizantha sny. Brachiaria brizantha) pastures, with or without nitrogen fertilization, and managed under continuous stocking during the pasture growing season from 2016 to 2020. Models based on support vector regression (SVR) and random forest (RF) machine-learning algorithms were developed using meteorological data, spectral reflectance, and vegetation indices (VI) as input features. In general, SVR slightly outperformed the RF models. The best predictive models to estimate FM were those with VI combined with meteorological data. For CP and fiber content, the best predictions were achieved using a combination of spectral bands and meteorological data, resulting in R2 of 0.66 and 0.57, and RMSPE of 0.03 and 0.04 g/g dry matter. Our results have promising potential to improve precision feeding technologies and decision support tools for efficient grazing management.


Subject(s)
Brachiaria , Poaceae , Cattle , Animals , Poaceae/metabolism , Brachiaria/metabolism , Dietary Fiber/metabolism , Algorithms , Animal Feed/analysis
4.
Ying Yong Sheng Tai Xue Bao ; 35(3): 659-668, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646753

ABSTRACT

To accurately monitor the phenology of net ecosystem carbon exchange (NEE) in grasslands with remote sensing, we analyzed the variations in NEE and its phenology in the Stipa krylovii steppe and discussed the remote sensing vegetation index thresholds for NEE phenology, with the observational data from the Inner Mongolia Xilinhot National Climate Observatory's eddy covariance system and meteorological gradient observation system during 2018-2021, as well as Sentinel-2 satellite data from January 1, 2018 to December 31, 2021. Results showed that, from 2018 to 2021, NEE exhibited seasonal variations, with carbon sequestration occurring from April to October and carbon emission in other months, resulting in an overall carbon sink. The average Julian days for the start date (SCUP) and the end date (ECUP) of carbon uptake period were the 95th and 259th days, respectively, with an average carbon uptake period lasting 165 days. Photosynthetically active radiation showed a negative correlation with daily NEE, contributing to carbon absorption of grasslands. The optimal threshold for capturing SCUP was a 10% threshold of the red-edge chlorophyll index, while the normalized difference vegetation index effectively reflected ECUP with a threshold of 75%. These findings would provide a basis for remote sensing monitoring of grassland carbon source-sink dynamics.


Subject(s)
Carbon , Ecosystem , Environmental Monitoring , Grassland , Poaceae , Remote Sensing Technology , China , Carbon/metabolism , Poaceae/metabolism , Poaceae/growth & development , Environmental Monitoring/methods , Carbon Sequestration , Seasons , Carbon Cycle
5.
Planta ; 259(5): 115, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589536

ABSTRACT

MAIN CONCLUSION: A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan. Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.


Subject(s)
Arabidopsis , Oryza , Glycosyltransferases/analysis , Oryza/metabolism , Xylans/metabolism , Arabidopsis/metabolism , Molecular Docking Simulation , UDP Xylose-Protein Xylosyltransferase , Poaceae/metabolism , Cell Wall/metabolism
6.
Plant Physiol Biochem ; 210: 108597, 2024 May.
Article in English | MEDLINE | ID: mdl-38598868

ABSTRACT

BACKGROUND: Shortawn foxtail (Alopecurus aequalis Sobol.) is a noxious weed in China. The resistance of A. aequalis developed rapidly due to the long-term application of acetolactate synthase (ALS)-inhibiting herbicides. Here, a suspected mesosulfuron-methyl-resistant A. aequalis population, Aa-R, was collected from a wheat field in China. RESULTS: A dose‒response test showed that the Aa-R population has evolved a high level of resistance to mesosulfuron-methyl, and its growth was suppressed by imazamox, pyroxsulam and bispyribac-sodium. ALS gene sequence analysis revealed that a known resistance-related mutation (Pro-197-Thr) was present in the Aa-R population. Moreover, ALS gene overexpression was detected in the Aa-R population. The mesosulfuron-methyl resistance could be reversed by cytochrome P450 monooxygenase (CYP450) and glutathione S-transferase (GST) inhibitors. In addition, enhanced metabolism of mesosulfuron-methyl was detected in the Aa-R population compared with the susceptible population. NADPH-cytochrome P450 reductase and GST activities were strongly inducible in the Aa-R population. One CYP450 gene, CYP74A2, and one GST gene, GST4, were constitutively upregulated in the Aa-R population. Molecular docking results showed the binding affinity of CYP74A2 and GST4 for the tested ALS-inhibiting herbicides, respectively. CONCLUSION: This study confirmed that target-site resistance and non-target-site resistance involving CYP450 and GST were the main mechanisms involved in resistance in the mesosulfuron-methyl-resistant A. aequalis population.


Subject(s)
Acetolactate Synthase , Herbicide Resistance , Herbicides , Poaceae , Sulfonylurea Compounds , Herbicide Resistance/genetics , Sulfonylurea Compounds/pharmacology , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Herbicides/pharmacology , Poaceae/genetics , Poaceae/drug effects , Poaceae/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Imidazoles/pharmacology , Gene Expression Regulation, Plant/drug effects , Mutation , Molecular Docking Simulation , Benzoates , Pyrimidines
7.
Pestic Biochem Physiol ; 200: 105826, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582590

ABSTRACT

Acetyl-CoA carboxylase (ACCase)-inhibiting herbicides are among the most commonly used herbicides to control grassy weeds, especially Leptochloa chinensis, in rice fields across China. Herein, we collected a suspected resistant (R) population of L. chinensis (HFLJ16) from Lujiang county in Anhui Province. Whole plant dose response tests showed that, compared with the susceptible (S) population, the R population showed high resistance to cyhalofop-butyl (22-fold) and displayed cross-resistance to metamifop (9.7-fold), fenoxaprop-P-ethyl (18.7-fold), quizalofop-P-ethyl (7.6-fold), clodinafop-propargyl (12-fold) and clethodim (8.4-fold). We detected an amino acid substitution (Cys-2088-Arg) in the ACCase of resistant L. chinensis. However, ACCase gene expression levels were not significantly different (P > 0.05) between R plants and S plants, without or with cyhalofop-butyl treatment. Furthermore, pretreatment with piperonyl butoxide (PBO, a cytochrome P450 monooxygenase (CYP450) inhibitor) or 4-chloro-7-nitrobenzoxadiazole (NBD-Cl, a glutathione-S-transferase (GST) inhibitor), inhibited the resistance of the R population to cyhalofop-butyl significantly (by approximately 60% and 26%, respectively). Liquid chromatography tandem mass spectrometry analysis showed that R plants metabolized cyhalofop-butyl and cyhalofop acid (its metabolite) significantly faster than S plants. Three CYP450 genes, one GST gene, and two ABC transporter genes were induced by cyhalofop-butyl and were overexpressed in the R population. Overall, GST-associated detoxification, CYP450 enhancement, and target-site gene mutation are responsible for the resistance of L. chinensis to cyhalofop-butyl.


Subject(s)
4-Chloro-7-nitrobenzofurazan , Acetyl-CoA Carboxylase , Butanes , Herbicides , Nitriles , Oxazoles , Propionates , Acetyl-CoA Carboxylase/metabolism , Plant Proteins/genetics , Poaceae/genetics , Poaceae/metabolism , Herbicides/pharmacology , Cytochrome P-450 Enzyme System/genetics , Mutation , Herbicide Resistance/genetics
8.
Nat Commun ; 15(1): 3607, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684658

ABSTRACT

Heterotrophic activity, primarily driven by sulfate-reducing prokaryotes, has traditionally been linked to nitrogen fixation in the root zone of coastal marine plants, leaving the role of chemolithoautotrophy in this process unexplored. Here, we show that sulfur oxidation coupled to nitrogen fixation is a previously overlooked process providing nitrogen to coastal marine macrophytes. In this study, we recovered 239 metagenome-assembled genomes from a salt marsh dominated by the foundation plant Spartina alterniflora, including diazotrophic sulfate-reducing and sulfur-oxidizing bacteria. Abundant sulfur-oxidizing bacteria encode and highly express genes for carbon fixation (RuBisCO), nitrogen fixation (nifHDK) and sulfur oxidation (oxidative-dsrAB), especially in roots stressed by sulfidic and reduced sediment conditions. Stressed roots exhibited the highest rates of nitrogen fixation and expression level of sulfur oxidation and sulfate reduction genes. Close relatives of marine symbionts from the Candidatus Thiodiazotropha genus contributed ~30% and ~20% of all sulfur-oxidizing dsrA and nitrogen-fixing nifK transcripts in stressed roots, respectively. Based on these findings, we propose that the symbiosis between S. alterniflora and sulfur-oxidizing bacteria is key to ecosystem functioning of coastal salt marshes.


Subject(s)
Nitrogen Fixation , Oxidation-Reduction , Plant Roots , Poaceae , Sulfur , Wetlands , Sulfur/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Poaceae/metabolism , Phylogeny , Symbiosis , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Metagenome , Sulfates/metabolism , Nitrogen/metabolism
9.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542226

ABSTRACT

The homeodomain-leucine zipper (HD-ZIP) transcription factors, representing one of the largest plant-specific superfamilies, play important roles in the response to various abiotic stresses. However, the functional roles of HD-ZIPs in abiotic stress tolerance and the underlying mechanisms remain relatively limited in Miscanthus sinensis. In this study, we isolated an HD-ZIP TF gene, MsHDZ23, from Miscanthus and ectopically expressed it in Arabidopsis. Transcriptome and promoter analyses revealed that MsHDZ23 responded to salt, alkali, and drought treatments. The overexpression (OE) of MsHDZ23 in Arabidopsis conferred higher tolerance to salt and alkali stresses compared to wild-type (WT) plants. Moreover, MsHDZ23 was able to restore the hb7 mutant, the ortholog of MsHDZ23 in Arabidopsis, to the WT phenotype. Furthermore, MsHDZ23-OE lines exhibited significantly enhanced drought stress tolerance, as evidenced by higher survival rates and lower water loss rates compared to WT. The improved drought tolerance may be attributed to the significantly smaller stomatal aperture in MsHDZ23-OE lines compared to WT. Furthermore, the accumulation of the malondialdehyde (MDA) under abiotic stresses was significantly decreased, accompanied by dramatically enhanced activities in several antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in the transgenic plants. Collectively, these results demonstrate that MsHDZ23 functions as a multifunctional transcription factor in enhancing plant resistance to abiotic stresses.


Subject(s)
Arabidopsis , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Poaceae/genetics , Poaceae/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Alkalies , Droughts
10.
Microbiol Spectr ; 12(4): e0257423, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38488391

ABSTRACT

The clavicipitaceous fungus Epichloë gansuensis forms symbiotic associations with drunken horse grass (Achnatherum inebrians), providing biotic and abiotic stress protection to its host. However, it is unclear how E. gansuensis affects the assembly of host plant-associated bacterial communities after ammonium nitrogen (NH4+-N) treatment. We examined the shoot- and root-associated bacterial microbiota and root metabolites of A. inebrians when infected (I) or uninfected (F) with E. gansuensis endophyte. The results showed more pronounced NH4+-N-induced microbial and metabolic changes in the endophyte-infected plants compared to the endophyte-free plants. E. gansuensis significantly altered bacterial community composition and ß-diversity in shoots and roots and increased bacterial α-diversity under NH4+-N treatment. The relative abundance of 117 and 157 root metabolites significantly changed with E. gansuensis infection under water and NH4+-N treatment compared to endophyte-free plants. Root bacterial community composition was significantly related to the abundance of the top 30 metabolites [variable importance in the projection (VIP) > 2 and VIP > 3] contributing to differences between I and F plants, especially alkaloids. The correlation network between root microbiome and metabolites was complex. Microorganisms in the Proteobacteria and Firmicutes phyla were significantly associated with the R00693 metabolic reaction of cysteine and methionine metabolism. Co-metabolism network analysis revealed common metabolites between host plants and microorganisms.IMPORTANCEOur results suggest that the effect of endophyte infection is sensitive to nitrogen availability. Endophyte symbiosis altered the composition of shoot and root bacterial communities, increasing bacterial diversity. There was also a change in the class and relative abundance of metabolites. We found a complex co-occurrence network between root microorganisms and metabolites, with some metabolites shared between the host plant and its microbiome. The precise ecological function of the metabolites produced in response to endophyte infection remains unknown. However, some of these compounds may facilitate plant-microbe symbiosis by increasing the uptake of beneficial soil bacteria into plant tissues. Overall, these findings advance our understanding of the interactions between the microbiome, metabolome, and endophyte symbiosis in grasses. The results provide critical insight into the mechanisms by which the plant microbiome responds to nutrient stress in the presence of fungal endophytes.


Subject(s)
Endophytes , Epichloe , Endophytes/physiology , Epichloe/metabolism , Nitrogen/metabolism , Poaceae/metabolism , Poaceae/microbiology , Symbiosis , Bacteria
11.
Environ Sci Pollut Res Int ; 31(18): 26880-26894, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456979

ABSTRACT

Salt marshes are capable of mitigating metal pollution in coastal environments, yet the efficacy of this remediation is contingent upon various environmental factors and the plant species involved. This study investigates the influence of different anthropogenic activities, including industrial, urban, recreational (in an insular area), and dredging operations, on the bioaccumulation of eight metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) within Spartina alterniflora Loisel. in the Patos Lagoon estuary, Brazil. The research aims to assess the pattern of metal bioaccumulation and distribution within the plant's leaves, stems, and roots while also examining metal presence in the sediment. Our main findings reveal that S. alterniflora exhibited elevated metal levels in its plant structure directly related with the metal concentrations in the surrounding sediment, which, in turn, is related to the different anthropogenic activities. The industrial area presented the highest metal levels in sediment and plant sections, followed by dredging, insular, and urban areas. This same pattern was mirrored for the bioconcetration factors (BCF), with the BCFs consistently indicating active metal bioaccumulation across all areas and for most of the metals. This provides evidence of the metal bioaccumulation pattern in S. alterniflora, with elevated BCFs in areas affected by activities with a higher degree of impact. Translocation factors (TF) showed varying metal mobility patterns within the plant's below-ground and above-ground sections across the different areas, with only Hg exhibiting consistent translocation across all study areas. Zn was the primary metal contributor in all plant sections, followed by Pb and Cu. It is worth noting that Pb is a non-essential metal for this plant, highlighting the relationship between elevated Pb contributions in the plant sections and the bioaccumulation of this metal within the plant's structure. Overall, this study emphasizes the bioaccumulation capacity of S. alterniflora and elucidate the intrinsic connection between different anthropogenic activities and their impact on the resultant availability and bioaccumulation of metals by this salt marsh plant.


Subject(s)
Bioaccumulation , Environmental Monitoring , Estuaries , Metals , Poaceae , Wetlands , Poaceae/metabolism , Brazil , Metals/metabolism , Water Pollutants, Chemical/metabolism , Metals, Heavy/metabolism , Geologic Sediments/chemistry
12.
Cells ; 13(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474409

ABSTRACT

Up to a third of the world's population suffers from allergies, yet the effectiveness of available preventative measures remains, at large, poor. Consequently, the development of successful prophylactic strategies for the induction of tolerance against allergens is crucial. In proof-of-concept studies, our laboratory has previously shown that the transfer of autologous hematopoietic stem cells (HSC) or autologous B cells expressing a major grass pollen allergen, Phl p 5, induces robust tolerance in mice. However, eventual clinical translation would require safe allergen expression without the need for retroviral transduction. Therefore, we aimed to chemically couple Phl p 5 to the surface of leukocytes and tested their ability to induce tolerance. Phl p 5 was coupled by two separate techniques, either by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) or by linkage via a lipophilic anchor, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-maleimide (DSPE-PEG-Mal). The effectiveness was assessed in fresh and cultured Phl p 5-coupled cells by flow cytometry, image cytometry, and immunofluorescence microscopy. Chemical coupling of Phl p 5 using EDC was robust but was followed by rapid apoptosis. DSPE-PEG-Mal-mediated linkage was also strong, but antigen levels declined due to antigen internalization. Cells coupled with Phl p 5 by either method were transferred into autologous mice. While administration of EDC-coupled splenocytes together with short course immunosuppression initially reduced Phl p 5-specific antibody levels to a moderate degree, both methods did not induce sustained tolerance towards Phl p 5 upon several subcutaneous immunizations with the allergen. Overall, our results demonstrate the successful chemical linkage of an allergen to leukocytes using two separate techniques, eliminating the risks of genetic modifications. More durable surface expression still needs to be achieved for use in prophylactic cell therapy protocols.


Subject(s)
Allergens , Hypersensitivity , Mice , Animals , Immunoglobulin E/metabolism , Pollen , Poaceae/metabolism
13.
BMC Plant Biol ; 24(1): 213, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528453

ABSTRACT

BACKGROUND: KNOTTED1-like homeobox (KNOX) genes, plant-specific homologous box transcription factors (TFs), play a central role in regulating plant growth, development, organ formation, and response to biotic and abiotic stresses. However, a comprehensive genome-wide identification of the KNOX genes in Moso bamboo (Phyllostachys edulis), the fastest growing plant, has not yet been conducted, and the specific biological functions of this family remain unknown. RESULTS: The expression profiles of 24 KNOX genes, divided into two subfamilies, were determined by integrating Moso bamboo genome and its transcriptional data. The KNOX gene promoters were found to contain several light and stress-related cis-acting elements. Synteny analysis revealed stronger similarity with rice KNOX genes than with Arabidopsis KNOX genes. Additionally, several conserved structural domains and motifs were identified in the KNOX proteins. The expansion of the KNOX gene family was primarily regulated by tandem duplications. Furthermore, the KNOX genes were responsive to naphthaleneacetic acid (NAA) and gibberellin (GA) hormones, exhibiting distinct temporal expression patterns in four different organs of Moso bamboo. Short Time-series Expression Miner (STEM) analysis and quantitative real-time PCR (qRT-PCR) assays demonstrated that PeKNOX genes may play a role in promoting rapid shoot growth. Additionally, Gene Ontology (GO) and Protein-Protein Interaction (PPI) network enrichment analyses revealed several functional annotations for PeKNOXs. By regulating downstream target genes, PeKNOXs are involved in the synthesis of AUX /IAA, ultimately affecting cell division and elongation. CONCLUSIONS: In the present study, we identified and characterized a total of 24 KNOX genes in Moso bamboo and investigated their physiological properties and conserved structural domains. To understand their functional roles, we conducted an analysis of gene expression profiles using STEM and RNA-seq data. This analysis successfully revealed regulatory networks of the KNOX genes, involving both upstream and downstream genes. Furthermore, the KNOX genes are involved in the AUX/IAA metabolic pathway, which accelerates shoot growth by influencing downstream target genes. These results provide a theoretical foundation for studying the molecular mechanisms underlying the rapid growth and establish the groundwork for future research into the functions and transcriptional regulatory networks of the KNOX gene family.


Subject(s)
Oryza , Poaceae , Poaceae/genetics , Poaceae/metabolism , Oryza/genetics , Oryza/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Genome, Plant , Gene Regulatory Networks , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
14.
Sci Total Environ ; 923: 171458, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38438035

ABSTRACT

Endophytic fungi (Trichoderma harzianum (TH) and Paecilomyces lilacinus (PL)) showed potential in phytoremediation for soils contaminated with potentially toxic elements (PTEs (Cd and As)). However, their efficiency is limited, which can be enhanced with the assistance of biochar. This study sought to investigate the effects of TH at two application rates (T1: 4.5 g m-2; T2: 9 g m-2), PL at two application rates (P1: 4.5 g m-2; P2: 9 g m-2), in conjunction with biochar (BC) at 750 g m-2 on the phytoremediation of PTEs by Miscanthus sinensis (M. sinensis). The results showed that the integration of endophytic fungi with biochar notably enhanced the accumulation of Cd and As in M. sinensis by 59.60 %-114.38 % and 49.91 %-134.60 %, respectively. The treatments T2BC and P2BC emerged as the most effective. Specifically, the P2BC treatment significantly enhanced the soil quality index (SQI > 0.55) across all examined soil layers, markedly improving the overall soil condition. It was observed that T2BC treatment could elevate the SQI to 0.56 at the 0-15 cm depth. The combined amendment shifted the primary influences on plant PTEs accumulation from fungal diversity and soil nutrients to bacterial diversity and the availability of soil PTEs. Characteristic microorganisms identified under the combined treatments were RB41 and Pezizaceae, indicating an increase in both bacterial and fungal diversity. This combination altered the soil microbial community, influencing key metabolic pathways. The combined application of PL and biochar was superior to the TH and biochar combination for the phytoremediation of M. sinensis. This approach not only enhanced the phytoremediation potential but also positively impacted soil health and microbial community, suggesting that the synergistic use of endophytic fungi and biochar is an effective strategy for improving the condition of alkaline soils contaminated with PTEs.


Subject(s)
Arsenic , Soil Pollutants , Cadmium/analysis , Biodegradation, Environmental , Soil , Soil Pollutants/analysis , Poaceae/metabolism , Charcoal , Bacteria/metabolism , Fungi/metabolism
15.
Chemosphere ; 353: 141636, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447895

ABSTRACT

Cr(VI) contamination is widely recognized as one of the major environmental hazards. To address the problem of remediation of soil Cr(VI) contamination and utilization of waste peanut shells, this study comprehensively investigated the effects of peanut shell-derived biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz on Cr(VI) reduction and microbial community succession in soil. This study confirmed that root exudate-loaded peanut shell biochar reduced soil pH while simultaneously increasing DOC, sulfide, and Fe(II) concentrations, thereby facilitating the reduction of Cr(VI), achieving a reduction efficiency of 81.8%. Based on XPS and SEM elemental mapping analyses, Cr(VI) reduction occurred concurrently with the Fe and S redox cycles. Furthermore, the microbial diversity, abundance of the functional genera (Geobacter, Arthrobacter, and Desulfococcus) and the metabolic functions associated with Cr(VI) reduction were enhanced by root exudate-loaded biochar. Root exudate-loaded biochar can promote both direct Cr(VI) reduction mediated by the Cr(VI)-reducing bacteria Arthrobacter, and indirect Cr(VI) reduction through Cr/S/Fe co-transformation mediated by the sulfate-reducing bacteria Desulfococcus and Fe(III)-reducing bacteria Geobacter. This study demonstrates the effectiveness of peanut shell biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz to promote soil Cr(VI) reduction, reveals the mechanism how root exudate-loaded biochar shapes functional microbial communities to facilitate Cr(VI) reduction, and proposes a viable strategy for Cr(VI) remediation and utilization of peanut shell.


Subject(s)
Microbiota , Soil Pollutants , Ferric Compounds/metabolism , Soil , Charcoal/metabolism , Chromium/metabolism , Poaceae/metabolism , Soil Pollutants/metabolism , Exudates and Transudates/metabolism
16.
BMC Microbiol ; 24(1): 93, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515035

ABSTRACT

Plant growth promoting microbe assisted phytoremediation is considered a more effective approach to rehabilitation than the single use of plants, but underlying mechanism is still unclear. In this study, we combined transcriptomic and physiological methods to explore the mechanism of plant growth promoting microbe Trichoderma citrinoviride HT-1 assisted phytoremediation of Cd contaminated water by Phragmites australis. The results show that the strain HT-1 significantly promoted P. australis growth, increased the photosynthetic rate, enhanced antioxidant enzyme activities. The chlorophyll content and the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were increased by 83.78%, 23.17%, 47.60%, 97.14% and 12.23% on average, and decreased the content of malondialdehyde (MDA) by 31.10%. At the same time, strain HT-1 improved the absorption and transport of Cd in P. australis, and the removal rate of Cd was increased by 7.56% on average. Transcriptome analysis showed that strain HT-1 induced significant up-regulated the expression of genes related to oxidative phosphorylation and ribosome pathways, and these upregulated genes promoted P. australis remediation efficiency and resistance to Cd stress. Our results provide a mechanistic understanding of plant growth promoting microbe assisted phytoremediation under Cd stress.


Subject(s)
Cadmium , Hypocreales , Soil Pollutants , Cadmium/analysis , Biodegradation, Environmental , Water , Antioxidants/metabolism , Poaceae/metabolism , Gene Expression Profiling , Soil Pollutants/metabolism
17.
Pest Manag Sci ; 80(6): 2539-2551, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38375975

ABSTRACT

BACKGROUND: The evolution of non-target site resistance (NTSR) to herbicides leads to a significant reduction in herbicide control of agricultural weed species. Detecting NTSR in weed populations prior to herbicide treatment would provide valuable information for effective weed control. While not all NTSR mechanisms have been fully identified, enhanced metabolic resistance (EMR) is one of the better studied, conferring tolerance through increased herbicide detoxification. Confirming EMR towards specific herbicides conventionally involves detecting metabolites of the active herbicide molecule in planta, but this approach is time-consuming and requires access to well-equipped laboratories. RESULTS: In this study, we explored the potential of using molecular biomarkers to detect EMR before herbicide treatment in black-grass (Alopecurus myosuroides). We tested the reliability of selected biomarkers to predict EMR and survival after herbicide treatments in both reference and 27 field-derived black-grass populations collected from sites across the UK. The combined analysis of the constitutive expression of biomarkers and metabolism studies confirmed three proteins, namely, AmGSTF1, AmGSTU2 and AmOPR1, as differential biomarkers of EMR toward the herbicides fenoxaprop-ethyl and mesosulfuron in black-grass. CONCLUSION: Our findings demonstrate that there is potential to use molecular biomarkers to detect EMR toward specific herbicides in black-grass without reference to metabolism analysis. However, biomarker development must include testing at both transcript and protein levels in order to be reliable indicators of resistance. This work is a first step towards more robust resistance biomarker development, which could be expanded into other herbicide chemistries for on-farm testing and monitoring EMR in uncharacterised black-grass populations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Biomarkers , Herbicide Resistance , Herbicides , Poaceae , Propionates , Sulfonylurea Compounds , Herbicides/pharmacology , Poaceae/drug effects , Poaceae/metabolism , Poaceae/genetics , Herbicide Resistance/genetics , Sulfonylurea Compounds/pharmacology , Propionates/pharmacology , Propionates/metabolism , Biomarkers/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Oxazoles/pharmacology
18.
Environ Res ; 249: 118345, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38331147

ABSTRACT

Strategies seeking to increase the use efficiency of nitrogen (N) fertilizers and that benefit plant growth through multiple mechanisms can reduce production costs and contribute to more sustainable agriculture free of polluting residues. Under controlled conditions, we investigated the compatibility between foliar inoculation with an endophytic diazotrophic bacterium (Herbaspirillum seropedicae HRC54) at control and low, medium and high N fertilization levels (0, 25, 50 and 100 mg of N kg-1 as urea, respectively) in Marandu palisadegrass. Common procedures in our research field (biometric and nutritional assessments) were combined with isotopic techniques (natural abundance - δ15N‰ and 15N isotope dilution) and root scanning to determine the contribution of fixed N and recovery of N fertilizer by the grass. Overall, the combined use of 15N isotopic techniques revealed that inoculation not only improved the recovery of applied N-urea from the soil but also provided fixed nitrogen to Marandu palisade grass, resulting in an increase in the total accumulated N. When inoculated plants grew at control and low levels of N, a positive cascade effect encompassing root growth stimulation (nodes of smaller diameter roots), better soil and fertilizer resource exploitation and increased forage production was observed. In contrast, increasing N reduced the contributions of N fixed by H. seropedicae from 21.5% at the control level to 8.6% at the high N level. Given the minimal to no observed growth promotion, this condition was deemed inhibitory to the positive effects of H. seropedicae. We discuss how to make better use of H. seropedicae inoculation in Marandu palisadegrass, albeit on a small scale, thus contributing to a more rational and efficient use of N fertilizers. Finally, we pose questions for future investigations based on 15N isotopic techniques under field conditions, which have great applicability potential.


Subject(s)
Fertilizers , Herbaspirillum , Nitrogen Isotopes , Nitrogen , Plant Roots , Herbaspirillum/metabolism , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/growth & development , Nitrogen/metabolism , Poaceae/microbiology , Poaceae/metabolism , Poaceae/growth & development
19.
J Hazard Mater ; 466: 133578, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38306837

ABSTRACT

Phytoremediation is widely considered as a cost-effective method for managing heavy metal soil pollution. Leersia hexandra Swartz shows a promising potential for the remediation of heavy metals pollution, including chromium (Cr), copper (Cu), and nickel (Ni). It is vital to understand the physiological and biochemical responses of L. hexandra to Ni stress to elucidate the mechanisms underlying Ni tolerance and accumulation. Here, we examined the metabolic and transcriptomic responses of L. hexandra exposed to 40 mg/L Ni for 24 h and 14 d. After 24-h Ni stress, gene expression of glutathione metabolic cycle (GSTF1, GSTU1 and MDAR4) and superoxide dismutase (SODCC2) was significantly increased in plant leaves. Furthermore, after 14-d Ni stress, the ascorbate peroxidase (APX7), superoxide dismutase (SODCP and SOD1), and catalase (CAT) gene expression was significantly upregulated, but that of glutathione metabolic cycle (EMB2360, GSTU1, GSTU6, GSH2, GPX6, and MDAR2) was downregulated. After 24-h Ni stress, the differentially expressed metabolites (DEMs) were mainly flavonoids (45%) and flavones (20%). However, after 14-d Ni stress, the DEMs were mainly carbohydrates and their derivatives (34%), amino acids and derivatives (15%), and organic acids and derivatives (8%). Results suggest that L. hexandra adopt distinct time-dependent antioxidant and metal detoxification strategies likely associated with intracellular reduction-oxidation balance. Novel insights into the molecular mechanisms responsible for Ni tolerance in plants are presented.


Subject(s)
Metals, Heavy , Soil Pollutants , Nickel/toxicity , Antioxidants/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Poaceae/metabolism , Glutathione/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Defense Mechanisms
20.
Nat Commun ; 15(1): 1219, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336770

ABSTRACT

Plants with the C4 photosynthesis pathway typically respond to climate change differently from more common C3-type plants, due to their distinct anatomical and biochemical characteristics. These different responses are expected to drive changes in global C4 and C3 vegetation distributions. However, current C4 vegetation distribution models may not predict this response as they do not capture multiple interacting factors and often lack observational constraints. Here, we used global observations of plant photosynthetic pathways, satellite remote sensing, and photosynthetic optimality theory to produce an observation-constrained global map of C4 vegetation. We find that global C4 vegetation coverage decreased from 17.7% to 17.1% of the land surface during 2001 to 2019. This was the net result of a reduction in C4 natural grass cover due to elevated CO2 favoring C3-type photosynthesis, and an increase in C4 crop cover, mainly from corn (maize) expansion. Using an emergent constraint approach, we estimated that C4 vegetation contributed 19.5% of global photosynthetic carbon assimilation, a value within the range of previous estimates (18-23%) but higher than the ensemble mean of dynamic global vegetation models (14 ± 13%; mean ± one standard deviation). Our study sheds insight on the critical and underappreciated role of C4 plants in the contemporary global carbon cycle.


Subject(s)
Carbon Dioxide , Photosynthesis , Carbon Dioxide/metabolism , Photosynthesis/physiology , Poaceae/metabolism , Plants/metabolism , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...