Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Evolution ; 78(7): 1261-1274, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38572796

ABSTRACT

Phenotypic plasticity is critical for organismal performance and can evolve in response to natural selection. Brain morphology is often developmentally plastic, affecting animal performance in a variety of contexts. However, the degree to which the plasticity of brain morphology evolves has rarely been explored. Here, we use Trinidadian guppies (Poecilia reticulata), which are known for their repeated adaptation to high-predation (HP) and low-predation (LP) environments, to examine the evolution and plasticity of brain morphology. We exposed second-generation offspring of individuals from HP and LP sites to 2 different treatments: predation cues and conspecific social environment. Results show that LP guppies had greater plasticity in brain morphology compared to their ancestral HP population, suggesting that plasticity can evolve in response to environmentally divergent habitats. We also show sexual dimorphism in the plasticity of brain morphology, highlighting the importance of considering sex-specific variation in adaptive diversification. Overall, these results may suggest the evolution of brain morphology plasticity as an important mechanism that allows for ecological diversification and adaptation to divergent habitats.


Subject(s)
Biological Evolution , Brain , Ecosystem , Poecilia , Animals , Poecilia/anatomy & histology , Poecilia/physiology , Poecilia/genetics , Brain/anatomy & histology , Brain/physiology , Female , Male , Sex Characteristics , Adaptation, Physiological , Predatory Behavior
2.
Evolution ; 78(5): 894-905, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38315570

ABSTRACT

Diverse clades of fishes adapted to feeding on the benthos repeatedly converge on steep craniofacial profiles and shorter, wider heads. But in an incipient radiation, to what extent is this morphological evolution measurable and can we distinguish the relative genetic vs. plastic effects? We use the Trinidadian guppy (Poecilia reticulata) to test the repeatability of adaptation and the alignment of genetic and environmental effects shaping poecilid craniofacial morphology. We compare wild-caught and common garden lab-reared fish to quantify the genetic and plastic components of craniofacial morphology across 4 populations from 2 river drainage systems (n = 56 total). We first use micro-computed tomography to capture 3D morphology, then place both landmarks and semilandmarks to perform size-corrected 3D morphometrics and quantify shape space. We find a measurable, significant, and repeatable divergence in craniofacial shape between high-predation invertivore and low-predation detritivore populations. As predicted from previous examples of piscine adaptive trophic divergence, we find increases in head slope and craniofacial compression among the benthic detritivore foragers. Furthermore, the effects of environmental plasticity among benthic detritivores produce exaggerated craniofacial morphological change along a parallel axis to genetic morphological adaptation from invertivore ancestors. Overall, many of the major patterns of benthic-limnetic craniofacial evolution appear convergent among disparate groups of teleost fishes.


Subject(s)
Biological Evolution , Poecilia , Skull , Animals , Poecilia/anatomy & histology , Poecilia/genetics , Poecilia/physiology , Skull/anatomy & histology , X-Ray Microtomography , Food Chain , Predatory Behavior
3.
Am Nat ; 197(1): 29-46, 2021 01.
Article in English | MEDLINE | ID: mdl-33417522

ABSTRACT

AbstractDetecting contemporary evolution requires demonstrating that genetic change has occurred. Mixed effects models allow estimation of quantitative genetic parameters and are widely used to study evolution in wild populations. However, predictions of evolution based on these parameters frequently fail to match observations. Here, we applied three commonly used quantitative genetic approaches to predict the evolution of size at maturity in a wild population of Trinidadian guppies. Crucially, we tested our predictions against evolutionary change observed in common-garden experiments performed on samples from the same population. We show that standard quantitative genetic models underestimated or failed to detect the cryptic evolution of this trait as demonstrated by the common-garden experiments. The models failed because (1) size at maturity and fitness both decreased with increases in population density, (2) offspring experienced higher population densities than their parents, and (3) selection on size was strongest at high densities. When we accounted for environmental change, predictions better matched observations in the common-garden experiments, although substantial uncertainty remained. Our results demonstrate that predictions of evolution are unreliable if environmental change is not appropriately captured in models.


Subject(s)
Biological Evolution , Body Size/genetics , Poecilia/genetics , Animals , Genetic Fitness , Male , Models, Genetic , Poecilia/anatomy & histology , Population Density , Selection, Genetic , Sexual Maturation
4.
Am Nat ; 196(5): 597-608, 2020 11.
Article in English | MEDLINE | ID: mdl-33064581

ABSTRACT

AbstractSexually selected ornaments range from highly dynamic traits to those that are fixed during development and relatively static throughout sexual maturity. Ornaments along this continuum differ in the information they provide about the qualities of potential mates, such as their parasite resistance. Dynamic ornaments enable real-time assessment of the bearer's condition: they can reflect an individual's current infection status, or they can reflect resistance to recent infections. Static ornaments, however, are not affected by recent infection but may instead indicate an individual's genetically determined resistance, even in the absence of infection. Given the typically aggregated distribution of parasites among hosts, infection is unlikely to affect the ornaments of the vast majority of individuals in a population: static ornaments may therefore be the more reliable indicators of parasite resistance. To test this hypothesis, we quantified the ornaments of male guppies (Poecilia reticulata) before experimentally infecting them with Gyrodactylus turnbulli. Males with more left-right symmetrical black coloration and those with larger areas of orange coloration, both static ornaments, were more resistant. However, males with more saturated orange coloration, a dynamic ornament, were less resistant. Female guppies often prefer symmetrical males with larger orange ornaments, suggesting that parasite-mediated natural and sexual selection act in concert on these traits.


Subject(s)
Color , Poecilia/anatomy & histology , Poecilia/parasitology , Animals , Male , Platyhelminths , Sex Characteristics
5.
J Evol Biol ; 33(10): 1361-1370, 2020 10.
Article in English | MEDLINE | ID: mdl-32896937

ABSTRACT

Genital morphology exhibits tremendous variation and is intimately linked with fitness. Sexual selection, nonmating natural selection and neutral forces have been explored as potential drivers of genital divergence. Though less explored, genitalia may also be plastic in response to the developmental environment. In poeciliid fishes, the length of the male intromittent organ, the gonopodium, may be driven by sexual selection if longer gonopodia attract females or aid in forced copulation attempts or by nonmating natural selection if shorter gonopodia allow predator evasion. The rearing environment may also affect gonopodium development. Using an experimental introduction of Trinidadian guppies into four replicate streams with reduced predation risk, we tested whether this new environment caused the evolution of genitalia. We measured gonopodium length after rearing the source and introduced populations for two generations in the laboratory to remove maternal and other environmental effects. We split full-sibling brothers into different rearing treatments to additionally test for developmental plasticity of gonopodia in response to predator cues and food levels as well as the evolution of plasticity. The introduced populations had shorter gonopodia after accounting for body size, demonstrating rapid genital evolution in 2-3 years (8-12 generations). Brothers reared on low food levels had longer gonopodia relative to body size than those on high food, reflecting maintenance of gonopodium length despite a reduction in body size. In contrast, gonopodium length was not significantly different in response to the presence or absence of predator cues. Because the plastic response to low food was maintained between the source and introduced populations, there was no evidence that plasticity evolved. This study demonstrates the importance of both evolution and developmental plasticity in explaining genital variation.


Subject(s)
Adaptation, Biological , Biological Evolution , Genitalia/anatomy & histology , Poecilia/genetics , Animals , Female , Male , Poecilia/anatomy & histology
6.
J Evol Biol ; 33(4): 512-523, 2020 04.
Article in English | MEDLINE | ID: mdl-31953965

ABSTRACT

Natural selection drives the evolution of traits to optimize organismal performance, but optimization of one aspect of performance can influence other aspects of performance. Here, we asked how phenotypic variation between locally adapted fish populations affects locomotion and ventilation, testing for functional trade-offs and trait-performance correlations. Specifically, we investigated two populations of livebearing fish (Poecilia mexicana) that inhabit distinct habitat types (hydrogen-sulphide-rich springs and adjacent nonsulphidic streams). For each individual, we quantified different metrics of burst swimming during simulated predator attacks, steady swimming and gill ventilation. Coinciding with predictions, we documented significant population differences in all aspects of performance, with fish from sulphidic habitats exhibiting higher steady swimming performance and higher ventilation capacity, but slower burst swimming. There was a significant functional trade-off between steady and burst swimming, but not between different aspects of locomotion and ventilation. Although our findings about population differences in locomotion performance largely parallel the results from previous studies, we provide novel insights about how morphological variation might impact ventilation and ultimately oxygen acquisition. Overall, our analyses provided insights into the functional consequences of previously documented phenotypic variation, which will help to disentangle the effects of different sources of selection that may coincide along complex environmental gradients.


Subject(s)
Adaptation, Biological , Biological Evolution , Poecilia/physiology , Selection, Genetic , Swimming/physiology , Animals , Female , Hydrogen Sulfide , Male , Natural Springs , Poecilia/anatomy & histology
7.
J Evol Biol ; 33(2): 165-177, 2020 02.
Article in English | MEDLINE | ID: mdl-31610058

ABSTRACT

Despite ongoing advances in sexual selection theory, the evolution of mating decisions remains enigmatic. Cognitive processes often require simultaneous processing of multiple sources of information from environmental and social cues. However, little experimental data exist on how cognitive ability affects such fitness-associated aspects of behaviour. Using advanced tracking techniques, we studied mating behaviours of guppies artificially selected for divergence in relative brain size, with known differences in cognitive ability, when predation threat and sex ratio was varied. In females, we found a general increase in copulation behaviour in when the sex ratio was female biased, but only large-brained females responded with greater willingness to copulate under a low predation threat. In males, we found that small-brained individuals courted more intensively and displayed more aggressive behaviours than large-brained individuals. However, there were no differences in female response to males with different brain size. These results provide further evidence of a role for female brain size in optimal decision-making in a mating context. In addition, our results indicate that brain size may affect mating display skill in male guppies. We suggest that it is important to consider the association between brain size, cognitive ability and sexual behaviour when studying how morphological and behavioural traits evolve in wild populations.


Subject(s)
Organ Size/physiology , Poecilia/anatomy & histology , Poecilia/physiology , Sex Ratio , Sexual Behavior, Animal/physiology , Animals , Brain/anatomy & histology , Female , Male , Predatory Behavior
8.
J Morphol ; 280(10): 1537-1547, 2019 10.
Article in English | MEDLINE | ID: mdl-31343766

ABSTRACT

We describe the histological characteristics of the testis and spermatogenesis of the cave molly Poecilia mexicana, a viviparous teleost inhabiting a sulfur spring cave, Cueva del Azufre, in Tabasco, Southern Mexico. P. mexicana has elongate spermatogonial restricted testes with spermatogonia arranged in the testicular periphery. Germ cell development occurs within spermatocysts. As spermatogenesis proceeds, the spermatocysts move longitudinally from the periphery of the testis to the efferent duct system, where mature spermatozoa are released. The efferent duct system consists of short efferent duct branches connected to a main efferent duct, opened into the genital pore. Spermatogenesis consisted of the following stages: spermatogonia (A and B), spermatocytes (primary and secondary), spermatids, and spermatozoa. The spermatozoa are situated within spermatocysts, with their heads oriented toward the periphery and flagella toward the center. Once in the efferent duct system, mature spermatozoa are packaged as unencapsulated sperm bundles, that is, spermatozeugmata. We suggest that the histological characteristics of the testis and spermatogenesis of P. mexicana from the Cueva del Azufre, and the viviparous condition where the spermatozoa enter in the female without been in the water, have allowed them to invade sulfurous and/or subterranean environments in Southern Mexico, without requiring complex morphofunctional changes in the testis or the spermatogenetic process.


Subject(s)
Poecilia/anatomy & histology , Spermatogenesis , Testis/cytology , Animals , Caves , Extreme Environments , Female , Male , Poecilia/physiology , Reproduction , Seasons , Testis/physiology , Viviparity, Nonmammalian
9.
J Exp Biol ; 222(Pt 10)2019 05 21.
Article in English | MEDLINE | ID: mdl-31053644

ABSTRACT

Despite the common assumption that the brain is malleable to surrounding conditions mainly during ontogeny, plastic neural changes can occur also in adulthood. One of the driving forces responsible for alterations in brain morphology is increasing environmental complexity that may demand enhanced cognitive abilities (e.g. attention, memory and learning). However, studies looking at the relationship between brain morphology and learning are scarce. Here, we tested the effects of both learning and environmental enrichment on neural plasticity in guppies (Poecilia reticulata), by means of either a reversal-learning test or a spatial-learning test. Given considerable evidence supporting environmentally induced plastic alterations, two separate control groups that were not subjected to any cognitive test were included to account for potential changes induced by the experimental setup alone. We did not find any effect of learning on any of our brain measurements. However, we found strong evidence for an environmental effect, where fish given access to the spatial-learning environment had larger relative brain size and optic tectum size in relation to those exposed to the reversal-learning environment. Our results demonstrate the plasticity of the adult brain to respond adaptively mainly to environmental conditions, providing support for the environmental enhancement theory.


Subject(s)
Brain/anatomy & histology , Poecilia/anatomy & histology , Reversal Learning , Spatial Learning , Animals , Environment , Female , Organ Size
10.
Evolution ; 73(6): 1200-1212, 2019 06.
Article in English | MEDLINE | ID: mdl-30989642

ABSTRACT

Divergence of genital traits among lineages has the potential to serve as a reproductive isolating barrier when copulation, insemination, and fertilization are inhibited by incompatibilities between female and male genitalia. Despite widespread evidence for genital trait diversity among closely related lineages and coevolution of female and male genitalia within lineages, few studies have investigated genital evolution during the early stages of speciation. We quantified genital variation in replicated population pairs of Poecilia mexicana with ongoing ecological speciation between sulfidic (H2 S containing) and nearby nonsulfidic habitats. These analyses revealed rapid and correlated divergence of female and male genitalia across evolutionarily independent population pairs exposed to divergent selection regimes. Both sexes exhibited convergent evolution of genital traits among populations inhabiting similar habitat types. Our results demonstrate that genital evolution can occur during the early stages of speciation-with-gene-flow, potentially as a result of variation in the intensity of sexual conflict among populations. Our results suggest genitalia may contribute to early stages of divergence and challenge the generality of previously suggested mechanisms of genital evolution in poeciliids.


Subject(s)
Genetic Speciation , Genitalia, Female/anatomy & histology , Genitalia, Male/anatomy & histology , Poecilia/anatomy & histology , Poecilia/genetics , Animals , Ecosystem , Female , Gene Flow , Male
11.
Sci Total Environ ; 663: 206-215, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30711587

ABSTRACT

High rates of progestins consumption in the form of active ingredients in women's oral contraceptives and other hormonal preparations may lead to their increased concentrations in aquatic environments and subsequent harmful effect on fish reproduction. The objective of the present study was to assess the effect of etonogestrel, a third-generation synthetic progestin, on the reproductive behavior, fertility, gonads histology, and secondary sexual characteristics of male and female Endler's guppies (Poecilia wingei). Fish were subjected for 34 days to two concentrations of etonogestrel, including one possibly environmentally relevant (3.2 ng L-1) and one sublethal (320 ng L-1) concentration. A mating behavior study was subsequently conducted and revealed that the treatment with etonogestrel significantly reduced mating frequency in the exposed fish compared to controls. All the exposed females were unable to reproduce. In addition, female fish exposed to the highest level of etonogestrel were masculinized, as their anal fins and body coloration showed patterns similar to those of male fish. Etonogestrel-exposed females also had fewer developed oocytes. In conclusion, the low etonogestrel concentration (3.2 ng L-1) led to a reduction of mating activity in males without effect on their reproductive success, but it completely inhibited reproduction in females. Exposure to etonogestrel clearly has more severe consequences for females than males.


Subject(s)
Contraceptive Agents, Female/adverse effects , Desogestrel/adverse effects , Poecilia/physiology , Reproduction/drug effects , Sexual Behavior, Animal/drug effects , Water Pollutants, Chemical/adverse effects , Animals , Female , Fertility/drug effects , Gonads/anatomy & histology , Gonads/drug effects , Male , Poecilia/anatomy & histology , Sex Characteristics
12.
J Exp Biol ; 222(Pt 2)2019 01 16.
Article in English | MEDLINE | ID: mdl-30651317

ABSTRACT

Well-supported correlations between swim speed and mouth size during prey capture suggest the broad existence of an integrated relationship between locomotion and feeding in suction-feeding fishes. However, the influence of specialization on this relationship is unclear. We used divergent populations of Trinidadian guppies (Poecilia reticulata) to test whether integration during suction is generalizable to a non-suction specialist and whether intraspecific specialization of component systems affects their integration. Guppies from replicate high- and low-predation streams were recorded capturing wild-type zooplankton using suction. Alternative general linear models supported a positive correlation between swim speed and mouth size in derived low-predation populations, suggesting that the relationship can be extended in some cases. High-predation populations lack this integration, which may be the result of direct selection or constraints imposed by selection on locomotion. As guppies invade new habitats they may be evolving a new, integrated performance phenotype from a non-integrated ancestor.


Subject(s)
Mouth/anatomy & histology , Poecilia/anatomy & histology , Poecilia/physiology , Predatory Behavior , Swimming , Adaptation, Biological , Animals , Biological Evolution , Female
13.
J Evol Biol ; 32(3): 218-226, 2019 03.
Article in English | MEDLINE | ID: mdl-30474900

ABSTRACT

Understanding how animal personality (consistent between-individual behavioural differences) arises has become a central topic in behavioural sciences. This endeavour is complicated by the fact that not only the mean behaviour of individuals (behavioural type) but also the strength of their reaction to environmental change (behavioural plasticity) varies consistently. Personality and cognitive abilities are linked, and we suggest that behavioural plasticity could also be explained by differences in brain size (a proxy for cognitive abilities), since accurate decisions are likely essential to make behavioural plasticity beneficial. We test this idea in guppies (Poecilia reticulata), artificially selected for large and small brain size, which show clear cognitive differences between selection lines. To test whether those lines differed in behavioural plasticity, we reared them in groups in structurally enriched environments and then placed adults individually into empty tanks, where we presented them daily with visual predator cues and monitored their behaviour for 20 days with video-aided motion tracking. We found that individuals differed consistently in activity and risk-taking, as well as in behavioural plasticity. In activity, only the large-brained lines demonstrated habituation (increased activity) to the new environment, whereas in risk-taking, we found sensitization (decreased risk-taking) in both brain size lines. We conclude that brain size, potentially via increasing cognitive abilities, may increase behavioural plasticity, which in turn can improve habituation to novel environments. However, the effects seem to be behaviour-specific. Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level.


Subject(s)
Behavior, Animal , Brain/anatomy & histology , Habituation, Psychophysiologic , Poecilia/anatomy & histology , Animals , Female , Male , Organ Size
14.
Naturwissenschaften ; 105(9-10): 53, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30291505

ABSTRACT

Phenotypic variation plays a critical role in determining the structural organisation and ecological function of wild populations. Animal groups are often structured according to factors such as species, sex, body size and parasite load, but it is unclear whether body shape also influences patterns of social organisation, and thus contributes to population phenotypic structure. Here, we use geometric morphometric analyses to determine whether wild-caught shoals of a freshwater fish, the western rainbowfish (Melanotaenia australis), are structured according to body size and shape. Using randomisation analyses, we show that the level of variation in size and shape observed in natural group assemblages is lower than that expected under a null model of random shoal composition. In addition, we found evidence of further phenotypic structuring along an upstream-downstream environmental gradient. The putative benefits of morphological assortment include a reduction in predation risk (due to prey oddity and predator confusion effects) and increased hydrodynamic or foraging efficiency. We suggest that morphological variation is a neglected component of population social organisation that can affect population processes, such as patterns of gene flow, and ecological interactions, such as predator-prey dynamics.


Subject(s)
Environment , Phenotype , Poecilia/anatomy & histology , Animals , Body Size
15.
Nat Ecol Evol ; 2(9): 1492-1500, 2018 09.
Article in English | MEDLINE | ID: mdl-30104752

ABSTRACT

The allometric relationship between brain and body size among vertebrates is often considered a manifestation of evolutionary constraints. However, birds and mammals have undergone remarkable encephalization, in which brain size has increased without corresponding changes in body size. Here, we explore the hypothesis that a reduction of phenotypic integration between brain and body size has facilitated encephalization in birds and mammals. Using a large dataset comprising 20,213 specimens across 4,587 species of jawed vertebrates, we show that the among-species (evolutionary) brain-body allometries are remarkably constant, both across vertebrate classes and across taxonomic levels. Birds and mammals, however, are exceptional in that their within-species (static) allometries are shallower and more variable than in other vertebrates. These patterns are consistent with the idea that birds and mammals have reduced allometric constraints that are otherwise ubiquitous across jawed vertebrates. Further exploration of ontogenetic allometries in selected taxa of birds, fishes and mammals reveals that birds and mammals have extended the period of fetal brain growth compared to fishes. Based on these findings, we propose that avian and mammalian encephalization has been contingent on increased variability in brain growth patterns.


Subject(s)
Birds/anatomy & histology , Body Size , Brain/anatomy & histology , Mammals/anatomy & histology , Animals , Biological Evolution , Birds/growth & development , Brain/growth & development , Female , Male , Mammals/growth & development , Phylogeny , Poecilia/anatomy & histology , Poecilia/growth & development
16.
BMC Res Notes ; 11(1): 364, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29884214

ABSTRACT

OBJECTIVE: We investigated the potential role of indirect benefits for female mate preferences in a highly promiscuous species of live-bearing fishes, the sailfin molly Poecilia latipinna using an integrative approach that combines methods from animal behavior, life-history evolution, and genetics. Males of this species solely contribute sperm for reproduction, and consequently females do not receive any direct benefits. Despite this, females typically show clear mate preferences. It has been suggested that females can increase their reproductive success through indirect benefits from choosing males of higher quality. RESULTS: Although preferences for large body size have been recorded as an honest signal for genetic quality, this particular study resulted in female preference being unaffected by male body size. Nonetheless, larger males did sire more offspring, but with no effect on offspring quality. This study presents a methodical innovation by combining preference testing with life history measurements-such as the determination of the dry weight of fish embryos-and paternity analyses on single fish embryos.


Subject(s)
Behavior, Animal , Body Size , Poecilia/anatomy & histology , Poecilia/genetics , Reproduction/physiology , Sex Characteristics , Sexual Behavior, Animal/physiology , Animals , Female , Male
17.
J Exp Biol ; 221(Pt 12)2018 06 25.
Article in English | MEDLINE | ID: mdl-29739831

ABSTRACT

Understanding what drives animal decisions is fundamental in evolutionary biology, and mate choice decisions are arguably some of the most important in any individual's life. As cognitive ability can impact decision making, elucidating the link between mate choice and cognitive ability is necessary to fully understand mate choice. To experimentally study this link, we used guppies (Poecilia reticulata) artificially selected for divergence in relative brain size and with previously demonstrated differences in cognitive ability. A previous test in our female guppy selection lines demonstrated the impact of brain size and cognitive ability on information processing during female mate choice decisions. Here, we evaluated the effect of brain size and cognitive ability on male mate choice decisions. Specifically, we investigated the preference of large-brained, small-brained and non-selected guppy males for female body size, a key indicator of female fecundity in this species. For this, male preference was quantified in dichotomous choice tests when presented with dyads of females with small, medium and large body size differences. All types of males showed a preference for larger females but no effect of brain size was found in the ability to discriminate between differently sized females. However, we found that non-selected and large-brained males, but not small-brained males, showed a context-dependent preference for larger females depending on the difference in female size. Our results have two important implications. First, they provide further evidence that male mate choice also occurs in a species in which secondary sexual ornamentation is present only in males. Second, they show that brain size and cognitive ability have important effects on individual variation in mating preference and sexually selected traits.


Subject(s)
Body Size , Brain/anatomy & histology , Mating Preference, Animal , Poecilia/physiology , Visual Perception , Animals , Female , Male , Organ Size/genetics , Poecilia/anatomy & histology
18.
Behav Processes ; 147: 13-20, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29248747

ABSTRACT

Collective movement is achieved when individuals adopt local rules to interact with their neighbours. How the brain processes information about neighbours' positions and movements may affect how individuals interact in groups. As brain size can determine such information processing it should impact collective animal movement. Here we investigate whether brain size affects the structure and organisation of newly forming fish shoals by quantifying the collective movement of guppies (Poecilia reticulata) from large- and small-brained selection lines, with known differences in learning and memory. We used automated tracking software to determine shoaling behaviour of single-sex groups of eight or two fish and found no evidence that brain size affected the speed, group size, or spatial and directional organisation of fish shoals. Our results suggest that brain size does not play an important role in how fish interact with each other in these types of moving groups of unfamiliar individuals. Based on these results, we propose that shoal dynamics are likely to be governed by relatively basic cognitive processes that do not differ in these brain size selected lines of guppies.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Mass Behavior , Movement , Poecilia/anatomy & histology , Poecilia/physiology , Animals , Organ Size
19.
J Morphol ; 278(12): 1667-1681, 2017 12.
Article in English | MEDLINE | ID: mdl-28914456

ABSTRACT

The structure of the ovary and oogenesis of Poecilia mexicana from an active sulfur spring cave is documented. Poecilia mexicana is the only poeciliid adapted to a subterranean environment with high hydrogen sulfide levels and extreme hypoxic conditions. Twenty females were captured throughout one year at Cueva del Azufre, located in the State of Tabasco in Southern Mexico. Ovaries were processed with histological techniques. P. mexicana has a single, ovoid ovary with ovigerous lamella that project to the ovarian lumen. The ovarian wall presents abundant loose connective tissue, numerous melanomacrophage centers and large blood vessels, possibly associated with hypoxic conditions. The germinal epithelium bordering the ovarian lumen contains somatic and germ cells forming cell nests projecting into the stroma. P. mexicana stores sperm in ovarian folds associated with follicles at different developmental phases. Oogenesis in P. mexicana consisted of the following stages: (i) oogonial proliferation, (ii) chromatin nucleolus, (iii) primary growth, subdivided into: (a) one nucleolus, (b) multiple nucleoli, (c) droplet oils-cortical alveoli steps; (iv) secondary growth, subdivided in: (a) early secondary growth, (b) late secondary growth, and (c) full grown. Follicular atresia was present in all stages of follicular development; it was characterized by oocyte degeneration, where follicle cells hypertrophy and differentiate in phagocytes. The ovary and oogenesis are similar to these seen in other poeciliids, but we found frequent atretic follicles, melanomacrophage centers, reduced fecundity and increased of offspring size.


Subject(s)
Caves , Extremophiles/physiology , Oogenesis , Ovary/anatomy & histology , Poecilia/anatomy & histology , Poecilia/physiology , Sulfur/chemistry , Viviparity, Nonmammalian , Animals , Cell Nucleolus/metabolism , Cell Proliferation , Chromatin/metabolism , Female , Male , Mexico , Oocytes/cytology , Oogonia/cytology , Ovary/growth & development , Spermatozoa/cytology
20.
J Morphol ; 278(12): 1647-1655, 2017 12.
Article in English | MEDLINE | ID: mdl-28944495

ABSTRACT

Female teleosts do not develop Müllerian ducts; consequently, the ovary of teleosts contains two zones: germinal and gonoduct. The gonoduct lacks germinal cells, but has relevant functions in the reproductive process. We describe the functional morphology of the gonoduct in the viviparous teleost Poeciliopsis gracilis during nongestation and gestation stages. This study tests the hypothesis that the gonoduct functions as a barrier between the germinal zone and the exterior. By providing information about morphology and function of the gonoduct we show that this part of the ovary has an essential role in the reproduction of teleosts. The ovaries were processed by histological technique and stained with hematoxylin-eosin (H-E), Masson's trichrome, toluidine blue and periodic acid-Schiff (PAS). The gonoduct is divided into three regions: cephalic, middle, and caudal. In the cephalic and middle regions there are mucosal folds that extend into the gonoductal lumen, forming structures similar to a cervix. The caudal region has two portions: the anterior contains a dorsal invagination and exocrine glands among columnar cells; the posterior has a ventral flexion and stratified epithelium with apical secretory cells. The morphology of this epithelium indicates two functions: (a) secretory by the apical columnar cells, and (b) protection through the stratification. Another peculiarity of the caudal region is that both ducts, reproductive and digestive, converge in a common cavity at their caudal ends, forming a cloacal region. The histology of the gonoduct indicates relevant functions including: (1) the control of the luminal diameter by the muscle and the presence of mucosal folds, like a cervix; (2) the relationship with the spermatozoa during insemination and storing them in mucosal folds; (3) the support of immunological processes; (4) secretory activities; (5) forming the duct during birth; and (6) possibly, acts as a barrier against parasite infestations.


Subject(s)
Ovary/anatomy & histology , Ovary/physiology , Poecilia/anatomy & histology , Poecilia/physiology , Viviparity, Nonmammalian , Animals , Cloaca/anatomy & histology , Epithelium/anatomy & histology , Female , Male , Reproduction/physiology , Spermatozoa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...