ABSTRACT
Fenbendazole is an antiparasitic drug widely used in veterinary medicine to treat parasitic infections caused in animals like cattle, horses, sheep, and dogs. Recently, it has been repositioned as a potential alternative for cancer treatment. However, it is a highly hydrophobic molecule (0.9 ug/mL), which can compromise its dissolution rate and absorption. Thus, this work aimed to apply a nanotechnological approach to improve drug solubility and dissolution performance. Fenbendazole nanoparticles stabilized by different poloxamers were obtained by lyophilization without cryoprotectants. The behavior of the drug in the solid state was analyzed by X-ray diffractometry, differential scanning calorimetry, and infrared spectroscopy. The nanosystems were also evaluated for solubility and dissolution rate. A long-term stability evaluation was performed for three years at room temperature. The yields of the lyophilization ranged between 75 and 81% for each lot. The nanoparticles showed a submicron size (< 340 nm) and a low polydispersity depending on the stabilizer. The physicochemical properties of the prepared systems indicated a remarkable amorphization of the drug, which influenced its solubility and dissolution performance. The drug dissolution from both the fresh and aged nanosystems was significantly higher than that of the raw drug. In particular, nanoparticles prepared with poloxamer 407 showed no significant modifications in their particle size in three years of storage. Physical stability studies indicated that the obtained systems prepared with P188, P237, and P407 suffered certain recrystallization during long storage at 25 °C. These findings confirm that selected poloxamers exhibited an important effect in formulating fenbendazole nanosystems with improved dissolution.
Subject(s)
Drug Stability , Fenbendazole , Freeze Drying , Nanoparticles , Solubility , Nanoparticles/chemistry , Fenbendazole/chemistry , Freeze Drying/methods , Calorimetry, Differential Scanning/methods , Drug Storage , Particle Size , X-Ray Diffraction/methods , Drug Liberation , Chemistry, Pharmaceutical/methods , Poloxamer/chemistry , Cryoprotective Agents/chemistryABSTRACT
Osteomyelitis is an inflammation of bone tissue usually caused by pyogenic bacteria. The most recurrent clinical approach consists of bone debridement followed by parenteral administration of antibiotics. However, systemic antibiotic treatment has limitations regarding absorption rate and bioavailability over time. The main challenge of osteomyelitis treatment consists of coupling the persistent infection treatment with the regeneration of the bone debrided. In this work, we developed an injectable drug delivery system based on poloxamer 407 hydrogel containing undoped Mg, Zn-doped tricalcium phosphate (ß-TCP), and teicoplanin, a broad-spectrum antibiotic. We evaluated how the addition of teicoplanin and ß-TCP affected the micellization, gelation, particle size, and surface charge of the hydrogel. Later, we studied the hydrogel degradation and drug delivery kinetics. Finally, the bactericidal, biocompatibility, and osteogenic properties were evaluated through in vitro studies and confirmed by in vivo Wistar rat models. Teicoplanin was found to be encapsulated in the corona portions of the hydrogel micelles, yielding a bigger hydrodynamics radius. The encapsulated teicoplanin showed a sustained release over the evaluated period, enough to trigger antibacterial properties against Gram-positive bacteria. Besides, the formulations were biocompatible and showed bone healing ability and osteogenic properties. Finally, in vivo studies confirmed that the proposed locally injected formulations yielded osteomyelitis treatment with superior outcomes than parenteral administration while promoting bone regeneration. In conclusion, the presented formulations are promising drug delivery systems for osteomyelitis treatment and deserve further technological improvements.
Subject(s)
Anti-Bacterial Agents , Calcium Phosphates , Hydrogels , Osteogenesis , Osteomyelitis , Rats, Wistar , Teicoplanin , Osteomyelitis/drug therapy , Osteomyelitis/microbiology , Animals , Calcium Phosphates/chemistry , Teicoplanin/administration & dosage , Teicoplanin/pharmacology , Teicoplanin/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Rats , Hydrogels/chemistry , Hydrogels/administration & dosage , Osteogenesis/drug effects , Drug Delivery Systems/methods , Humans , Staphylococcus aureus/drug effects , Poloxamer/chemistryABSTRACT
Aim: To investigate the effect of surfactant type on curcumin-loaded (CUR) PLGA nanoparticles (NPs) to modulate monocyte functions. Materials & methods: The nanoprecipitation method was used, and PLGA NPs were designed using Pluronic F127 (F127) and/or lecithin (LEC) as surfactants. Results: The Z-average of the NPs was <200 nm, they had a spherical shape, Derjaguin-Muller-Toporov modulus >0.128 MPa, they were stable during storage at 4°C, ζ-potential â¼-40 mV, polydispersity index <0.26 and % EE of CUR >94%. PLGA-LEC/F127 NPs showed favorable physicochemical and nanomechanical properties. These NPs were bound and internalized mainly by monocytes, suppressed monocyte-induced reactive oxygen species production, and decreased the ability of monocytes to modulate T-cell proliferation. Conclusion: These results demonstrate the potential of these NPs for targeted therapy.
This study explores how different surfactants affect curcumin-loaded PLGA nanoparticles, a biodegradable polymer. The nanoparticles were designed using Pluronic F127 and/or lecithin as surfactants. They are less than 200 nm and spherical. They are stable when stored at 4 °C, with a surface charge of about -40 mV, and can encapsulate more than 94% of curcumin.The results of this study are promising, showing that PLGA nanoparticles using a mixture of lecithin and Pluronic F127 as surfactants have favorable properties toward monocyte adhesion. They are primarily taken up by monocytes, a type of white blood cell, and demonstrate a remarkable ability to reduce the production of reactive oxygen species, which can cause cell damage, as well as the ability of monocytes to stimulate the proliferation of T cells. This underscores the potential of these nanoparticles in targeted therapy, particularly in diseases where monocytes play a pivotal role, such as chronic inflammatory conditions.
Subject(s)
Curcumin , Lecithins , Monocytes , Nanoparticles , Poloxamer , Humans , Cell Proliferation/drug effects , Curcumin/chemistry , Curcumin/pharmacology , Drug Carriers/chemistry , Lecithins/chemistry , Monocytes/drug effects , Monocytes/metabolism , Nanoparticles/chemistry , Particle Size , Poloxamer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Reactive Oxygen Species/metabolism , Surface-Active Agents/chemistry , T-Lymphocytes/drug effectsABSTRACT
The necessity of animal-free performance tests for novel ophthalmic formulation screening is challenging. For this, we developed and validated a new device to simulate the dynamics and physical-chemical barriers of the eye for in vitro performance tests of topic ophthalmic formulations. The OphthalMimic is a 3D-printed device with an artificial lacrimal flow, a cul-de-sac area, a support base, and a simulated cornea comprised of a polymeric membrane containing poly-vinyl alcohol 10 % (w/v), gelatin 2.5 % (w/v), and different proportions of mucin and poloxamer, i.e., 1:1 (M1), 1:2 (M2), and 2:1 (M3) w/v, respectively. The support base is designed to move between 0° and 50° to replicate the movement of an eyelid. We challenged the model by testing the residence performance of poloxamer®407 16 % and poloxamer®407 16 % + chitosan 1 % (PLX16CS10) gels containing fluconazole. The test was conducted with a simulated tear flow of 1.0 mL.min-1 for 5 min. The OphthalMimic successfully distinguished PLX16 and PLX16C10 formulations based on their fluconazole drainage (M1: 65 ± 14 % and 27 ± 10 %; M2: 58 ± 6 % and 38 ± 9 %; M3: 56 ± 5 % and 38 ± 18 %). In conclusion, the OphthalMimic is a promising tool for comparing the animal-free performance of ophthalmic formulations.
Subject(s)
Ophthalmic Solutions , Poloxamer , Poloxamer/chemistry , Ophthalmic Solutions/chemistry , Administration, Ophthalmic , Fluconazole/administration & dosage , Printing, Three-Dimensional , Cornea/drug effects , Cornea/metabolism , Animals , Chitosan/chemistry , Animal Testing Alternatives/methods , Tears/chemistry , Humans , Gelatin/chemistryABSTRACT
Cutaneous leishmaniasis (CL) is a vector-borne disease characterized by skin lesions that can evolve into high-magnitude ulcerated lesions. Thus, this study aimed to develop an innovative nanoemulsion (NE) with clove oil, Poloxamer® 407, and multiple drugs, such as amphotericin B (AmB) and paromomycin (PM), for use in the topical treatment of CL. METHODS: Droplet size, morphology, drug content, stability, in vitro release profile, in vitro cytotoxicity on RAW 264.7 macrophages, and antileishmanial activity using axenic amastigotes of Leishmania amazonensis were assessed for NEs. RESULTS: After optimizing the formulation parameters, such as the concentration of clove oil and drugs, using an experimental design, it was possible to obtain a NE with an average droplet size of 40 nm and a polydispersion index of 0.3, and these parameters were maintained throughout the 365 days. Furthermore, the NE showed stability of AmB and PM content for 180 days under refrigeration (4 °C), presented a pH compatible with the skin, and released modified AmB and PM. NE showed the same toxicity as free AmB and higher toxicity than free PM against RAW 264.7 macrophages. The same activity as free AmB, and higher activity than free PM against amastigotes L. amazonensis. CONCLUSION: It is possible to develop a NE for the treatment of CL; however, complementary studies regarding the antileishmanial activity of NE should be carried out.
Subject(s)
Amphotericin B , Antiprotozoal Agents , Emulsions , Leishmaniasis, Cutaneous , Paromomycin , Paromomycin/pharmacology , Paromomycin/administration & dosage , Amphotericin B/pharmacology , Amphotericin B/administration & dosage , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Animals , Mice , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/chemistry , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/parasitology , Leishmania mexicana/drug effects , Clove Oil/pharmacology , Clove Oil/chemistry , Poloxamer/chemistry , Drug Stability , Nanoparticles/chemistryABSTRACT
Treatment against leishmaniasis presents problems, mainly due to the toxicity of the drugs, high cost, and the emergence of resistant strains. A previous study showed that two vanillin-derived synthetic molecules, 3s [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] and 3t [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde], presented antileishmanial activity against Leishmania infantum, L. amazonensis, and L. braziliensis species. In the present work, 3s and 3t were evaluated to treat L. amazonensis-infected mice. Molecules were used pure or incorporated into Poloxamer 407-based micelles. In addition, amphotericin B (AmpB) and its liposomal formulation, Ambisome®, were used as control. Animals received the treatment and, one and 30 days after, they were euthanized to evaluate immunological, parasitological, and biochemical parameters. Results showed that the micellar compositions (3s/Mic and 3t/Mic) induced significant reductions in the lesion mean diameter and parasite load in the infected tissue and distinct organs, as well as a specific and significant antileishmanial Th1-type immune response, which was based on significantly higher levels of IFN-γ, IL-12, nitrite, and IgG2a isotype antibodies. Drug controls showed also antileishmanial action; although 3s/Mic and 3t/Mic have presented better and more significant parasitological and immunological data, which were based on significantly higher IFN-γ production and lower parasite burden in treated animals. In addition, significantly lower levels of urea, creatinine, alanine transaminase, and aspartate transaminase were found in mice treated with 3s/Mic and 3t/Mic, when compared to the others. In conclusion, results suggest that 3s/Mic and 3t/Mic could be considered as therapeutic candidates to treat against L. amazonensis infection.
Subject(s)
Antiprotozoal Agents , Benzaldehydes , Leishmania mexicana , Mice, Inbred BALB C , Micelles , Animals , Mice , Benzaldehydes/pharmacology , Benzaldehydes/chemistry , Leishmania mexicana/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/chemistry , Leishmaniasis, Cutaneous/drug therapy , Female , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Poloxamer/chemistry , Poloxamer/pharmacology , Male , Spleen/parasitologyABSTRACT
BACKGROUND: A drug with poor water-solubility, like Dexamethasone acetate, can present lower bioavailability conventional for pharmaceutical formulations, and the presence of polymorphs in the raw material can lead to drug quality problems. OBJECTIVE: In this study, nanocrystals of dexamethasone acetate were synthesized by high pressure homogenizer (HPH) method in surfactant poloxamer 188 (P188) solid dispersion and the bioavailable in raw material with polymorphism presence was evaluated. METHODS: The powder pre-suspension was prepared by the HPH process, and the nanoparticles formed were incorporated in P188 solutions. The nanocrystals formed were characterized by techniques of XRD, SEM, FTIR, thermal analysis by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), dynamic light scattering (DLS) to analyze the particle size and zeta potential, and in vitro evaluation by dissolution studies. RESULTS: The characterization techniques were adequate to show the presence of raw material with physical moisture between two dexamethasone acetate polymorphs. The nanocrystals formed in the presence of the P188 in the formulation showed a considerable increase in the rate of dissolution of the drug in the medium and in the size of the stable nanocrystals, even in the presence of dexamethasone acetate polymorphs. CONCLUSION: The results showed that it was possible to produce dexamethasone nanocrystals by HPH process with regular size by the presence of the small amount of P188 surfactant. This article presents a novelty in the development of dexamethasone nanoparticles that have different polymorphic forms in their physical composition.
Subject(s)
Nanoparticles , Poloxamer , Solubility , Poloxamer/chemistry , Dexamethasone , Surface-Active Agents , Nanoparticles/chemistryABSTRACT
This paper provides a review of the literature on the use of Pluronic® triblock copolymers for drug encapsulation over the last 10 years. A special focus is given to the progress of drug delivery systems (e.g., micelles, liposomes, micro/nanoemulsions, hydrogels and nanogels, and polymersomes and niosomes); the beneficial aspects of Pluronic® triblock copolymers as biological response modifiers and as pharmaceutical additives, adjuvants, and stabilizers, are also discussed. The advantages and limitations encountered in developing site-specific targeting approaches based on Pluronic-based nanostructures in cancer treatment are highlighted, in addition to innovative examples for improving tumor cytotoxicity while reducing side effects.
Subject(s)
Neoplasms , Poloxamer , Humans , Poloxamer/chemistry , Polymers/chemistry , Drug Delivery Systems , Micelles , Neoplasms/drug therapyABSTRACT
The challenges for developing new pharmaceutical formulations based on natural and synthetic polymers has led to innovation into the design of systems responsive environmental stimuli such as temperature. However, the presence of hydrophilic or hydrophobic molecules, charged groups, or metallic elements can affect their structural behavior and their biopharmaceutical performance This work aims to study and characterize the morphology and structure of polymeric formulations based on Poloxamer (PL) 407 (15 % and 30 % m/v) and its binary with PL 338 (15 % PL 407 + 15 % PL 338) and hyaluronic acid (0.5 % m/v), as drug delivery systems of local anesthetic bupivacaine (0.5 % m/v) and ropivacaine (0.5 % m/v) hydrochloride. For this, it was performed SANS analysis for determination of supramolecular organization and lattice parameters; calorimetry was done to characterize their thermodynamic parameters; rheological analysis flow curve, consistency and adhesion calculation, Maxwell model study. Also, it was performed drug release profiles and calculation of diffusion coefficients. It was identified lamellar structures in PL 407 15 % formulations, and coexistence of cubic and hexagonal phases in PL 407 30 % and binary formulations, however hyaluronic acid, bupivacaine or ropivacaine seem do not affect the type of supramolecular structure. In addition, these additives can modulate viscosity among poloxamers chains, increasing micelle-micelle interactions as it happens in presence of bupivacaine. On the other hand, addition of hyaluronic acid can promote increased structural stabilization by hydrophilic interactions between hyaluronic and micellar corona. It reflects the ability how to control the drug release, as in case of binary system that retained bupivacaine for longer time than other systems, as well it happens when hyaluronic acid is added in PL 407 15 % and PL 407 30 %.
Subject(s)
Hyaluronic Acid , Hydrogels , Hydrogels/chemistry , Hyaluronic Acid/chemistry , Micelles , Ropivacaine , Drug Delivery Systems , Poloxamer/chemistry , Temperature , Polymers , Bupivacaine/pharmacologyABSTRACT
The possibility of interaction between cornstarch (CS) and amphiphilic molecules, such as the micelle-forming triblock copolymer Pluronic® F127 (F127), also known by Poloxamer 407, indicates that CS-F127 aqueous mixtures can regulate either the starch solubility or the copolymer micellization. Herein experimental and computational techniques were used to investigate CS-F127 aqueous mixtures aiming to highlight the role of these compounds on the molecular complexation. Dynamic light scattering results show that CS in water is highly polydisperse, while the F127 concentration and temperature influence the micellization process and the interaction with CS. Circular dichroism data of CS supernatants indicate the existence of small helical-like granules (Dh ≈ 800 nm) in the CS-F127 mixed aqueous solutions at 25 °C. UV-Vis spectrophotometry shows a small absorption band around 267 or 275 nm characteristic of micelles, granules, or molecular complexes, while FTIR and X-ray diffractometry indicate negligible structural changes. Lugol iodine tests at 25 °C show that both the precipitate and supernatant in the mixtures undergo some structural changes also indicating molecular complexation. Molecular dynamic simulations show the formation of stabilized inclusion complexes (V-amylose), where the propylene oxide segment of the copolymer inside the amylose helix and the ethylene oxide branches facing the aqueous media. These results together reveal weak CS-F127 interactions, evidencing a small solubility of CS both in the absence and presence of F127 as a solubilizing agent. Furthermore, moderate CS amounts do not change the F127 micelle structure.
Subject(s)
Micelles , Poloxamer , Amylose , Poloxamer/chemistry , Polyethylenes , Polymers , Polypropylenes , Starch , Water/chemistryABSTRACT
Thermosensitive bioadhesive formulations can display increased retention time, skin permeation, and improve the topical therapy of many drugs. Acne is an inflammatory process triggered by several factors like the proliferation of the bacteria Propionibacterium acnes. Aiming for a new alternative treatment with a natural source, propolis displays great potential due to its antibiotic, anti-inflammatory, and healing properties. This study describes the development of bioadhesive thermoresponsive platform with cellulose derivatives and poloxamer 407 for propolis skin delivery. Propolis ethanolic extract (PES) was added to the formulations with sodium carboxymethylcellulose (CMC) or hydroxypropyl methylcellulose (HPMC) and poloxamer 407 (Polox). The formulations were characterized as rheology, bioadhesion, and mechanical analysis. The selected formulations were investigated as in vitro propolis release, cytotoxicity, ex vivo skin permeation by Fourier Transform Infrared Photoacoustic Spectroscopy, and the activity against P. acnes. Formulations showed suitable sol-gel transition temperature, shear-thinning behavior, and texture profile. CMC presence decreased the cohesiveness and adhesiveness of formulations. Polox/HPMC/PES system displayed less cytotoxicity, modified propolis release governed by anomalous transport, skin permeation, and activity against P. acnes. These results indicate important advantages in the topical treatment of acne and suggest a potential formulation for clinical evaluation.
Subject(s)
Acne Vulgaris , Propolis , Acne Vulgaris/drug therapy , Cellulose , Gels/chemistry , Humans , Hypromellose Derivatives , Poloxamer/chemistryABSTRACT
This study reports the development of thermosensitive hydrogels for delivering ropivacaine (RVC), a wide clinically used local anesthetic. For this purpose, poloxamer- (PL-) based hydrogels were synthesized for evaluating the influence of polymer concentration, hydrophilic-lipophilic balances, and binary system formation on biopharmaceutical properties and pharmacological performance. Transition temperatures were shifted, and rheological analysis revealed a viscoelastic behavior with enhanced elastic/viscous modulus relationship (G'/G " = 1.8 to 22 times), according to hydrogel composition and RVC incorporation. The RVC release from PL407 and PL407/338 systems followed the Higuchi model (R 2 = 0.923-0.989), indicating the drug diffusion from hydrogels to the medium. RVC-PL hydrogels were potentially biocompatible evoking low cytotoxic effects (in fibroblasts and Schwann cells) and mild/moderate inflammation signs on sciatic nerve nearby histological evaluation. In vivo pharmacological assays demonstrated that PL407 and PL407/338 evoked differential analgesic effects, by prolonging the sensory blockade duration up to ~340 and 250 min., respectively. All those results highlighted PL407 and PL407/338 as promising new strategies for sustaining analgesic effects during the postoperative period.
Subject(s)
Anesthesia, Local , Biocompatible Materials/chemistry , Hydrogels/chemistry , Poloxamer/chemistry , Ropivacaine/pharmacology , 3T3 Cells , Analgesia , Animals , Area Under Curve , Calorimetry, Differential Scanning , Cell Death/drug effects , Cell Survival/drug effects , Drug Liberation , Elasticity , Male , Mice , Micelles , Rats, Wistar , Rheology , Sciatic Nerve/drug effects , Sensation/drug effects , ViscosityABSTRACT
Loperamide is a µ-opioid agonist with poor gastrointestinal absorption, mainly because of its modest aqueous solubility and being a P-glycoprotein (Pgp) efflux substrate. Nevertheless, studies associated with therapeutic effects strongly suggest that loperamide holds potential pharmacological advantages over traditional µ-opioid agonists commonly used for analgesia. Thus, in this Communication, we assessed in MDCK-hMDR1 cell lines the effects over loperamide uptake and efflux ratio, when loaded into Eudragit RS (ERS) nanocarriers coated with poloxamer 188 (P188). ERS was chosen for enhancing loperamide aqueous dispersibility and P188 as a potential negative Pgp modulator. In uptake assays, it was observed that Pgp limited the accumulation of loperamide into cells and that preincubation with P188, but not coincubation, led to increasing loperamide uptake at a similar extent of Pgp pharmacological inhibition. On the other hand, the efflux ratio displayed no alterations when Pgp was pharmacologically inhibited, whereas ERS/P188 nanocarriers effectively enhanced loperamide uptake and absorptive transepithelial transport. The latter suggests that loperamide transport across cells is significantly influenced by the presence of the unstirred water layer (UWL), which could hinder the visualization of Pgp-efflux effects during transport assays. Thus, results in this work highlight that formulating loperamide into this nanocarrier enhances its uptake and transport permeability.
Subject(s)
Antidiarrheals/administration & dosage , Drug Carriers/chemistry , Loperamide/administration & dosage , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Acrylic Resins/chemistry , Administration, Oral , Animals , Antidiarrheals/pharmacokinetics , Biological Availability , Dogs , Humans , Intestinal Absorption , Intestinal Mucosa/metabolism , Loperamide/pharmacokinetics , Madin Darby Canine Kidney Cells , Methacrylates/chemistry , Nanoparticles/chemistry , Permeability , Poloxamer/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SolubilityABSTRACT
Rivaroxaban (RXB), an oral direct factor Xa inhibitor, presents innovative therapeutic profile. However, RXB has shown adverse effects, mainly due to pharmacokinetic limitations, highlighting the importance of developing more effective formulations. Therefore, this work aims at the preparation, physicochemical characterization and in vitro evaluation of time-dependent anticoagulant activity and toxicology profile of RXB-loaded poly(lactic-co-glycolic acid) (PLGA)/poloxamer nanoparticles (RXBNps). RXBNp were produced by nanoprecipitation method and physicochemical characteristics were evaluated. In vitro analysis of time-dependent anticoagulant activity was performed by prothrombin time test and toxicological profile was assessed by hemolysis and MTT reduction assays. The developed RXBNp present spherical morphology with average diameter of 205.5 ± 16.95 nm (PdI 0.096 ± 0.04), negative zeta potential (-26.28 ± 0.77 mV), entrapment efficiency of 91.35 ± 2.40%, yield of 41.81 ± 1.68% and 3.72 ± 0.07% of drug loading. Drug release was characterized by an initial fast release followed by a sustained release with 28.34 ± 2.82% of RXB available in 72 h. RXBNp showed an expressive time-dependent anticoagulant activity in human and rat blood plasma and non-toxic profile. Based on the results presented, it is possible to consider that RXBNp may be able to assist in the development of promising new therapies for treatment of thrombotic disorders.
Subject(s)
Anticoagulants/chemistry , Factor Xa Inhibitors/chemistry , Nanoparticles/chemistry , Poloxamer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rivaroxaban/chemistry , Animals , Anticoagulants/pharmacokinetics , Cell Survival , Chlorocebus aethiops , Drug Carriers/chemistry , Drug Liberation , Factor Xa Inhibitors/pharmacokinetics , Hemolysis , Humans , Nanoparticles/ultrastructure , Particle Size , Rats , Rivaroxaban/pharmacokinetics , Vero CellsABSTRACT
Traditional therapy for malignant neoplasms involving surgical procedures, radiotherapy and chemotherapy aims to kill neoplastic cells, but also affects normal cells. Therefore, exogenous proteases are the target of studies in cancer therapy, as they have been shown to be effective in suppressing tumors and reducing metastases. Pluronic F127 (F127) is a copolymer of amphiphilic blocks that has shown significant potential for drug administration, as it is capable of incorporating hydrophobic drugs and self-assembling in micrometers of nanometric size. This study investigated the effects of immobilization of the alkaline protease PR4A3 with pluronic F127 micelles on the enzyme-induced cytotoxicity. Protease immobilization was demonstrated through UV-visible and circular dichroism (CD) spectroscopies, as the enzyme interacts with the polymeric micelle of Pluronic F127 without changing its secondary structure. In addition, the immobilized form of the enzyme showed greater bioavailability after passing through the simulated gastrointestinal transit. Cell viability was assessed using the tetrazoic methylthiazole (MTT) assay. The results open perspectives for new research and development for PR4A3 in the treatment of colorectal carcinoma.
Subject(s)
Adenocarcinoma/pathology , Bacterial Proteins/metabolism , Colorectal Neoplasms/pathology , Endopeptidases/metabolism , Enzymes, Immobilized/metabolism , Micelles , Poloxamer/chemistry , Biological Availability , Cell Death , Cell Line, Tumor , Circular Dichroism , Gastrointestinal Transit , Humans , Hydrolysis , Proteolysis , Spectrophotometry, UltravioletABSTRACT
Polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) have been extensively studied for their use in film formation. Poloxamer 407 (P407) is a block copolymer that has thermo-responsive and surfactant properties when used in pharmaceutical systems. These polymers are already used in liquid or semi-solid systems for ocular and parenteral drug delivery. However, the effect of P407 presence in solid pharmaceutical films composed of different PVA:PVP ratios have not been investigated yet. Therefore, this work investigated the influence of P407 added to the binary polymer mixture of PVA and PVP for the development of solid films aiming for pharmaceutical applications. The rheological properties of dispersions were investigated, and films were prepared by solvent casting method using different P407:PVA:PVP ratios according to a factorial design 23 (plus center point). The mechanical and in vitro mucoadhesive properties of films, as well as the disintegration time were investigated. Systems presented high mechanical resistance, mucoadhesion, and disintegration timeless than 180 s. It was found that higher concentrations of PVA increase mechanical properties and decrease disintegration time, and higher proportions of PVP and P407 increased mucoadhesion. The films could be classified as fast disintegrating films and represent a promising alternative for modifying drug delivery and pharmaceutical applications.
Subject(s)
Drug Delivery Systems , Poloxamer/chemistry , Polyvinyl Alcohol/chemistry , Povidone/chemistry , Adhesiveness , Excipients/chemistry , Mucous Membrane/metabolism , Polymers/chemistry , Rheology , Solvents/chemistry , Surface-Active Agents/chemistryABSTRACT
Starch is an excellent alternative to produce packaging materials, however, due to its high hydrophilicity, it is necessary to mix it with other polymers. Chitosan (CTS) is a polymer extracted from shrimp shells and crabs, which can be used to make biodegradable materials. The principal component of biodegradable was corn starch and chitosan, the copolymer pluronic F127 was incorporated in several concentrations and its effect on the water vapor barrier, morphological, thermal, and mechanical properties of the films was evaluated, because its incorporation in the formulation of biodegradable materials could increase its hydrophobicity. The surface of starch-chitosan composite films obtained was more homogeneous and smoother with the increase in the content of pluronic F127. The %S and WVP of the starch-chitosan films decreased from 42 to 3%, and 21 × 10-11 to 3 × 10-14 g. m-1s-1 Pa-1, respectively, with the incorporation of pluronic from 3%, which makes these materials a good alternative for product packaging.
Subject(s)
Biodegradable Plastics/chemistry , Chitosan/chemistry , Food Packaging , Poloxamer/chemistry , Starch/chemistry , Hydrophobic and Hydrophilic Interactions , Permeability , Solubility , Steam , Tensile Strength , Water/chemistryABSTRACT
The antifungal application of photodynamic therapy (PDT) has been widely explored. According to superficial nature of tinea capitis and the facility of application of light sources, the use of nanoencapsulated hypericin in P-123 associated with PDT (P123-Hy-PDT) has been a poweful tool to treat this pathology. Thus, the aim of this study was to evaluate the efficiency of P123-Hy-PDT against planktonic cells and in a murine model of dermatophytosis caused by Microsporum canis. In vitro antifungal susceptibility and in vivo efficiency tests were performed, including a skin toxicity assay, analysis of clinical signs by evaluating score, and photoacoustic spectroscopy. In addition, tissue analyses by histopathology and levels of pro-inflammatory cytokines, such as quantitative and qualitative antifungal assays, were employed. The in vitro assays demonstrated antifungal susceptibility with 6.25 and 12.5 µmol/L P123-Hy-PDI; these experiments are the first that have used this treatment of animals. P123-Hyp-mediated PDT showed neither skin nor biochemical alteration in vivo; it was safe for dermatophytosis treatment. Additionally, the treatment revealed rapid improvement in clinical signs at the site of infection after only three treatment sessions, with a clinical score confirmed by photoacoustic spectroscopy. The mycological reduction occurred after six treatment sessions, with a statistically significant decrease compared with untreated infected animals. These findings showed that P123-Hy-PDT restored tissue damage caused by infection, a phenomenon confirmed by histopathological analysis and proinflammatory cytokine levels. Our results reveal for the first time that P123-Hy-PDT is a promising treatment for tinea capitis and tinea corporis caused by M. canis, because it showed rapid clinical improvement and mycological reduction without causing toxicity.
Subject(s)
Nanostructures/chemistry , Perylene/analogs & derivatives , Photochemotherapy/methods , Poloxamer/analogs & derivatives , Tinea/drug therapy , Animals , Anthracenes , Capsules , Mice , Perylene/chemistry , Perylene/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Poloxamer/chemistry , PolymerizationABSTRACT
Nanotechnology, when applied to PDT's, allows the encapsulation of ZnPc in nanocarriers, producing thus nanoemulsions that permit the use of ZnPc as photosensitizers. The Enterococcus faecalis and methicillin-resistant Staphylococcus aureus (MRSA) are microorganisms present in biofilms which can cause resistant endodontic infections. The objective of this work is the development and characterization of clove essential oil nanoemulsions containing ZnPc. The formulations were developed according to factorial experimental planning and characterized by the determination of the mean drop size, Polydispersity Index (PdI), content, organoleptic characteristics, stability, morphology, cytotoxicity in the dark and evaluation of the photobiological activity. The experimental planning was able to indicate the maximum amount of ZnPc that could be encapsulated in the nanoemulsion while maintaining droplet size <50 nm and PdI < 0.2. The surface plots for the response variables indicated a robust region for the combination of Pluronic® F-127 and clove oil factors. The result of this study was the choice of the nanoemulsion containing ZnPc solution at 5%, clove oil at 5%, Pluronic® F-127 at 10% and will be codified as ZnPc-NE. The nanoemulsion presented a mean diameter of 30.52 nm, PDI < 0.2 and a concentration of 17.5 µg/mL, as well as stability at room temperature for 180 days. TEM showed that the drops are spherical with nanometric size, which corroborates the results of dynamic light scattering. Concerning the photobiological activity, the ZnPc-NE exhibited MIC 1.09 µg/mL for Enterococcus faecalis and 0.065 µg/mL for MRSA (Methicillin-resistant Staphylococcus aureus). ZnPc-NE showed higher photobiological activity than free ZnPc. Besides, cytotoxicity studies showed that blank-NE (nanoemulsions without PS) showed good antimicrobial activity. Thus, clove oil nanoemulsion is an excellent nanocarrier to promote the photobiological activity of the ZnPc against pathogenic microorganisms.
Subject(s)
Anti-Infective Agents/chemistry , Emulsions/chemistry , Indoles/chemistry , Nanocapsules/chemistry , Organometallic Compounds/chemistry , Photosensitizing Agents/chemistry , Administration, Oral , Anti-Infective Agents/pharmacology , Cell Survival/drug effects , Clove Oil/chemistry , Drug Compounding , Enterococcus faecalis/drug effects , Humans , Indoles/pharmacology , Isoindoles , Methicillin-Resistant Staphylococcus aureus/drug effects , Organometallic Compounds/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Poloxamer/chemistry , Zinc CompoundsABSTRACT
Natural polysaccharides have been investigated as vehicles for oral insulin administration. Because of their non-toxic, renewable, low cost and readily available properties, gums find multiple applications in the pharmaceutical industry. This work aimed to develop a Sterculia striata gum-based formulation associated with additional biopolymers (dextran sulfate, chitosan, and albumin), a crosslinking agent (calcium chloride) and stabilizing agents (polyethylene glycol and poloxamer 188), to increase the oral bioavailability of proteins. Insulin was used as a model drug and the methods used to prepare the formulation were based on ionotropic pregelation followed by electrolytic complexation of oppositely charged biopolymers under controlled pH conditions. The developed formulation was characterized to validate its efficacy, by the determination of its average particle size (622 nm), the insulin encapsulation efficiency (70%), stability in storage for 30 days, and the in vitro mucoadhesion strength (92.46 mN). Additionally, the developed formulation preserved about 64% of initial insulin dose in a simulated gastric medium. This study proposed, for the first time, a Sterculia striata gum-based insulin delivery system with potential for the oral administration of protein drugs, being considered a valid alternative for efficient delivery of those drugs.