Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 576
Filter
1.
Bioelectrochemistry ; 159: 108749, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38823375

ABSTRACT

Carcinoembryonic antigen (CEA), a key colon biomarker, demands a precise detection method for cancer diagnosis and prognosis. This study introduces a novel electrochemical aptasensor using a triblock polyadenine probe for ultra-sensitive detection of CEA. The method leverages Exonuclease III (Exo III)-assisted target recycling and hybridization chain reaction. The triblock polyadenine probe self-assembles on the bare gold electrode through the strong affinity between adenine and gold electrode, blocking CEA diffusion and providing a large immobilization surface. CEA binding to hairpin probe 1 (HP1), followed by the hybridization between HP1 and hairpin probe 2 (HP2), triggers DNA cleavage by Exo III, amplifying the signal via a hybridization chain reaction and producing numerous dsDNA walkers that generates a dramatic electrochemical impedance signal. Under optimized conditions, the aptasensor achieved two ultra-low detection limits: 0.39 ag∙mL-1 within the concentration range of 5 ag∙mL-1 to 5 × 106 ag∙mL-1, and 1.5 ag∙mL-1 within the concentration range of 5 × 106 ag∙mL-1 to 1 × 1010 ag∙mL-1. Its performance in human serum samples meets the practical standards, offering a promising new tool for ultrasensitive tumor marker detection, potentially revolutionizing early cancer diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Carcinoembryonic Antigen , Electrochemical Techniques , Exodeoxyribonucleases , Limit of Detection , Nucleic Acid Hybridization , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Carcinoembryonic Antigen/blood , Humans , Biosensing Techniques/methods , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Poly A/chemistry , Gold/chemistry , Electrodes
2.
Chem Commun (Camb) ; 60(48): 6142-6145, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804211

ABSTRACT

A programmably engineered stochastic RNA nanowalker powered by duplex-specific nuclease (DSN) is developed. By utilizing poly-adenine-based spherical nucleic acids (polyA-SNA) to accurately regulate the densities of DNA tracks, the nanowalker showcases its capability to identify miRNA-21, miRNA-486, and miRNA-155 with quick kinetics and attomolar sensitivity, positioning it as a promising option for cancer clinical surveillance.


Subject(s)
MicroRNAs , MicroRNAs/analysis , Humans , Nanostructures/chemistry , Poly A/chemistry , DNA/chemistry , Stochastic Processes , Biosensing Techniques
3.
J Phys Chem Lett ; 15(16): 4400-4407, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38624102

ABSTRACT

Gold nanorods (AuNRs) with unique optical properties play a pivotal role in applications in plasmonic imaging, small molecule detection, and photothermal therapy. However, challenges in DNA functionalization of AuNRs hinder their full potential due to the presence of a dense cetyltrimethylammonium bromide (CTAB) bilayer, impeding close DNA contact. In this study, we introduced a convenient approach for the rapid assembly of polyadenine (polyA) tailed DNA on AuNRs with control of DNA density, rigidity, and valence. We explored the impact of DNA with designed properties on the construction of core-satellite structures by employing AuNRs as cores and spherical gold nanoparticles (AuNSs) as satellites. Density, rigidity, and valence are identified as crucial factors for efficient construction. Specifically, polyA-tailed DNA modulated DNA density and reduced spatial hindrance and electrostatic repulsion, thereby facilitating the construction. Enhancing the rigidity of DNA and incorporating multiple binding sites can further improve the efficiency.


Subject(s)
DNA , Gold , Nanotubes , Poly A , Gold/chemistry , Nanotubes/chemistry , DNA/chemistry , Poly A/chemistry , Metal Nanoparticles/chemistry , Cetrimonium/chemistry
4.
Anal Chem ; 96(17): 6692-6699, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38632948

ABSTRACT

The antibodies in the natural biological world utilize bivalency/multivalency to achieve a higher affinity for antigen capture. However, mimicking this mechanism on the electrochemical sensing interface and enhancing biological affinity through precise spatial arrangement of bivalent aptamer probes still pose a challenge. In this study, we have developed a novel self-assembly layer (SAM) incorporating triblock polyA DNA to enable accurate organization of the aptamer probes on the interface, constructing a "lock-and-key-like" proximity hybridization assay (PHA) biosensor. The polyA fragment acts as an anchoring block with a strong affinity for the gold surface. Importantly, it connects the two DNA probes, facilitating one-to-one spatial proximity and enabling a controllable surface arrangement. By precisely adjusting the length of the polyA fragment, we can tailor the distance between the probes to match the molecular dimensions of the target protein. This design effectively enhances the affinity of the aptamers. Notably, our biosensor demonstrates exceptional specificity and sensitivity in detecting PDGF-BB, as confirmed through successful validation using human serum samples. Overall, our biosensor presents a novel and versatile interface for proximity assays, offering a significantly improved surface arrangement and detection performance.


Subject(s)
Aptamers, Nucleotide , Becaplermin , Biosensing Techniques , Nucleic Acid Hybridization , Poly A , Biosensing Techniques/methods , Humans , Aptamers, Nucleotide/chemistry , Becaplermin/blood , Poly A/chemistry , Gold/chemistry , DNA Probes/chemistry
5.
Biomacromolecules ; 25(5): 3163-3168, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38651279

ABSTRACT

Studies have shown that poly(adenine) DNA and RNA strands protonate at a low pH to form self-associating duplexes; however, the nanoscopic morphology of these structures is unclear. Here, we use Transition Electron Microscopy (TEM), Atomic Force Microscopy (AFM), dynamic light scattering (DLS), and fluorescence spectroscopy to show that both ribose identity (DNA or RNA) and assembly conditions (thermal or room-temperature annealing) dictate unique hierarchical structures for poly(adenine) sequences at a low pH. We show that while the thermodynamic product of protonating poly(adenine) DNA is a discrete dimer of two DNA strands, the kinetic product is a supramolecular polymer that branches and aggregates to form micron-diameter superstructures. In contrast, we find that protonated poly(A) RNA polymerizes into micrometer-length, twisted fibers under the same conditions. These divergent hierarchical morphologies highlight the amplification of subtle chemical differences between RNA and DNA into unique nanoscale behaviors. With the use of poly(adenine) strands spanning vaccine technologies, sensing, and dynamic biotechnology, understanding and controlling the underlying assembly pathways of these structures are critical to developing robust, programmable nanotechnologies.


Subject(s)
DNA , Poly A , RNA , RNA/chemistry , DNA/chemistry , Poly A/chemistry , Protons , Polymers/chemistry , Microscopy, Atomic Force , Hydrogen-Ion Concentration
6.
Anal Methods ; 16(19): 3030-3038, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38682263

ABSTRACT

In this work, a sensitive colorimetric bioassay method based on a poly(adenine) aptamer (polyA apt) and gold nanoparticles (AuNPs) was developed for the determination of aflatoxin B1 (AFB1). The polyA apt, adsorbed on the AuNPs, especially can bind to the analyte while deterring non-specific interactions. This nano aptasensor uses cationic polymer poly(diallyl dimethyl ammonium chloride) (PDDA), as an aggregating agent, to aggregate gold nanoparticles. PolyA apt-decorated gold nanoparticles (AuNPs/polyA apt) show resistance to PDDA-induced aggregation and maintains their dispersed state (red color) with the optical absorbance signal at λ = 520 nm. However, in the presence of AFB1 in the assay solution, the specific aptamer reacts with high affinity and folds into its three-dimensional form. Aggregation of AuNPs induced by PDDA caused their optical signal shift to λ = 620 nm (blue color). AFB1 concentration in the bioassay solution determines the amount of optical signal shift. Therefore, optical density ratio in two wavelengths (A620/520) can be used as a sturdy colorimetric signal to detect the concentration of aflatoxin B1. AFB1 was linearly detected between 0.5 and 20 ng mL-1, with a detection limit of 0.09 ng mL-1 (S/N = 3). The fabricated aptasensor was applied to the detection of AFB1 in real corn samples.


Subject(s)
Aflatoxin B1 , Aptamers, Nucleotide , Colorimetry , Gold , Metal Nanoparticles , Zea mays , Aflatoxin B1/analysis , Aflatoxin B1/chemistry , Gold/chemistry , Colorimetry/methods , Zea mays/chemistry , Metal Nanoparticles/chemistry , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Poly A/chemistry , Limit of Detection , Food Contamination/analysis , Quaternary Ammonium Compounds/chemistry , Polyethylenes
7.
Chem Biol Interact ; 394: 110965, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38552767

ABSTRACT

RNA plays an important role in many biological processes which are crucial for cell survival, and it has been suggested that it may be possible to inhibit individual processes involved in many diseases by targeting specific sequences of RNA. The aim of this work is to determine the affinity of novel 3,9-disubstited acridine derivative 1 with three different RNA molecules, namely single stranded poly(rA), double stranded homopolymer poly(rAU) and triple stranded poly(rUAU). The results of the absorption titration assays show that the binding constant of the novel derivative to the RNA molecules was in the range of 1.7-6.2 × 104 mol dm-3. The fluorescence and circular dichroism titration assays revealed considerable changes. The most significant results in terms of interpreting the nature of the interactions were the melting temperatures of the RNA samples in complexes with the 1. In the case of poly(rA), denaturation resulted in a self-structure formation; increased stabilization was observed for poly(rAU), while the melting points of the ligand-poly(rUAU) complex showed significant destabilization as a result of the interaction. The principles of molecular mechanics were applied to propose the non-bonded interactions within the binding complex, pentariboadenylic acid and acridine ligand as the study model. Initial molecular docking provided the input structure for advanced simulation techniques. Molecular dynamics simulation and cluster analysis reveal π - π stacking and the hydrogen bonds formation as the main forces that can stabilize the binding complex. Subsequent MM-GBSA calculations showed negative binding enthalpy accompanied the complex formation and proposed the most preferred conformation of the interaction complex.


Subject(s)
Acridines , Circular Dichroism , Molecular Docking Simulation , Poly A , Acridines/chemistry , Acridines/metabolism , Poly A/chemistry , Poly A/metabolism , Thermodynamics , Spectrometry, Fluorescence , RNA/chemistry , RNA/metabolism , Nucleic Acid Conformation
8.
Nat Struct Mol Biol ; 31(5): 826-834, 2024 May.
Article in English | MEDLINE | ID: mdl-38374449

ABSTRACT

Shortening of messenger RNA poly(A) tails, or deadenylation, is a rate-limiting step in mRNA decay and is highly regulated during gene expression. The incorporation of non-adenosines in poly(A) tails, or 'mixed tailing', has been observed in vertebrates and viruses. Here, to quantitate the effect of mixed tails, we mathematically modeled deadenylation reactions at single-nucleotide resolution using an in vitro deadenylation system reconstituted with the complete human CCR4-NOT complex. Applying this model, we assessed the disrupting impact of single guanosine, uridine or cytosine to be equivalent to approximately 6, 8 or 11 adenosines, respectively. CCR4-NOT stalls at the 0, -1 and -2 positions relative to the non-adenosine residue. CAF1 and CCR4 enzyme subunits commonly prefer adenosine but exhibit distinct sequence selectivities and stalling positions. Our study provides an analytical framework to monitor deadenylation and reveals the molecular basis of tail sequence-dependent regulation of mRNA stability.


Subject(s)
Poly A , RNA Stability , RNA, Messenger , Humans , Kinetics , Poly A/metabolism , Poly A/chemistry , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA, Messenger/chemistry , Adenosine/metabolism , Receptors, CCR4/metabolism , Receptors, CCR4/genetics , Exoribonucleases/metabolism , Exoribonucleases/chemistry , RNA Nucleotidyltransferases
9.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139200

ABSTRACT

The self-assembly of porphyrins onto polyelectrolytes could lead to interesting changes in their reactivity with respect to the bulk solution. Here, we investigated the kinetics of Zn2+ incorporation into tetra-cationic water-soluble 5,10,15,20-tetrakis-(N-methylpyridinium-4-yl)porphyrin (TMpyP(4)) in the presence of poly(L-glutamic acid) (PGA) in a pH range from 4 to 6.5. Under these conditions, the porphyrin electrostatically interacted with the polymer, which gradually switched from an α-helical to a random coil structure. The profile of the logarithm of the observed rate constant (kobs) versus the pH was sigmoidal with an inflection point close to the pH of the conformation transition for PGA. At a pH of 5.4, when PGA was in its highly charged random coil conformation, an almost 1000-fold increase in the reaction rates was observed. An increase in the ionic strength of the bulk solution led to a decrease in the metal insertion rates. The role of the charged matrix was explained in terms of its ability to assemble both reagents in proximity, in agreement with the theory of counter-ion condensation around polyelectrolytes in an aqueous solution.


Subject(s)
Glutamic Acid , Porphyrins , Zinc , Polyelectrolytes , Porphyrins/chemistry , Cations , Poly A/chemistry , Catalysis
10.
J Biol Inorg Chem ; 28(6): 559-570, 2023 09.
Article in English | MEDLINE | ID: mdl-37477757

ABSTRACT

Two arene ruthenium(II) complexes [η6-(C6H6)Ru(pprip)Cl]PF6 (Ru1; pprip = 2-(3-phenyl-1H-pyrazol-4-yl)-imidazolo[4,5-f][1,10]phenanthroline) and [η6-(C6H6)Ru(H2iiP)Cl]PF6 (Ru2; H2iiP = 2-(indole-3-yl)-imidazolo[4,5-f][1,10]phenanthroline) have been synthesized and characterized in this work. Binding properties of Ru1 and Ru2 with the triplex RNA poly(U)•poly(A)*poly(U) were investigated by spectrophotometry and spectrofluorometry as well as viscosimetry. Analysis of spectroscopic titrations and viscosity measurements show that the two complexes bind with the triplex through intercalation, while the binding affinity for Ru2 toward the triplex is stronger than that for Ru1. Melting experiments indicate that the stabilizing effects of Ru1 and Ru2 toward the triplex differ from each other. Under the conditions used herein, Ru1 only stabilizes the Hoogsteen base-paired strand (third strand) without affecting stabilization of the Watson-Crick base-paired strand (the template duplex) of the triplex, while Ru2 stabilizes both the template duplex and the third strand. Although the two complexes prefer to stabilizing the third strand rather than the template duplex, the third-strand stabilization effect of Ru2 is stronger than that of Ru1. The obtained results of this work reveal that the planarity of the intercalative ligands plays an important role in the triplex stabilization by arene Ru(II) complexes.


Subject(s)
Poly A , Ruthenium , Poly A/chemistry , Ruthenium/chemistry , Poly U/chemistry , RNA/chemistry , Phenanthrolines , Nucleic Acid Conformation , Spectrometry, Fluorescence
11.
J Biol Inorg Chem ; 28(5): 509-517, 2023 08.
Article in English | MEDLINE | ID: mdl-37452869

ABSTRACT

Two chiral ruthenium(II) polypyridyl complexes, Λ-[Ru(bpy)2(dppx)]2+ (bpy = 2,2'-bipyridine, dppx = 7,8-dimethyldipyridophenazine; Λ-1) and Δ-[Ru(bpy)2(dppx)]2+ (Δ-1) have been synthesized and characterized in this work. Interactions of Λ-1 and Δ-1 with the RNA triplex poly(U)⋅poly(A)*poly(U) have been investigated by various biophysical techniques. Spectrophotometric titrations and viscosity measurements suggested that enantiomers Λ-1 and Δ-1 bind with the triplex through intercalation, while the binding strengths of the two enantiomers toward the triplex differed only slightly from each other. Fluorescence titrations showed that although enantiomers Λ-1 and Δ-1 exhibited molecular "light switch" effects toward the triplex, the effect of Δ-1 was more marked. Furthermore, Furthermore, thermal denaturation showed that the two enantiomers have significantly different stabilizing effects on the triplex. The obtained results indicate that the racemic complex [Ru(bpy)2(dppx)]2+ is similar to a non-specific metallointercalator for the triplex investigated in this study, and chiralities of Ru(II) polypyridine complexes have an important influence on the binding and stabilizing effects of enantiomers toward the triplex. Two chiral ruthenium(II) polypyridyl complexes, Λ-[Ru(bpy)2(dppx)]2+ (bpy = 2,2'-bipyridine, dppx = 7,8-dimethyldipyridophenazine; Λ-1) and Δ-[Ru(bpy)2(dppx)]2+ (Δ-1) have been synthesized and characterized in this work. Interactions of Λ-1 and Δ-1 with the RNA triplex poly(U)⋅poly(A)*poly(U) have been investigated by various biophysical techniques. The obtained results indicate that the racemic complex [Ru(bpy)2(dppx)]2+ is similar as a non-specific metallointercalator for the triplex investigated in this study, and chiralities of Ru(II) polypyridine complexes have an important influence on the binding and stabilizing effects of enantiomers toward the triplex.


Subject(s)
Poly A , Ruthenium , Poly A/chemistry , Ruthenium/chemistry , Poly U/chemistry , 2,2'-Dipyridyl , RNA/chemistry
12.
Int J Biol Macromol ; 242(Pt 1): 124710, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37146854

ABSTRACT

To further develop new luminescent probes for RNA, a new ruthenium(II) polypyridyl complex [Ru(dmb)2dppz-idzo]2+ (dmb = 4,4'-dimethyl-2,2'-bipyridine, dppz-idzo = dppz-imidazolone) has been synthesized and characterized in this study. Binding properties of [Ru(dmb)2dppz-idzo]2+ to RNA duplex poly(A) · poly(U) and triplex poly(U) · poly(A) ∗ poly(U) have been explored by spectroscopic techniques and viscometry experiments. The binding modes of [Ru(dmb)2dppz-idzo]2+ to RNA duplex and triplex are intercalation as revealed from spectral titrations and viscosity experiments, while the binding strength of this complex to duplex structure is significantly greater than that of triplex structure. Fluorescence titrations indicate that [Ru(dmb)2dppz-idzo]2+ can act as a molecular "light switch" for both duplex poly(A) · poly(U) and triplex poly(U) · poly(A) ∗ poly(U), while [Ru(dmb)2dppz-idzo]2+ is more sensitive to poly(A) · poly(U) compared to poly(U) · poly(A) ∗ poly(U) and poly(U). Therefore, this complex can distinguish between RNA duplex, triplex and poly(U), and can as luminescent probes for the three RNAs used in this study. In addition, thermal denaturation studies show that [Ru(dmb)2dppz-idzo]2+ is able to significantly increase the Stabilization of RNA duplex and triplex. The results obtained in this study may contribute to further understanding of the binding of Ru(II) complexes with different structural RNAs.


Subject(s)
Ruthenium , Ruthenium/chemistry , RNA/chemistry , Poly U/chemistry , Spectrum Analysis , Poly A/chemistry
13.
Bioorg Chem ; 135: 106523, 2023 06.
Article in English | MEDLINE | ID: mdl-37027949

ABSTRACT

To further explore the binding properties of Ru(Ⅱ) polypyridine complexes with RNA, three Ru(Ⅱ) complexes [Ru(phen)2(PIP)]2+ (Ru1), [Ru(phen)2(p-HPIP)]2+ (Ru2), and [Ru(phen)2(m- HPIP)]2+ (Ru3) have been synthesized and characterized in this work. The binding properties of three Ru(Ⅱ) complexes with RNA duplex poly(A)•poly(U) have been investigated by spectral and viscosity experiments. These studies all support that these three Ru(Ⅱ) complexes bind to poly RNA duplex poly(A)•poly(U) by intercalation, and Ru1 without substituents has a stronger binding affinity for poly(A)•poly(U). Interestingly, the thermal melting experiments show that these three Ru(Ⅱ) complexes all destabilize RNA duplex poly(A)•poly(U), and the destabilizing effect can be explained by the conformational changes of duplex structure induced by intercalating agents. To the best of our knowledge, this work report for the first time a small molecule capable of destabilizing an RNA duplex, which reflects that the substitution effect of intercalated ligands has an important influence on the affinity of Ru(Ⅱ) complexes to RNA duplex, and that not all Ru(Ⅱ) complexes show thermal stability effects on an RNA duplex.


Subject(s)
Poly A , Ruthenium , Poly A/chemistry , Ruthenium/pharmacology , Ruthenium/chemistry , RNA/chemistry
14.
J Biomol Struct Dyn ; 41(24): 15320-15327, 2023.
Article in English | MEDLINE | ID: mdl-36919567

ABSTRACT

To reveal the effect of DNA- or RNA-specific low-molecular compounds on cellular processes on the molecular level, we have carried out the studies with the application of spectroscopic methods. It is necessary for the understanding of structural-functional properties of nucleic acids in cell. In this work the interaction of DNA-specific thiazine dye methylene blue (MB) with synthetic polynucleotides poly(rA) and poly(rU) was studied. The interaction of MB with synthetic polyribonucleotides poly(rA) and poly(rU) was examined in the solution with high ionic strength in a wide phosphate-to-dye (P/D) range, using the absorption and fluorescence spectroscopies, as well as the fluorescence 2D spectra and 3D spectra analyses were given. Values of the fluorescence quenching constants for the complexes of MB with poly(rA) and poly(rU) were calculated (KSV is the Stern-Volmer quenching constant). Two different modes of MB binding to single-stranded (ss-) poly(rA) and poly(rU) and to their hybrid double-stranded (ds-) structure - poly(rA)-poly(rU) were identified. This ligand binds to ss-poly(rA) and poly(rA)-poly(rU) by semi-intercalation and electrostatic modes, but to ss-poly(rU) the prevailing mode is the electrostatic interaction.Communicated by Ramaswamy H. Sarma.


Subject(s)
Methylene Blue , Poly A-U , Methylene Blue/chemistry , Poly A-U/chemistry , Nucleic Acid Conformation , Poly A/chemistry , DNA/chemistry
15.
Nat Struct Mol Biol ; 30(2): 200-215, 2023 02.
Article in English | MEDLINE | ID: mdl-36646905

ABSTRACT

Poly(A)-tail-mediated post-transcriptional regulation of maternal mRNAs is vital in the oocyte-to-embryo transition (OET). Nothing is known about poly(A) tail dynamics during the human OET. Here, we show that poly(A) tail length and internal non-A residues are highly dynamic during the human OET, using poly(A)-inclusive RNA isoform sequencing (PAIso-seq). Unexpectedly, maternal mRNAs undergo global remodeling: after deadenylation or partial degradation into 3'-UTRs, they are re-polyadenylated to produce polyadenylated degradation intermediates, coinciding with massive incorporation of non-A residues, particularly internal long consecutive U residues, into the newly synthesized poly(A) tails. Moreover, TUT4 and TUT7 contribute to the incorporation of these U residues, BTG4-mediated deadenylation produces substrates for maternal mRNA re-polyadenylation, and TENT4A and TENT4B incorporate internal G residues. The maternal mRNA remodeling is further confirmed using PAIso-seq2. Importantly, maternal mRNA remodeling is essential for the first cleavage of human embryos. Together, these findings broaden our understanding of the post-transcriptional regulation of maternal mRNAs during the human OET.


Subject(s)
Oocytes , RNA, Messenger, Stored , Humans , RNA, Messenger, Stored/metabolism , Oocytes/metabolism , RNA, Messenger/metabolism , Gene Expression Regulation , Polyadenylation , Poly A/chemistry
16.
Talanta ; 256: 124278, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36681039

ABSTRACT

Spherical nucleic acid (SNA) conjugates consisting of gold cores functionalized with a densely packed DNA shells are of great significance in the field of medical detection and intracellular imaging. Especially, poly adenine (polyA)-mediated SNAs can improve the controllability and reproducibility of DNA assembly on the nanointerface, showing the tunable hybridization ability. However, due to the physics of single-site binding, the biosensor based on SNA usually exhibits a dynamic range spanning a fixed 81-fold change in target concentration, which limits its application in disease monitoring. To address this problem, we report a tri-block DNA-based approach to assemble SNA for nucleic acid detection based on structure-switching mechanism with programmable dynamic range. The tri-block DNA is a FAM-labeled stem-loop structure, which contains three blocks: polyA block as an anchoring block for tunable surface density, stem block with different GC base pair content for varying the structure stability, and the fixed loop block for target recognition. We find that varying the polyA block, the reaction temperature, and the GC base pair, SNA shows different target binding affinity and detection limit but with normally 81-fold dynamic range. We can extend the dynamic range to 1000-fold by using the combination of two SNAs with different affinity, and narrow the dynamic range to 5-fold by sequestration mechanism. Furthermore, the tunable SNA enables sensitive detection of mRNA in cells. Given its tunable dynamic range, such nanobiosensor based on SNA offers new possibility for various biomedical and clinical applications.


Subject(s)
DNA , Metal Nanoparticles , Reproducibility of Results , DNA/genetics , DNA/chemistry , Poly A/chemistry , Nucleic Acid Hybridization , RNA, Messenger , Gold/chemistry , Metal Nanoparticles/chemistry
17.
J Mol Biol ; 434(24): 167877, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36368412

ABSTRACT

The 5' cap and 3' poly(A) tail of mRNA are known to synergistically stimulate translation initiation via the formation of the cap•eIF4E•eIF4G•PABP•poly(A) complex. Most mRNA sequences have an intrinsic propensity to fold into extensive intramolecular secondary structures that result in short end-to-end distances. The inherent compactness of mRNAs might stabilize the cap•eIF4E•eIF4G•PABP•poly(A) complex and enhance cap-poly(A) translational synergy. Here, we test this hypothesis by introducing intrinsically unstructured sequences into the 5' or 3' UTRs of model mRNAs. We found that the introduction of unstructured sequences into the 3' UTR, but not the 5' UTR, decreases mRNA translation in cell-free wheat germ and yeast extracts without affecting mRNA stability. The observed reduction in protein synthesis results from the diminished ability of the poly(A) tail to stimulate translation. These results suggest that base pair formation by the 3' UTR enhances the cap-poly(A) synergy in translation initiation.


Subject(s)
3' Untranslated Regions , Poly A , Protein Biosynthesis , 5' Untranslated Regions , Eukaryotic Initiation Factor-4G/chemistry , Poly A/chemistry , Poly(A)-Binding Proteins/chemistry , RNA Caps/chemistry , Cell-Free System , Triticum , Saccharomyces cerevisiae , Nucleic Acid Conformation , RNA Stability
18.
J Inorg Biochem ; 237: 111991, 2022 12.
Article in English | MEDLINE | ID: mdl-36115329

ABSTRACT

To further determine the factors that affect the binding properties of ruthenium(II) polypyridine complexes with RNA duplex and to find excellent RNA-binding agents, the binding properties of ruthenium(II) complexes [Ru(phen)2(7-OCH3-dppz)]2+ (Ru1, phen = 1,10-phenan- throline, 7-OCH3-dppz = 7-methoxy-dipyrido-[3,2-a,2',3'-c]-phenazine) and [Ru(phen)2(7-NO2- dppz)]2+ (Ru2, 7-NO2-dppz = 7-nitro-dipyrido-[3,2-a,2',3'-c]-phenazine) with RNA poly(A)•poly(U) duplex have been investigated by spectroscopic methods and viscosity measurements in this work. The results show that complexes Ru1 and Ru2 bind to poly(A)•poly(U) through intercalation and the binding affinity between Ru2 and poly(A)•poly(U) is greater than that of Ru1. Thermal denaturation experiments suggest that both ruthenium(II) complexes exhibit a significant stabilizing effect on poly(A)•poly(U) duplex. Moreover, fluorescence emission spectra exhibit that, deviating from Ru2, Ru1 exhibits a "light switch" effect for poly(A)•poly(U). This effect can be observed by the naked eye under UV light and adjusted by pH, meaning that Ru1 may act as a reversible pH controlled molecular "light switch". The results obtained in this work will contribute to our understanding of the significant influence of the intercalative ligand substituent effect in the binding process of ruthenium(II) complexes with RNA duplex.


Subject(s)
Poly A , Ruthenium , Poly A/chemistry , Ruthenium/chemistry , Nitrogen Dioxide , RNA/chemistry , Phenazines
19.
Int J Biol Macromol ; 219: 579-586, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35952809

ABSTRACT

RNA triplexes have a variety of potential applications in molecular biology, diagnostics and therapeutics, while low stabilization of the third strand hinders their practical utilities under physiological conditions. In this regard, achieving the third-strand stabilization by binding small molecules is a promising strategy. Chirality is one of the basic properties of nature. To clarify achirality and chirality effects on the binding and stabilizing effects of RNA triplexes by small molecules, we report for the first time the RNA interactions of an racemic ruthenium(II) polypyridyl complex [Ru(bpy)2(11-CN-dppz)]2+ (rac-Ru1) and its two enantiomers Δ/Λ-[Ru(bpy)2(11-CN-dppz)]2+ (Δ/Λ-Ru1) with an RNA triplex poly(U-A*U) (where "-" represents Watson-Crick base pairing, and "*" denotes Hoogsteen base pairing, respectively) in this work. Research shows that although rac-Ru1 and its two enantiomers Δ/Λ-Ru1 bind to the RNA triplex through the same mode of intercalation, the binding affinity for enantiomer Δ-Ru1 is much higher than that for rac-Ru1 and enantiomer Λ-Ru1. However, compared to enantiomer Λ-Ru1, the binding affinity for rac-Ru1 does not show much of an advantage, which is slightly greater than that for the former. Thermal denaturation measurements reveal both rac-Ru1 and Δ-Ru1 to have a preference for stabilizing the third strand rather than the template duplex of the RNA triplex, while Λ-Ru1 stabilizes the RNA triplex without significant selectivity. Besides, the third-strand stabilizing effects by rac-Ru1 and Δ-Ru1 are not markedly different from each other, but more marked than that by Λ-Ru1. This work shows that the binding properties of the racemic Ru(II) polypyridyl complex with the RNA triplex are not simply an average of its two enantiomers, indicating potentially complicated binding events.


Subject(s)
Ruthenium , Nucleic Acid Conformation , Poly A/chemistry , Poly U/chemistry , RNA/chemistry , Ruthenium/chemistry
20.
Int J Biol Macromol ; 215: 571-578, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35752337

ABSTRACT

Binding of [Ru(phen)2ttbd]2+ (phen = 1,10-phenanthroline, ttbd = 4-(6-propenylpyrido-[3,2-a]- phenzain-10-yl-benzene-1,2-diamine) to the RNA triplex poly(U-A*U) (herein "-" and "*" refer to the Watson-Crick and Hoogsteen binding, respectively) and the duplex poly(A-U) have been investigated by spectral technology and viscosity method. Analysis of spectral titrations and viscosity experiments as well as melting measurements suggest that [Ru(phen)2ttbd]2+ binds to the studied RNA triplex and duplex through intercalation, while its binding constant toward the triplex is greater than the duplex. Luminescent titrations indicate that [Ru(phen)2ttbd]2+ can act as a molecular "light switch" for the two RNAs and the switch effect can be detected by the naked-eye. Moreover, the "light switch" can be repeatedly cycled off and on by adjusting the pH of the solution, whereas color change in the case of the triplex is more significant compared with the duplex. To our knowledge, [Ru(phen)2ttbd]2+ is the first small molecule capable of serving as a pH-controlled reversible visual molecular "light switch" for both the RNA triplex poly(U-A*U) and duplex poly(A-U). Thermal denaturation experiments suggest that [Ru(phen)2ttbd]2+ can obviously increase the triplex stabilization, while it stabilizing third-strand is more marked in comparison with the template duplex of the triplex, indicating this complex preferentially binds to third-strand. The obtained results may be useful for understanding the binding of Ru(II) polypyridyl complexes to RNAs.


Subject(s)
Ruthenium , Colorimetry , Nucleic Acid Conformation , Poly A/chemistry , Poly U/chemistry , RNA/chemistry , Ruthenium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...