Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.408
Filter
1.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731586

ABSTRACT

Nanomedicine has revolutionized drug delivery in the last two decades. Nanoparticles appear to be a promising drug delivery platform in the treatment of various gynecological disorders including uterine leiomyoma, endometriosis, polycystic ovarian syndrome (PCOS), and menopause. Nanoparticles are tiny (mean size < 1000 nm), biodegradable, biocompatible, non-toxic, safe, and relatively inexpensive materials commonly used in imaging and the drug delivery of various therapeutics, such as chemotherapeutics, small molecule inhibitors, immune mediators, protein peptides and non-coding RNA. We performed a literature review of published studies to examine the role of nanoparticles in treating uterine leiomyoma, endometriosis, PCOS, and menopause. In uterine leiomyoma, nanoparticles containing 2-methoxyestradiole and simvastatin, promising uterine fibroid treatments, have been effective in significantly inhibiting tumor growth compared to controls in in vivo mouse models with patient-derived leiomyoma xenografts. Nanoparticles have also shown efficacy in delivering magnetic hyperthermia to ablate endometriotic tissue. Moreover, nanoparticles can be used to deliver hormones and have shown efficacy as a mechanism for transdermal hormone replacement therapy in individuals with menopause. In this review, we aim to summarize research findings and report the efficacy of nanoparticles and nanotherapeutics in the treatment of various benign gynecologic conditions.


Subject(s)
Genital Diseases, Female , Nanomedicine , Nanoparticles , Humans , Female , Nanomedicine/methods , Nanoparticles/chemistry , Animals , Genital Diseases, Female/drug therapy , Drug Delivery Systems , Leiomyoma/drug therapy , Endometriosis/drug therapy , Polycystic Ovary Syndrome/drug therapy
2.
J Med Life ; 17(1): 109-115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38737668

ABSTRACT

Polycystic ovary syndrome is the most common cause of oligo-ovulation and anovulation among women of reproductive age, contributing to infertility. This study aimed to compare the effects of green tea tablets and metformin on ovulation, menstrual cycle regularity, and antioxidant biomarkers in women with polycystic ovary syndrome (PCOS). In this clinical trial study, 94 women with PCOS were randomly assigned to three groups: green tea (n = 33), metformin (n = 29), and control (n = 32). Menstrual status and oxidative stress parameters, including total antioxidant capacity, thiol, and lipid peroxidation, were compared before and 3 months after the intervention among all three groups. Data analysis was conducted using SPSS software version 22 and employing the analysis of variance and paired t-tests. Following the intervention, the mean menstrual cycle duration in the green tea, metformin, and control groups was 32.22 ± 12.78, 48.72 ± 37.06, and 48.53 ± 31.04 days, respectively (P = 0.040). There was no statistically significant difference between the three groups in terms of biochemical, hormonal, and antioxidant indices before and after the intervention (P > 0.05). The intake of green tea tablets was associated with better outcomes in regulating the menstrual cycle in women with PCOS.


Subject(s)
Menstrual Cycle , Metformin , Ovulation , Polycystic Ovary Syndrome , Tablets , Tea , Humans , Polycystic Ovary Syndrome/drug therapy , Female , Metformin/therapeutic use , Metformin/pharmacology , Menstrual Cycle/drug effects , Adult , Ovulation/drug effects , Young Adult , Antioxidants/therapeutic use , Oxidative Stress/drug effects
3.
Cytokine ; 179: 156639, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733946

ABSTRACT

AIMS: Polycystic ovarian syndrome (PCOS) is one of the most common (about 5-20%) reproductive disorders in women of reproductive age; it is characterized by polycystic ovaries, hyperandrogenism, and oligo/ anovulation. The levels and expression of ovarian adipokines are deregulated in the PCOS. Apelin is an adipokine that acts through its receptor (APJ) and is known to express in the various tissues including the ovary. It has also been suggested that apelin and APJ could be targeted as therapeutic adjuncts for the management of PCOS. However, no study has been conducted on the management of PCOS by targeting the apelin system. Thus, we aimed to evaluate its impact on combating PCOS-associated ovarian pathogenesis. METHODS: The current work employed a letrozole-induced-hyperandrogenism PCOS-like mice model to investigate the effects of apelin13 and APJ, antagonist ML221. The PCOS model was induced by oral administration of letrozole (1 mg/kg) for 21 days. A total of four experimental groups were made, control, PCOS control, PCOS + aplein13, and PCOS + ML221. The treatment of apelin13 and ML221 was given from day 22 for two weeks. KEY FINDINGS: The letrozole-induced PCOS-like features such as hyperandrogenism, cystic follicle, decreased corpus luteum, elevated levels of LH/FSH ratio, and up-regulation of ovarian AR expression were ameliorated by apelin13 and ML221 treatment. However, the PCOS-augmented oxidative stress and apoptosis were suppressed by apelin 13 treatments only. ML221 treatment still showed elevated oxidative stress and stimulated apoptosis as reflected by decreased antioxidant enzymes and increased active caspase3 and Bax expression. The expression of ERs was elevated in all groups except control. Furthermore, the PCOS model showed elevated expression of APJ and apelin13 treatment down-regulated its own receptor. Overall, observing the ovarian histology, corpus luteum formation, and decreased androgen levels by both apelin13 and ML221 showed ameliorative effects on the cystic ovary. SIGNIFICANCE: Despite the similar morphological observation of ovarian histology, apelin13 and ML221 exhibited opposite effects on oxidative stress and apoptosis. Therefore, apelin13 (which down-regulates APJ) and ML221 (an APJ antagonist) may have suppressed APJ signalling, which would account for our findings on the mitigation of polycystic ovarian syndrome. In conclusion, both apelin13 and ML221 mediated mitigation have different mechanisms, which need further investigation.


Subject(s)
Apelin Receptors , Apelin , Letrozole , Ovary , Polycystic Ovary Syndrome , Letrozole/pharmacology , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Animals , Female , Apelin Receptors/metabolism , Mice , Apelin/metabolism , Ovary/metabolism , Ovary/pathology , Ovary/drug effects , Oxidative Stress/drug effects , Hyperandrogenism/metabolism , Hyperandrogenism/chemically induced , Apoptosis/drug effects , Disease Models, Animal
4.
Croat Med J ; 65(2): 138-145, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38706239

ABSTRACT

AIM: To investigate the factors affecting metformin concentrations after chronic administration in patients with polycystic ovary syndrome (PCOS), focusing on the pharmacokinetic variability and its implications for personalized therapy. METHODS: This study enrolled 53 PCOS patients undergoing long-term metformin treatment at the Clinic for Gynecology and Obstetrics in Nis, Serbia, from February to December 2019. Pharmacokinetic parameters were measured from blood samples, and metformin concentrations were determined with validated analytical techniques. RESULTS: There was a significant variability in metformin concentrations among PCOS patients, with body mass index (BMI) identified as a major influencing factor. Higher BMI was associated with lower plasma metformin levels, a finding suggesting an altered pharmacokinetic profile in obese patients. CONCLUSIONS: This study highlights the critical role of BMI in influencing metformin pharmacokinetics in PCOS patients and underscores the need for personalized treatment strategies in patients with PCOS.


Subject(s)
Body Mass Index , Hypoglycemic Agents , Metformin , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/blood , Metformin/pharmacokinetics , Metformin/blood , Metformin/administration & dosage , Metformin/therapeutic use , Female , Adult , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/blood , Hypoglycemic Agents/therapeutic use , Serbia , Young Adult , Obesity
5.
BMC Womens Health ; 24(1): 298, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769509

ABSTRACT

OBJECTIVE: Polycystic ovary syndrome (PCOS) is an endocrine gynecological disease affecting many women of reproductive age. Clomiphene is the first-line treatment for PCOS patients, but most individuals may be resistant to it. This study aims to assess the efficacy of dexamethasone and clomiphene in the treatment of PCOS patients, and to provide a theoretical basis for clinicians to study and treat PCOS. METHODS: Chinese and English databases including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), WanFang Medical Network, and VIP Information Chinese Journal Service Platform (VIP) were searched from the inception to January 2023. Review Manager and Stata software were used for meta- analysis. The risk of bias of eligible studies were assessed using Cochrane's risk of bias tool. Publication bias was assessed by funnel plots, Begg's and Egger's tests. RESULTS: A total of 12 literatures were finally included, with a total of 1270 PCOS patients. Compared with the control group, dexamethasone combined with clomiphene could significantly improve pregnancy (RR = 1.71, P < 0.00001), ovulation (RR = 1.30, P < 0.00001), luteinizing hormone level (SMD = -0.94, P < 0.00001), estradiol level (SMD = 0.99, P = 0.05), progesterone level (SMD = 5.08, P = 0.002) and testosterone level (SMD = -1.59, P < 0.00001). However, there were no significant effects on ovulation-stimulating hormone level (SMD = 0.15, P = 0.37), adverse reactions (RR = 1.30, P = 0.30), dizziness (RR = 1.50, P = 0.45), and vomiting (RR = 1.67, P = 0.48). CONCLUSION: The treatment of dexamethasone combined with clomiphene is helpful to improve the ovulation and pregnancy rate in patients with PCOS, and improve the hormone levels of patients.


Subject(s)
Clomiphene , Dexamethasone , Fertility Agents, Female , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/drug therapy , Clomiphene/therapeutic use , Female , Dexamethasone/therapeutic use , Fertility Agents, Female/therapeutic use , Pregnancy , Drug Therapy, Combination , Treatment Outcome , Pregnancy Rate
6.
J Physiol Sci ; 74(1): 22, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561673

ABSTRACT

Androgen excess and metabolic abnormality largely contribute to the pathogenesis of polycystic ovarian syndrome (PCOS), which primarily precipitates ovarian dysfunction and infertility in reproductive-age women. Impaired mitochondrial function and epigenetic alteration have been linked to the development of PCOS. However, it is unknown whether acetate would exert a therapeutic effect on ovarian mitochondrial dysfunction in PCOS. Herein, the study hypothesized that acetate reverses ovarian mitochondrial dysfunction in experimental PCOS rat model, possibly through modulation of mitofusin-2 (MFn2). Eight-week-old female Wistar rats were randomized into four groups (n = 5). Induction of PCOS was performed by 1 mg/kg letrozole (p.o.), administered for 21 days. Thereafter, the rats were treated with acetate (200 mg/kg; p.o.) for 6 weeks. The PCOS rats demonstrated androgen excess, multiple ovarian cysts, elevated anti-mullerian hormone and leptin and decreased SHBG, adiponectin and 17-ß estradiol with corresponding increase in ovarian transforming growth factor-ß1. Additionally, inflammation (tumor growth factor and nuclear factor-kB), elevated caspase-6, decreased hypoxia-inducible factor-1α and elevated histone deacetylase-2 (HDAC2) were observed in the ovaries of PCOS rats, while mitochondrial abnormality with evidence of decreased adenosine triphosphate synthase and MFn2 was observed in rats with PCOS. Treatment with acetate reversed the alterations. The present results collectively suggest that acetate ameliorates ovarian mitochondrial abnormality, a beneficial effect that is accompanied by MFn2 with consequent normalization of reproductive-endocrine profile and ovarian function. Perhaps, the present data provide hope for PCOS individuals that suffer infertility.


Subject(s)
Infertility , Mitochondrial Diseases , Polycystic Ovary Syndrome , Humans , Female , Rats , Animals , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Letrozole/adverse effects , Androgens/adverse effects , Rats, Wistar , Infertility/complications , Mitochondria/metabolism , Acetates/adverse effects
7.
J Ovarian Res ; 17(1): 76, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589892

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder in women that necessitates effective and safe treatment alternatives. This study aimed to evaluate the therapeutic efficacy of Vitex negundo seed in a letrozole-induced PCOS rat model. RESULTS: Findings of the present study demonstrated that administration of hydro-ethanolic extract of Vitex negundo (VNE) effectively restored endocrino-metabolic imbalances associated with PCOS, along with correction of antioxidant enzymes level, proinflammatory cytokines, and apoptotic bio-markers. LC-MS analysis confirmed the presence of cinnamic acid, plumbagin and nigundin B as the prominent phytochemicals in VNE. The observed beneficial effects could be attributed to the active compounds in Vitex negundo extract, which exhibited hypoglycemic, hypolipidemic, and catabolic effects on body weight. Additionally, the extract contributed to hormonal balance regulation by modulating the steroidogenic enzymes, specifically by tuning gonadotropins level and correcting the LH:FSH ratio, through the modulation of ERα signalling and downregulation of NR3C4 expression. The antioxidant properties of phytochemicals in Vitex negundo seed were apparent through the correction of SOD and catalase activity. While it's anti-inflammatory and antiapoptotic action were associated with the regulation of mRNA expression of TNF-α, IL-6, BAX, Bcl2. Molecular docking study further indicated the molecular interaction of above mentioned active phytocompounds of VNE with ERα, NR3C4 and with TNFα that plays a critical mechanistic gateway to the regulation of hormone signalling as well as synchronizing the inflammation cascade. Furthermore, the histomorphological improvement of the ovaries supported the ameliorative action of Vitex negundo extract in the letrozole-induced PCOS model. CONCLUSIONS: This study indicates the potential of Vitex negundo seed as a multifaceted therapeutic option for PCOS. VNE offers a holistic strategy for PCOS with antiandrogenic, anti-inflammatory, and antioxidant properties, driven by its major compounds like cinnamic acid, plumbagine, and nigundin B.


Subject(s)
Cinnamates , Polycystic Ovary Syndrome , Vitex , Humans , Rats , Female , Animals , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Letrozole/therapeutic use , Vitex/chemistry , Estrogen Receptor alpha , Antioxidants/pharmacology , Antioxidants/therapeutic use , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Tumor Necrosis Factor-alpha , Seeds
8.
Gynecol Endocrinol ; 40(1): 2330655, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38613449

ABSTRACT

OBJECTIVE: This study aims to examine the short-term effects of oral metformin (MET) on serum anti-müllerian hormone (AMH) levels and to verify its impact on AMH concentrations in women with polycystic ovary syndrome (PCOS). METHODS: The literature search, extending from January 2000 to April 2023, was conducted using databases such as PubMed, Embase, and the Cochrane Central, resulting in the inclusion of 20 studies. These selected studies, evaluated for quality using the Newcastle-Ottawa Scale, investigated changes in AMH levels before and after treatment, with durations ranging from less than three months to over six months. The reported outcomes were quantified as standardized mean differences (SMD) with 95% confidence intervals (CI). This comprehensive systematic review and meta-analysis was registered with the International Prospective Register of Systematic Reviews (PROSPERO) under the registration number CRD42023420705. The statistical analyses were performed using Review Manager 5.4.1. RESULTS: ① The study incorporated 20 articles, consisting of 12 prospective studies, 7 randomized controlled trials (RCT), and 1 cross-sectional study. ② Serum AMH levels in patients with PCOS diminish subsequent to the oral administration of MET. ③ Across the spectrum of studies analyzed, a pronounced degree of heterogeneity is evident, potentially ascribed to differential parameters including body mass index (BMI), daily pharmacological dosages, the temporal extent of treatment regimens, criteria of PCOS, and detection Methods. ④ The impact of MET on AMH levels exhibits a dose-responsive trend, with escalating doses of MET being associated with progressively greater declines in AMH concentrations in the patient population. ⑤ For women with PCOS receiving MET therapy, a minimum treatment duration of three months may be necessary to observe a reduction in serum AMH levels. CONCLUSIONS: The results of this meta-analysis indicate that MET treatment exerts a suppressive effect on serum AMH levels in women with PCOS. It appears that a treatment duration of at least three months is required to achieve a significant decrease in AMH concentrations. Furthermore, the influence of MET on AMH is dose-dependent, with higher doses correlating with more pronounced reductions in AMH levels among the patients studied.


Subject(s)
Metformin , Peptide Hormones , Polycystic Ovary Syndrome , Female , Humans , Anti-Mullerian Hormone , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/drug therapy , Administration, Oral , Body Mass Index , Metformin/therapeutic use
9.
Gynecol Endocrinol ; 40(1): 2341701, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38622970

ABSTRACT

OBJECTIVE: To evaluate the effects of alpha lipoic acid (ALA) on hormonal and metabolic parameters in a group of overweight/obese Polycystic Ovary Syndrome (PCOS) patients. METHODS: This was a retrospective study in which thirty-two overweight/obese patients with PCOS (n = 32) not requiring hormonal treatment were selected from the database of the ambulatory clinic of the Gynecological Endocrinology Center at the University of Modena and Reggio Emilia, Italy. The hormonal profile, routine exams and insulin and C-peptide response to oral glucose tolerance test (OGTT) were evaluated before and after 12 weeks of complementary treatment with ALA (400 mg/day). Hepatic Insulin Extraction (HIE) index was also calculated. RESULTS: ALA administration significantly improved insulin sensitivity and decreased ALT and AST plasma levels in all subjects, though no changes were observed on reproductive hormones. When PCOS patients were subdivided according to the presence or absence of familial diabetes background, the higher effects of ALA were observed in the former group that showed AST and ALT reduction and greater HIE index decrease. CONCLUSION: ALA administration improved insulin sensitivity in overweight/obese PCOS patients, especially in those with familial predisposition to diabetes. ALA administration improved both peripheral sensitivity to insulin and liver clearance of insulin. Such effects potentially decrease the risk of nonalcoholic fat liver disease and diabetes in PCOS patients.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Polycystic Ovary Syndrome , Thioctic Acid , Female , Humans , Insulin , Insulin Resistance/physiology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/complications , Obesity/drug therapy , Overweight/complications , Overweight/drug therapy , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/drug therapy , Retrospective Studies , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use
10.
BMJ Open ; 14(4): e070801, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684265

ABSTRACT

INTRODUCTION: Low vitamin D status is prevalent among women with polycystic ovary syndrome (PCOS). The objective of the study is to assess the effect of vitamin D supplementation on (1) the ovulation rate to letrozole and (2) other reproductive, endocrine and metabolic outcomes after 1 year of supplementation in women with PCOS. METHODS AND ANALYSIS: This is a multicentre, randomised, double-blind, controlled clinical trial. A total of 220 anovulatory women with PCOS diagnosed by the Rotterdam criteria will be recruited. They will be randomly assigned to either the (1) vitamin D supplementation group or (2) placebo group. Those in the vitamin D group will take oral Vitamin D3 50 000 IU/week for 4 weeks, followed by 50 000 IU once every 2 weeks for 52 weeks. Those who remain anovulatory after 6 months will be treated with a 6-month course of letrozole (2.5 mg to 7.5 mg for 5 days per cycle titrated according to response) for ovulation induction. The primary outcome is the ovulation rate. All statistical analyses will be performed using intention-to-treat and per protocol analyses. ETHICS AND DISSEMINATION: Ethics approval was sought from the Institutional Review Board of the participating units. All participants will provide written informed consent before joining the study. The results of the study will be submitted to scientific conferences and peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04650880.


Subject(s)
Letrozole , Ovulation Induction , Ovulation , Polycystic Ovary Syndrome , Adult , Female , Humans , Young Adult , Aromatase Inhibitors/therapeutic use , Aromatase Inhibitors/administration & dosage , Dietary Supplements , Double-Blind Method , Letrozole/therapeutic use , Letrozole/administration & dosage , Multicenter Studies as Topic , Ovulation/drug effects , Ovulation Induction/methods , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/complications , Randomized Controlled Trials as Topic , Vitamin D/therapeutic use , Vitamin D/administration & dosage
11.
Steroids ; 206: 109424, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642598

ABSTRACT

OBJECTIVE: This study aimed to evaluate the effects of dehydroepiandrosterone (DHEA) and DHEA combined with a high-fat diet (HFD) treatment of reproductive and endocrine metabolism in rats and then identify an ideal model of polycystic ovary syndrome (PCOS). METHODS: Three-week-old female Sprague-Dawley rats were injected subcutaneously with DHEA or oil, fed with or without a HFD, for 21 days, during which body weight, feed intake, and estrous cycle monitoring were carried out. Fasting blood glucose was measured, and serum fasting insulin, testosterone, dihydrotestosterone (DHT), estradiol, progesterone, luteinizing hormone (LH), anti-Müllerian hormone (AMH), and follicle-stimulating hormone (FSH) were estimated by ELISA. Serum total cholesterol (TC), total triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were measured by colorimetric assay. Whereas, histologic changes in rat ovaries were evaluated by H&E staining. Ovarian steroid hormone synthases and their protein levels (StAR, 3ß-HSD2, 17ß-HSD1, CYP11A1, CYP17A1, and CYP19A1) were examined by Western blotting. RESULTS: Both DHEA and DHEA + HFD-treated rats lost a regular estrous cycle; had polycystic ovarian changes, significantly higher serum fasting insulin and testosterone levels; and increased ovarian StAR, 3ß-HSD2, and CYP11A1 protein levels. Additionally, rats in the DHEA + HFD-treated group were obese; had elevated fasting blood glucose, TG, DHT, AMH levels and LH:FSH ratios; increased ovarian 17ß-HSD1 protein levels. CONCLUSION: DHEA combined with HFD treatment is more effective at inducing PCOS than DHEA alone. The reproductive and endocrine metabolic aspects of this method are more consistent with the clinical characteristics of PCOS patients.


Subject(s)
Dehydroepiandrosterone , Diet, High-Fat , Disease Models, Animal , Polycystic Ovary Syndrome , Rats, Sprague-Dawley , Animals , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/pathology , Polycystic Ovary Syndrome/blood , Female , Dehydroepiandrosterone/blood , Diet, High-Fat/adverse effects , Rats , Ovary/metabolism , Ovary/drug effects , Ovary/pathology , Estrous Cycle/drug effects
13.
Reprod Biol Endocrinol ; 22(1): 46, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637876

ABSTRACT

BACKGROUND: Metformin is an insulin sensitizer that is widely used for the treatment of insulin resistance in polycystic ovary syndrome patients. However, metformin can cause gastrointestinal side effects. PURPOSE: This study showed that the effects of quercetin are comparable to those of metformin. Therefore, this study aimed to systematically evaluate the efficacy of quercetin in treating PCOS. METHODS: The present systematic search of the Chinese National Knowledge Infrastructure (CNKI), Wanfang Data Information Site, Chinese Scientific Journals Database (VIP), SinoMed, Web of Science, and PubMed databases was performed from inception until February 2024. The methodological quality was then assessed by SYRCLE's risk of bias tool, and the data were analyzed by RevMan 5.3 software. RESULTS: Ten studies were included in the meta-analysis. Compared with those in the model group, quercetin in the PCOS group had significant effects on reducing fasting insulin serum (FIS) levels (P = 0.0004), fasting blood glucose (FBG) levels (P = 0.01), HOMA-IR levels (P < 0.00001), cholesterol levels (P < 0.0001), triglyceride levels (P = 0.001), testosterone (T) levels (P < 0.00001), luteinizing hormone (LH) levels (P = 0.0003), the luteinizing hormone/follicle stimulating hormone (LH/FSH) ratio (P = 0.01), vascular endothelial growth factor (VEGF) levels (P < 0.00001), malondialdehyde (MDA) levels (P = 0.03), superoxide dismutase (SOD) levels (P = 0.01) and GLUT4 mRNA expression (P < 0.00001). CONCLUSION: This meta-analysis suggested that quercetin has positive effects on PCOS treatment. Quercetin can systematically reduce insulin, blood glucose, cholesterol, and triglyceride levels in metabolic pathways. In the endocrine pathway, quercetin can regulate the function of the pituitary-ovarian axis, reduce testosterone and luteinizing hormone (LH) levels, and lower the ratio of LH to follicle-stimulating hormone (FSH). Quercetin can regulate the expression of the GLUT4 gene and has antioxidative effects at the molecular level.


Subject(s)
Insulin Resistance , Metformin , Polycystic Ovary Syndrome , Female , Animals , Humans , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Quercetin/pharmacology , Quercetin/therapeutic use , Blood Glucose , Vascular Endothelial Growth Factor A , Luteinizing Hormone , Insulin , Follicle Stimulating Hormone , Metformin/therapeutic use , Testosterone , Cholesterol , Triglycerides
14.
Clin Exp Pharmacol Physiol ; 51(6): e13862, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621769

ABSTRACT

Metformin, a well-established anti-diabetic drug, is also used in managing various other metabolic disorders including polycystic ovarian syndrome (PCOS). There are evidences to show that metformin improves endometrial functions in PCOS women. However, fewer studies have explored the direct effects of metformin on endometrium. Previous in vitro studies have shown that therapeutic serum concentrations of metformin enhance endometrial epithelial cell proliferation. The present study was undertaken to investigate in vivo effects of metformin on endometrial proliferation in a rat model of thin endometrium. Toward this, a rat model of thin endometrium was developed. Metformin (0.1% or 1% w/v) was administrated orally for 15 days in rats with thin endometrium. Oral metformin administration for three consecutive estrous cycles (15 days) in the thin endometrium rat model led to an increase in endometrial thickness compared to sham endometrium. Histological analysis showed a significant increase in the number of endometrial glands (P < 0.05), stromal cells (P < 0.01) and blood vessels (P < 0.01) in metformin-treated (n = 10 in each group) uterine horns compared to sham (saline-treated) uterine horns in rats. The expression of proliferating cell nuclear antigen and vascular epithelial growth factor was found to be upregulated on treatment with 1% metformin-treated group (n = 7). However, pregnancy outcomes in the rats treated with metformin remained unaltered despite the restoration of endometrial thickness. In conclusion, the study demonstrated that metformin ameliorates endometrial thickness in a rat model of thin endometrium by increasing endometrial proliferation and angiogenesis, without restoration of embryo implantation.


Subject(s)
Metformin , Polycystic Ovary Syndrome , Humans , Pregnancy , Female , Rats , Animals , Metformin/pharmacology , Metformin/therapeutic use , Endometrium/pathology , Uterus/metabolism , Embryo Implantation , Polycystic Ovary Syndrome/drug therapy
15.
Genes (Basel) ; 15(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674441

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine disease commonly associated with metabolic disorders in females. Leonurine hydrochloride (Leo) plays an important role in regulating immunity, tumours, uterine smooth muscle, and ovarian function. However, the effect of Leo on PCOS has not been reported. Here, we used dehydroepiandrosterone to establish a mouse model of PCOS, and some mice were then treated with Leo by gavage. We found that Leo could improve the irregular oestros cycle of PCOS mice, reverse the significantly greater serum testosterone (T) and luteinising hormone (LH) levels, significantly reduce the follicle-stimulating hormone (FSH) level, and significantly increase the LH/FSH ratio of PCOS mice. Leo could also change the phenomenon of ovaries in PCOS mice presented with cystic follicular multiplication and a lacking corpus luteum. Transcriptome analysis identified 177 differentially expressed genes related to follicular development between the model and Leo groups. Notably, the cAMP signalling pathway, neuroactive ligand-receptor interactions, the calcium signalling pathway, the ovarian steroidogenesis pathway, and the Lhcgr, Star, Cyp11a, Hsd17b7, Camk2b, Calml4, and Phkg1 genes may be most related to improvements in hormone levels and the numbers of ovarian cystic follicles and corpora lutea in PCOS mice treated by Leo, which provides a reference for further study of the mechanism of Leo.


Subject(s)
Disease Models, Animal , Gallic Acid , Gallic Acid/analogs & derivatives , Polycystic Ovary Syndrome , Animals , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Female , Mice , Gallic Acid/pharmacology , Luteinizing Hormone/blood , Ovary/metabolism , Ovary/drug effects , Ovary/pathology , Follicle Stimulating Hormone/blood , Gene Expression Profiling , Testosterone/blood , Transcriptome
16.
Front Endocrinol (Lausanne) ; 15: 1366940, 2024.
Article in English | MEDLINE | ID: mdl-38665260

ABSTRACT

Background: Withdrawal of semaglutide is frequently followed by weight regain due to compensatory biological changes that prevent the maintenance of long-term weight loss. There are some studies implying that metformin might attenuate weight regain. The weight trajectory after discontinuation of short-term semaglutide treatment in obese women with PCOS who continued metformin treatment has not yet been evaluated. Aims: We explored changes in body weight, cardiometabolic and endocrine parameters in obese women with PCOS who continued treatment with metformin 2 years after discontinuation of short-term intervention with semaglutide. Methods: 25 women with PCOS and obesity, aged 33.7 ± 5.3 years (mean ± SD), were treated with once-weekly subcutaneous semaglutide 1.0 mg as an adjunct to metformin 2000 mg/day and lifestyle intervention for 16 weeks. At week 16, semaglutide was discontinued. Treatment with metformin 2000 mg/day and promotion of lifestyle intervention were continued during the 2-year follow-up period. Weight change, cardiometabolic, and endocrine parameters were assessed 2 years after semaglutide discontinuation. Results: During semaglutide treatment phase, weight decreased from 101 (90-106.8) kg to 92 (83.3-100.8) kg. Two years after semaglutide withdrawal, weight was 95 (77-104) kg. The net weight loss 2 years after discontinuation of semaglutide remained significant when compared to baseline (p=0.003). At the end of the study, 21 out of 25 subjects had lower body weight compared to baseline. Improvements in cardiometabolic parameters including decrease in total and LDL cholesterol, fasting glucose, and glucose after OGTT that had been seen during semaglutide-treatment phase reverted towards baseline two years after semaglutide cessation. Free testosterone levels significantly decreased during semaglutide treatment from 6.16 (4.07-9.71) to 4.12 (2.98-6.93) nmol/l, (p= 0.012) and did not significantly deteriorate after semaglutide discontinuation. Conclusion: Two years after semaglutide withdrawal, women with PCOS who continued with metformin regained about one-third of the semaglutide-induced weight loss. At the end of the follow up, 84% of women had a lower body weight than at baseline.


Subject(s)
Glucagon-Like Peptides , Hypoglycemic Agents , Metformin , Obesity , Polycystic Ovary Syndrome , Weight Loss , Humans , Female , Metformin/therapeutic use , Metformin/administration & dosage , Adult , Glucagon-Like Peptides/therapeutic use , Glucagon-Like Peptides/administration & dosage , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/complications , Weight Loss/drug effects , Obesity/drug therapy , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/administration & dosage , Follow-Up Studies
18.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1082-1090, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621915

ABSTRACT

This study aims to investigate the impact of Kuntai Capsules(KTC) on polycystic ovarian syndrome(PCOS) rat models and explore the underlying mechanism. Fifty female SD rats were randomly divided into five groups(10 rats in each group), including control group, model group, low-, medium-, and high-dose KTC group. Except for the control group, the other groups were injected with dehydroepiandrosterone(DHEA) combined with a high-fat diet(HFD) to induce the PCOS rat model for 28 days. 0.315, 0.63, and 1.26 g·kg~(-1)·d~(-1) KTC was dissolved in the same amount of normal saline and given to low-, medium-, and high-dose KTC groups by gavage. Both control group and model group were given the same amount of normal saline for 15 days. After administration, fasting blood glucose(FBG) was measured by a glucose meter. Fasting insulin(FINS), luteinizing hormone(LH), testosterone(T), and follicle-stimulating hormone(FSH) were detected by enzyme-linked immunosorbent assay(ELISA), and LH/FSH ratio and insulin resistance index(HOMA-IR) were calculated. The pathological morphology of ovarian tissue was observed by hematoxylin-eosin(HE) staining. The expression levels of collagen α type Ⅲ 1 chain(COL3A1), apoptotic factors Bax, and Bcl-2 were detected using Western blot and immunofluorescence. The mRNA expressions of COL3A1, Bax, and Bcl-2 in ovarian tissue were performed by real-time PCR(RT-PCR). The results show that compared with the control group, the body weight, serum levels of FBG, FINS, LH, T, LH/FSH, and HOMA-IR are higher in model group(P<0.05 or P<0.01), and the level of FSH is lower(P<0.05). In model group, a large number of white blood cells are found in the vaginal exfoliated cells, mainly in the interictal phase. There are more cystic prominences on the surface of the ovary. The thickness of the granular cell layer is reduced, and oocytes are absent. COL3A1 and Bax protein expression levels are increased(P<0.01), while Bcl-2 protein expression levels are decreased(P<0.05) in the ovarian tissue COL3A1 and Bax mRNA expression levels are increased in ovarian tissue(P<0.05). Compared with the model group, the body weight, FBG, FINS, LH, T, LH/FSH, and HOMA-IR in low-, medium-, and high-dose KTC groups are decreased(P<0.05 or P<0.01), while the levels of FSH in medium-, and high-dose KTC groups are increased(P<0.05 or P<0.01). Low-, medium-, and high-dose KTC groups gradually show a stable interictal phase. The surface of the ovary is smooth. Oocytes and mature follicles can be seen in ovarian tissue, and the thickness of the granular cell layer is increased. The expression level of COL3A1 protein decreases in low-and medium-dose KTC groups(P<0.05 or P<0.01), and that of Bax protein decreases in low-dose KTC group(P<0.05 or P<0.01), and the expression level of Bcl-2 protein increases in low-dose KTC group(P<0.01). The expression levels of COL3A1 and Bax mRNA decreased in the low-dose KTC group(P<0.05), while the expression levels of Bcl-2 mRNA increased(P<0.05). In summary, KTC can inhibit ovarian granulosa cell apoptosis and reduce follicular atresia by regulating the AGE-RAGE signaling pathway. It can promote insulin secretion, reduce blood sugar and body weight, restore serum hormone levels, improve symptoms of PCOS, alleviate morphological damage of the ovary, and restore ovarian function, which is of great value in the treatment of PCOS.


Subject(s)
Polycystic Ovary Syndrome , Humans , Rats , Female , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , bcl-2-Associated X Protein , Saline Solution , Rats, Sprague-Dawley , Follicular Atresia , Signal Transduction , Body Weight , Follicle Stimulating Hormone , RNA, Messenger
19.
Life Sci ; 344: 122557, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38479596

ABSTRACT

Melatonin, a potent antioxidant and free radical scavenger, has been demonstrated to be effective in gynecological conditions and female reproductive cancers. This review consolidates the accumulating evidence on melatonin's multifaceted protective effects in different pathological contexts. In gynecological conditions such as endometriosis, polycystic ovary syndrome (PCOS), and uterine leiomyoma, melatonin has shown promising effects in reducing oxidative stress, inflammation, and hormonal imbalances. It inhibits adhesion molecules' production, and potentially mitigates leukocyte adherence and inflammatory responses. Melatonin's regulatory effects on hormone production and insulin sensitivity in PCOS individuals make it a promising candidate for improving oocyte quality and menstrual irregularities. Moreover, melatonin exhibits significant antitumor effects by modulating various signaling pathways, promoting apoptosis, and suppressing metastasis in breast cancers and gynecological cancers, including ovarian, endometrial, and cervical cancers. Furthermore, melatonin's protective effects are suggested to be mediated by interactions with its receptors, estrogen receptors and other nuclear receptors. The regulation of clock-related genes and circadian clock systems may also contribute to its inhibitory effects on cancer cell growth. However, more comprehensive research is warranted to fully elucidate the underlying molecular mechanisms and establish melatonin as a potential therapeutic agent for these conditions.


Subject(s)
Breast Neoplasms , Melatonin , Polycystic Ovary Syndrome , Humans , Female , Melatonin/pharmacology , Melatonin/therapeutic use , Melatonin/metabolism , Polycystic Ovary Syndrome/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Oxidative Stress , Breast Neoplasms/pathology
20.
Biochem Biophys Res Commun ; 707: 149782, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38493745

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder in women of reproductive age, which often leads to female infertility. Chronic inflammation is a significant factor in the development of PCOS. Our study aimed to explore the impact of mesencephalic astrocyte-derived neurotrophic factor (MANF), a scientifically validated anti-inflammatory factor, on 99 diagnosed PCOS patients. We also investigated its effects on PCOS mice induced with dehydroepiandrosterone (DHEA) and KGN cells induced with dihydrotestosterone (DHT). Our findings revealed a decrease in serum MANF levels in PCOS patients, which were negatively associated with serum tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) levels. The administration of recombinant human MANF (rhMANF) in PCOS mice demonstrated a decrease in pro-inflammatory cytokines and monocytes/macrophages in both peripheral blood and ovarian tissues. Furthermore, the inclusion of rhMANF notably ameliorated DHEA-induced ovarian dysfunction and fibrosis by negatively regulating the toll-like receptor 4 (TLR4)-nuclear factor kappa B (NF-κB)-NLR family, pyrin domain containing protein 3 (NLRP3) pathway. Additionally, in vitro experiments showed that the up-regulation of MANF offset DHT-induced inhibition of viability and apoptosis in KGN cells. Collectively, this study highlights the anti-inflammatory properties of MANF in PCOS and suggests its potential as a therapeutic approach for the management of PCOS.


Subject(s)
Polycystic Ovary Syndrome , Female , Humans , Mice , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/complications , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4 , Astrocytes/metabolism , Anti-Inflammatory Agents/therapeutic use , Nerve Growth Factors , Dehydroepiandrosterone/pharmacology , Dehydroepiandrosterone/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...