Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 774
Filter
1.
RNA ; 30(7): 795-806, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38538052

ABSTRACT

3' end processing of most eukaryotic precursor-mRNAs (pre-mRNAs) is a crucial cotranscriptional process that generally involves the cleavage and polyadenylation of the precursor transcripts. Within the human 3' end processing machinery, the four-subunit mammalian polyadenylation specificity factor (mPSF) recognizes the polyadenylation signal (PAS) in the pre-mRNA and recruits the poly(A) polymerase α (PAPOA) to it. To shed light on the molecular mechanisms of PAPOA recruitment to mPSF, we used a combination of cryogenic-electron microscopy (cryo-EM) single-particle analysis, computational structure prediction, and in vitro biochemistry to reveal an intricate interaction network. A short linear motif in the mPSF subunit FIP1 interacts with the structured core of human PAPOA, with a binding mode that is evolutionarily conserved from yeast to human. In higher eukaryotes, however, PAPOA contains a conserved C-terminal motif that can interact intramolecularly with the same residues of the PAPOA structured core used to bind FIP1. Interestingly, using biochemical assay and cryo-EM structural analysis, we found that the PAPOA C-terminal motif can also directly interact with mPSF at the subunit CPSF160. These results show that PAPOA recruitment to mPSF is mediated by two distinct intermolecular connections and further suggest the presence of mutually exclusive interactions in the regulation of 3' end processing.


Subject(s)
Cryoelectron Microscopy , Polynucleotide Adenylyltransferase , mRNA Cleavage and Polyadenylation Factors , Humans , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/chemistry , mRNA Cleavage and Polyadenylation Factors/genetics , Polynucleotide Adenylyltransferase/metabolism , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/chemistry , Protein Binding , Polyadenylation , Models, Molecular , RNA Precursors/metabolism , RNA Precursors/genetics , RNA Precursors/chemistry , Cleavage And Polyadenylation Specificity Factor/metabolism , Cleavage And Polyadenylation Specificity Factor/genetics , Cleavage And Polyadenylation Specificity Factor/chemistry
2.
Sci Rep ; 14(1): 5156, 2024 03 02.
Article in English | MEDLINE | ID: mdl-38431749

ABSTRACT

We have previously introduced the first generation of C3P3, an artificial system that allows the autonomous in-vivo production of mRNA with m7GpppN-cap. While C3P3-G1 synthesized much larger amounts of capped mRNA in human cells than conventional nuclear expression systems, it produced a proportionately much smaller amount of the corresponding proteins, indicating a clear defect of mRNA translatability. A possible mechanism for this poor translatability could be the rudimentary polyadenylation of the mRNA produced by the C3P3-G1 system. We therefore sought to develop the C3P3-G2 system using an artificial enzyme to post-transcriptionally lengthen the poly(A) tail. This system is based on the mutant mouse poly(A) polymerase alpha fused at its N terminus with an N peptide from the λ virus, which binds to BoxBr sequences placed in the 3'UTR region of the mRNA of interest. The resulting system selectively brings mPAPαm7 to the target mRNA to elongate its poly(A)-tail to a length of few hundred adenosine. Such elongation of the poly(A) tail leads to an increase in protein expression levels of about 2.5-3 times in cultured human cells compared to the C3P3-G1 system. Finally, the coding sequence of the tethered mutant poly(A) polymerase can be efficiently fused to that of the C3P3-G1 enzyme via an F2A sequence, thus constituting the single-ORF C3P3-G2 enzyme. These technical developments constitute an important milestone in improving the performance of the C3P3 system, paving the way for its applications in bioproduction and non-viral human gene therapy.


Subject(s)
DNA-Directed RNA Polymerases , Polyadenylation , Animals , Humans , Mice , DNA-Directed RNA Polymerases/genetics , RNA, Messenger/metabolism , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , Poly A/genetics , Poly A/metabolism
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167080, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364942

ABSTRACT

Star-PAP is a non-canonical poly(A) polymerase that is down regulated in breast cancer. While Star-PAP down regulation impairs target mRNA polyadenylation, paradoxically, we see up regulation of a large number of oncogenes on Star-PAP knockdown. Using two breast cancer cells (MCF7 with high Star-PAP, and MDA-MB-231 with negligible Star-PAP level), we discover that Star-PAP negatively regulates oncogene expression and subsequently cellular proliferation. This regulation is compromised with Star-PAP mutant of 3'-end processing function (serine 6 to alanine, S6A phospho-mutation). Concomitantly, xenograft mice model using MDA-MB-231 cells reveals a reduction in the tumour formation on ectopic Star-PAP expression that is ameliorated by S6A mutation. We find that Star-PAP control of target oncogene expression is independent of Star-PAP-mediated alternative polyadenylation or target mRNA 3'-end formation. We demonstrate that Star-PAP regulates target oncogenes through cellular miRNAs (miR-421, miR-335, miR-424, miR-543, miR-205, miR-34a, and miR-26a) that are down regulated in breast cancer. Analysis of various steps in miRNA biogenesis pathway reveals that Star-PAP regulates 3'-end formation and synthesis of primary miRNA (host) transcripts that is dependent on S6 phosphorylation thus controlling mature miRNA generation. Using mimics and inhibitors of two target miRNAs (miR-421 and miR-424) after Star-PAP depletion in MCF7 or ectopic expression in MDA-MB-231 cells, we demonstrate that Star-PAP controls oncogene expression and cellular proliferation through targeting miRNAs that regulates tumour formation. Our study establishes a novel mechanism of oncogene expression independent of alternative polyadenylation through Star-PAP-mediated miRNA host transcript polyadenylation that regulates breast cancer progression.


Subject(s)
Breast Neoplasms , MicroRNAs , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Oncogenes , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , RNA, Messenger/metabolism
4.
Int J Mol Sci ; 24(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37958732

ABSTRACT

The recent spread of the monkeypox virus among humans has heightened concerns regarding orthopoxvirus infections. Consequently, conducting a comprehensive study on the immunobiology of the monkeypox virus is imperative for the development of effective therapeutics. Ectromelia virus (ECTV) closely resembles the genetic and disease characteristics of monkeypox virus, making it a valuable research tool for studying orthopoxvirus-host interactions. Guanylate-binding proteins (GBPs), highly expressed interferon-stimulated genes (ISGs), have antagonistic effects against various intracellular pathogenic microorganisms. Our previous research has shown that GBP2 has a mild but statistically significant inhibitory effect on ECTV infection. The presence of a significant number of molecules in the poxvirus genome that encode the host immune response raises questions about whether it also includes proteins that counteract the antiviral activity of GBP2. Using IP/MS and co-IP technology, we discovered that the poly(A) polymerase catalytic subunit (PAPL) protein of ECTV is a viral regulatory molecule that interacts with GBP2. Further studies have shown that PAPL antagonizes the antiviral activity of GBP2 by reducing its protein levels. Knocking out the PAPL gene of ECTV with the CRISPR/Cas9 system significantly diminishes the replication ability of the virus, indicating the indispensable role of PAPL in the replication process of ECTV. In conclusion, our study presents preliminary evidence supporting the significance of PAPL as a virulence factor that can interact with GBP2.


Subject(s)
Ectromelia virus , Ectromelia, Infectious , Animals , Mice , Humans , Ectromelia virus/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Polynucleotide Adenylyltransferase/metabolism , Catalytic Domain , Antiviral Agents/pharmacology
5.
Nat Commun ; 14(1): 6745, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875486

ABSTRACT

Pervasive transcription of the human genome generates an abundance of RNAs that must be processed and degraded. The nuclear RNA exosome is the main RNA degradation machinery in the nucleus. However, nuclear exosome must be recruited to its substrates by targeting complexes, such as NEXT or PAXT. By proteomic analysis, we identify additional subunits of PAXT, including many orthologs of MTREC found in S. pombe. In particular, we show that polyA polymerase gamma (PAPγ) associates with PAXT. Genome-wide mapping of the binding sites of ZFC3H1, RBM27 and PAPγ shows that PAXT is recruited to the TSS of hundreds of genes. Loss of ZFC3H1 abolishes recruitment of PAXT subunits including PAPγ to TSSs and concomitantly increases the abundance of PROMPTs at the same sites. Moreover, PAPγ, as well as MTR4 and ZFC3H1, is implicated in the polyadenylation of PROMPTs. Our results thus provide key insights into the direct targeting of PROMPT ncRNAs by PAXT at their genomic sites.


Subject(s)
Exosome Multienzyme Ribonuclease Complex , Exosomes , RNA, Untranslated , Humans , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosomes/genetics , Exosomes/metabolism , Proteomics , RNA/metabolism , RNA Stability/genetics , RNA, Untranslated/metabolism , Polynucleotide Adenylyltransferase/metabolism
6.
Spine (Phila Pa 1976) ; 48(17): 1253-1258, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37141460

ABSTRACT

STUDY DESIGN: A genetic case-control study. OBJECTIVE: To replicate recently reported genetic loci associated with adolescent idiopathic scoliosis (AIS) in the Chinese Han population, and to determine the relationship between gene expression and the clinical features of the patients. SUMMARY OF BACKGROUND DATA: A recent study conducted in the Japanese population identified several novel susceptible loci, which might provide new insights into the etiology of AIS. However, the association of these genes with AIS in other populations remains unclear. MATERIALS AND METHODS: A total of 1210 AIS and 2500 healthy controls were recruited for the genotyping of 12 susceptibility loci. Paraspinal muscles used for gene expression analysis were obtained from 36 AIS and 36 patients with congenital scoliosis. The difference regarding genotype and allele frequency between patients and controls was analyzed by χ 2 analysis. The t test was performed to compare the target gene expression level between controls and AIS patients. Correlation analysis was performed between gene expression and phenotypic data, including Cobb angle, bone mineral density, lean mass, height, and body mass index. RESULTS: Four SNPs, including rs141903557, rs2467146, rs658839, and rs482012, were successfully validated. Allele C of rs141903557, allele A of rs2467146, allele G of rs658839, and allele T of single nucleotide polymorphism rs482012 showed significantly higher frequency in patients. Allele C of rs141903557, allele A of rs2467146, allele G of rs658839, and allele T of rs482012 could notably increase the risk of AIS patients, with an odds ratio of 1.49, 1.16, 1.11, and 1.25, respectively. Moreover, tissue expression of FAM46A was significantly lower in AIS patients as compared with controls. Moreover, FAM46A expression was remarkably correlated with bone mineral density of patients. CONCLUSION: Four SNPs were successfully validated as novel susceptibility loci associated with AIS in the Chinese population. Moreover, FAM46A expression was associated with the phenotype of AIS patients.


Subject(s)
Kyphosis , Polynucleotide Adenylyltransferase , Scoliosis , Humans , Case-Control Studies , East Asian People , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , Scoliosis/diagnosis , Scoliosis/genetics , Scoliosis/epidemiology , Polynucleotide Adenylyltransferase/genetics
7.
Sci Adv ; 9(14): eadf5583, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37018411

ABSTRACT

The FAM46 (also known as TENT5) proteins are noncanonical poly(A) polymerases (PAPs) implicated in regulating RNA stability. The regulatory mechanisms of FAM46 are poorly understood. Here, we report that the nuclear protein BCCIPα, but not the alternatively spliced isoform BCCIPß, binds FAM46 and inhibits their PAP activity. Unexpectedly, our structures of the FAM46A/BCCIPα and FAM46C/BCCIPα complexes show that, despite sharing most of the sequence and differing only at the C-terminal portion, BCCIPα adopts a unique structure completely different from BCCIPß. The distinct C-terminal segment of BCCIPα supports the adoption of the unique fold but does not directly interact with FAM46. The ß sheets in BCCIPα and FAM46 pack side by side to form an extended ß sheet. A helix-loop-helix segment in BCCIPα inserts into the active site cleft of FAM46, thereby inhibiting the PAP activity. Our results together show that the unique fold of BCCIPα underlies its interaction with and functional regulation of FAM46.


Subject(s)
Nuclear Proteins , Catalytic Domain , Nuclear Proteins/metabolism , Protein Isoforms/metabolism , Polynucleotide Adenylyltransferase/metabolism , Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism
8.
Nucleic Acids Res ; 51(9): 4572-4587, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36987847

ABSTRACT

RNA-binding proteins (RPBs) are deeply involved in fundamental cellular processes in bacteria and are vital for their survival. Despite this, few studies have so far been dedicated to direct and global identification of bacterial RBPs. We have adapted the RNA interactome capture (RIC) technique, originally developed for eukaryotic systems, to globally identify RBPs in bacteria. RIC takes advantage of the base pairing potential of poly(A) tails to pull-down RNA-protein complexes. Overexpressing poly(A) polymerase I in Escherichia coli drastically increased transcriptome-wide RNA polyadenylation, enabling pull-down of crosslinked RNA-protein complexes using immobilized oligo(dT) as bait. With this approach, we identified 169 putative RBPs, roughly half of which are already annotated as RNA-binding. We experimentally verified the RNA-binding ability of a number of uncharacterized RBPs, including YhgF, which is exceptionally well conserved not only in bacteria, but also in archaea and eukaryotes. We identified YhgF RNA targets in vivo using CLIP-seq, verified specific binding in vitro, and reveal a putative role for YhgF in regulation of gene expression. Our findings present a simple and robust strategy for RBP identification in bacteria, provide a resource of new bacterial RBPs, and lay the foundation for further studies of the highly conserved RBP YhgF.


Subject(s)
Escherichia coli Proteins , Escherichia coli , RNA, Bacterial , RNA-Binding Proteins , Chromatin Immunoprecipitation Sequencing , Escherichia coli/genetics , Escherichia coli/metabolism , Eukaryota , RNA-Binding Proteins/analysis , RNA-Binding Proteins/metabolism , Transcriptome , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Escherichia coli Proteins/analysis , Escherichia coli Proteins/metabolism , Polynucleotide Adenylyltransferase/metabolism , Polyadenylation , Protein Binding
9.
Plant J ; 114(3): 651-667, 2023 05.
Article in English | MEDLINE | ID: mdl-36811355

ABSTRACT

Polyadenylation of mRNAs is critical for their export from the nucleus, stability, and efficient translation. The Arabidopsis thaliana genome encodes three isoforms of canonical nuclear poly(A) polymerase (PAPS) that redundantly polyadenylate the bulk of pre-mRNAs. However, previous studies have indicated that subsets of pre-mRNAs are preferentially polyadenylated by either PAPS1 or the other two isoforms. Such functional specialization raises the possibility of an additional level of gene-expression control in plants. Here we test this notion by studying the function of PAPS1 in pollen-tube growth and guidance. Pollen tubes growing through female tissue acquire the competence to find ovules efficiently and upregulate PAPS1 expression at the transcriptional, but not detectably at the protein level compared with in vitro grown pollen tubes. Using the temperature-sensitive paps1-1 allele we show that PAPS1 activity during pollen-tube growth is required for full acquisition of competence, resulting in inefficient fertilization by paps1-1 mutant pollen tubes. While these mutant pollen tubes grow almost at the wild-type rate, they are compromised in locating the micropyles of ovules. Previously identified competence-associated genes are less expressed in paps1-1 mutant than in wild-type pollen tubes. Estimating the poly(A) tail lengths of transcripts suggests that polyadenylation by PAPS1 is associated with reduced transcript abundance. Our results therefore suggest that PAPS1 plays a key role in the acquisition of competence and underline the importance of functional specialization between PAPS isoforms throughout different developmental stages.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Pollen Tube/metabolism , Arabidopsis Proteins/metabolism , Polynucleotide Adenylyltransferase/genetics , Protein Isoforms/metabolism , Mutation
10.
Nat Commun ; 14(1): 772, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774373

ABSTRACT

The S. pombe orthologue of the human PAXT connection, Mtl1-Red1 Core (MTREC), is an eleven-subunit complex that targets cryptic unstable transcripts (CUTs) to the nuclear RNA exosome for degradation. It encompasses the canonical poly(A) polymerase Pla1, responsible for polyadenylation of nascent RNA transcripts as part of the cleavage and polyadenylation factor (CPF/CPSF). In this study we identify and characterise the interaction between Pla1 and the MTREC complex core component Red1 and analyse the functional relevance of this interaction in vivo. Our crystal structure of the Pla1-Red1 complex shows that a 58-residue fragment in Red1 binds to the RNA recognition motif domain of Pla1 and tethers it to the MTREC complex. Structure-based Pla1-Red1 interaction mutations show that Pla1, as part of MTREC complex, hyper-adenylates CUTs for their efficient degradation. Interestingly, the Red1-Pla1 interaction is also required for the efficient assembly of the fission yeast facultative heterochromatic islands. Together, our data suggest a complex interplay between the RNA surveillance and 3'-end processing machineries.


Subject(s)
Polynucleotide Adenylyltransferase , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Carrier Proteins/metabolism , Cell Nucleus/metabolism , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , RNA/metabolism , RNA Precursors/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
11.
Cell Rep ; 41(4): 111548, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36288708

ABSTRACT

Translation of 5' terminal oligopyrimidine (TOP) mRNAs encoding the protein synthesis machinery is strictly regulated by an amino-acid-sensing mTOR pathway. However, its regulatory mechanism remains elusive. Here, we demonstrate that TOP mRNA translation positively correlates with its poly(A) tail length under mTOR active/amino-acid-rich conditions, suggesting that TOP mRNAs are post-transcriptionally controlled by poly(A) tail-length regulation. Consistent with this, the tail length of TOP mRNAs dynamically fluctuates in response to amino acid availability. The poly(A) tail shortens under mTOR active/amino-acid-rich conditions, whereas the long-tailed TOP mRNAs accumulate under mTOR inactive/amino-acid-starved (AAS) conditions. An RNA-binding protein, LARP1, is indispensable for the process. LARP1 interacts with non-canonical poly(A) polymerases and induces post-transcriptional polyadenylation of the target. Our findings illustrate that LARP1 contributes to the selective accumulation of TOP mRNAs with long poly(A) tails under AAS, resulting in accelerated ribosomal loading onto TOP mRNAs for the resumption of translation after AAS.


Subject(s)
Autoantigens , Ribonucleoproteins , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Autoantigens/metabolism , TOR Serine-Threonine Kinases/metabolism , Ribosomes/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Polynucleotide Adenylyltransferase/genetics , Amino Acids/metabolism , Protein Biosynthesis
12.
Nat Commun ; 13(1): 5260, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36071058

ABSTRACT

TENTs generate miRNA isoforms by 3' tailing. However, little is known about how tailing regulates miRNA function. Here, we generate isogenic HEK293T cell lines in which TENT2, TUT4 and TUT7 are knocked out individually or in combination. Together with rescue experiments, we characterize TENT-specific effects by deep sequencing, Northern blot and in vitro assays. We find that 3' tailing is not random but highly specific. In addition to its known adenylation, TENT2 contributes to guanylation and uridylation on mature miRNAs. TUT4 uridylates most miRNAs whereas TUT7 is dispensable. Removing adenylation has a marginal impact on miRNA levels. By contrast, abolishing uridylation leads to dysregulation of a set of miRNAs. Besides let-7, miR-181b and miR-222 are negatively regulated by TUT4/7 via distinct mechanisms while the miR-888 cluster is upregulated specifically by TUT7. Our results uncover the selective actions of TENTs in generating 3' isomiRs and pave the way to investigate their functions.


Subject(s)
DNA-Binding Proteins , MicroRNAs , Polynucleotide Adenylyltransferase , RNA Nucleotidyltransferases , mRNA Cleavage and Polyadenylation Factors , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , MicroRNAs/genetics , Polynucleotide Adenylyltransferase/genetics , RNA Nucleotidyltransferases/genetics , Uridine Monophosphate/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics
13.
Life Sci Alliance ; 5(12)2022 09 16.
Article in English | MEDLINE | ID: mdl-36114004

ABSTRACT

Cytoplasmic polyadenylation is a mechanism to promote mRNA translation in a wide variety of biological contexts. A canonical complex centered around the conserved RNA-binding protein family CPEB has been shown to be responsible for this process. We have previously reported evidence for an alternative noncanonical, CPEB-independent complex in <i>Drosophila</i>, of which the RNA-interference factor Dicer-2 is a component. Here, we investigate Dicer-2 mRNA targets and protein cofactors in cytoplasmic polyadenylation. Using RIP-Seq analysis, we identify hundreds of potential Dicer-2 target transcripts, ∼60% of which were previously found as targets of the cytoplasmic poly(A) polymerase Wispy, suggesting widespread roles of Dicer-2 in cytoplasmic polyadenylation. Large-scale immunoprecipitation revealed Ataxin-2 and Twenty-four among the high-confidence interactors of Dicer-2. Complex analyses indicated that both factors form an RNA-independent complex with Dicer-2 and mediate interactions of Dicer-2 with Wispy. Functional poly(A)-test analyses showed that Twenty-four and Ataxin-2 are required for cytoplasmic polyadenylation of a subset of Dicer-2 targets. Our results reveal components of a novel cytoplasmic polyadenylation complex that operates during <i>Drosophila</i> early embryogenesis.


Subject(s)
Ataxin-2 , Polyadenylation , Animals , Ataxin-2/genetics , Ataxin-2/metabolism , Drosophila/genetics , Drosophila/metabolism , Polyadenylation/genetics , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
14.
Pathog Dis ; 80(1)2022 10 06.
Article in English | MEDLINE | ID: mdl-36130201

ABSTRACT

The yeast noncanonical polyadenylation polymerase Cid14 was originally identified from fission yeast and plays a critical role in the TRAMP complex. This protein is a cytoplasmic cofactor and regulator of RNA-degrading exosomes. Cid14 is highly conserved from yeast to animals and has been demonstrated to play key roles in the regulation of RNA surveillance, nutrition metabolism, and growth in model organisms, but not yet in Cryptococcus neoformans (C. neoformans). Here, we report the identification of a gene encoding an equivalent Cid14 protein, named CID14, in the fungal pathogen C. neoformans. To obtain insights into the function of Cid14, we created a mutant strain, cid14Δ, with the CRISPR-Cas9 editing tool. Disruption of CID14 impaired cell membrane stability. Further investigations revealed the defects of the cid14Δ mutant in resistance to low carbohydrate levels. Meanwhile, significantly, the ability to grow under flucytosine stress was decreased in the cid14Δ mutant. More importantly, our results showed that the cid14Δ mutant does not affect yeast virulence but exhibits multidrug resistance to azole. Our work is the first to suggest that Cid14 plays critical roles in azole resistance by affecting Afr1, which is chiefly responsible for azole excretion in the ABC (ATP-binding cassette) transporter.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Polynucleotide Adenylyltransferase/metabolism , Adenosine Triphosphate/metabolism , Animals , Azoles/metabolism , Azoles/pharmacology , Carbohydrates , Cryptococcus neoformans/genetics , Flucytosine/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Polyadenylation , RNA/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
15.
PLoS One ; 17(4): e0267117, 2022.
Article in English | MEDLINE | ID: mdl-35482720

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies. A growing number of studies have shown that competitive endogenous RNA (ceRNA) regulatory networks might play important roles during HCC process. The present study aimed to identify a regulatory axis of the ceRNA network associated with the development of HCC. The roles of SNX16 and PAPOLG in HCC were comprehensively analyzed using bioinformatics tools. Subsequently, the "mRNA-miRNA-lncRNA" model was then used to predict the upstream miRNAs and lncRNAs of SNX16 and PAPOLG using the miRNet database, and the miRNAs with low expression and good prognosis in HCC and the lncRNAs with high expression and poor prognosis in HCC were screened by differential expression and survival analysis. Finally, the risk-prognosis models of ceRNA network axes were constructed by univariate and multifactorial Cox proportional risk analysis, and the immune correlations of ceRNA network axes were analyzed using the TIMER and GEPIA database. In this study, the relevant ceRNA network axis GSEC/miR-101-3p/SNX16/PAPOLG with HCC prognosis was constructed, in which GSEC, SNX16, and PAPOLG were highly expressed in HCC with poor prognosis, while miR-101-3p was lowly expressed in HCC with good prognosis. The risk-prognosis model predicted AUC of 0.691, 0.623, and 0.626 for patient survival at 1, 3, and 5 years, respectively. Immuno-infiltration analysis suggested that the GSEC/miR-101-3p/SNX16/PAPOLG axis might affect macrophage polarization. The GSEC/miR-101-3p/SNX16/PAPOLG axis of the ceRNA network axis might be an important factor associated with HCC prognosis and immune infiltration.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Carcinoma, Hepatocellular/genetics , DNA-Directed RNA Polymerases/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Polynucleotide Adenylyltransferase/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sorting Nexins/genetics , Sorting Nexins/metabolism
16.
RNA ; 28(5): 756-765, 2022 05.
Article in English | MEDLINE | ID: mdl-35217597

ABSTRACT

Poly(A) tail length is regulated in both the nucleus and cytoplasm. One factor that controls polyadenylation in the cytoplasm is CPEB1, an RNA binding protein that associates with specific mRNA 3'UTR sequences to tether enzymes that add and remove poly(A). Two of these enzymes, the noncanonical poly(A) polymerases GLD2 (TENT2, PAPD4, Wispy) and GLD4 (TENT4B, PAPD5, TRF4, TUT3), interact with CPEB1 to extend poly(A). To identify additional RNA binding proteins that might anchor GLD4 to RNA, we expressed double tagged GLD4 in U87MG cells, which was used for sequential immunoprecipitation and elution followed by mass spectrometry. We identified several RNA binding proteins that coprecipitated with GLD4, among which was FMRP. To assess whether FMRP regulates polyadenylation, we performed TAIL-seq from WT and FMRP-deficient HEK293 cells. Surprisingly, loss of FMRP resulted in an overall increase in poly(A), which was also observed for several specific mRNAs. Conversely, loss of CPEB1 elicited an expected decrease in poly(A), which was examined in cultured neurons. We also examined polyadenylation in wild type (WT) and FMRP-deficient mouse brain cortex by direct RNA nanopore sequencing, which identified RNAs with both increased and decreased poly(A). Our data show that FMRP has a role in mediating poly(A) tail length, which adds to its repertoire of RNA regulation.


Subject(s)
Polyadenylation , mRNA Cleavage and Polyadenylation Factors , Animals , HEK293 Cells , Humans , Mice , Poly A/genetics , Poly A/metabolism , Polynucleotide Adenylyltransferase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism
17.
Cell Prolif ; 55(3): e13183, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35137485

ABSTRACT

OBJECTIVE: Paravertebral muscle asymmetry may be involved in the pathogenesis of adolescent idiopathic scoliosis (AIS), and the Tent5a protein was recently identified as a novel active noncanonical poly(A) polymerase. We, therefore, explored the function of the AIS susceptibility gene Tent5a in myoblasts. MATERIALS AND METHODS: RNA-seq of AIS paravertebral muscle was performed, and the molecular differences in paravertebral muscle were investigated. Twenty-four AIS susceptibility genes were screened, and differential expression of Tent5a in paravertebral muscles was confirmed with qPCR and Western blot. After the knockdown of Tent5a, the functional effects of Tent5a on C2C12 cell proliferation, migration, and apoptosis were detected by Cell Counting Kit-8 assay, wound-healing assay, and TUNEL assay, respectively. Myogenic differentiation markers were tested with immunofluorescence and qPCR in vitro, and muscle fiber formation was compared in vivo. RESULTS: The AIS susceptibility gene Tent5a was differentially expressed in AIS paravertebral muscles. Tent5a knockdown inhibited the proliferation and migration of C2C12 cells and inhibited the maturation of type I muscle fibers in vitro and in vivo. Mechanistically, the expression of myogenin was decreased along with the suppression of Tent5a. CONCLUSIONS: Tent5a plays an important role in the proliferation and migration of myoblasts, and it regulates muscle fiber maturation by maintaining the stability of myogenin. Tent5a may be involved in the pathogenesis of AIS by regulating the formation of muscle fiber type I.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Myoblasts/cytology , Myogenin/metabolism , Polynucleotide Adenylyltransferase/metabolism , Adolescent , Cell Differentiation/genetics , Child , Female , Gene Expression/physiology , Humans , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Myogenin/genetics , RNA, Messenger/metabolism , Scoliosis/genetics
18.
Science ; 373(6562): 1499-1505, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34554798

ABSTRACT

Many human proteins contain domains that vary in size or copy number because of variable numbers of tandem repeats (VNTRs) in protein-coding exons. However, the relationships of VNTRs to most phenotypes are unknown because of difficulties in measuring such repetitive elements. We developed methods to estimate VNTR lengths from whole-exome sequencing data and impute VNTR alleles into single-nucleotide polymorphism haplotypes. Analyzing 118 protein-altering VNTRs in 415,280 UK Biobank participants for association with 786 phenotypes identified some of the strongest associations of common variants with human phenotypes, including height, hair morphology, and biomarkers of health. Accounting for large-effect VNTRs further enabled fine-mapping of associations to many more protein-coding mutations in the same genes. These results point to cryptic effects of highly polymorphic common structural variants that have eluded molecular analyses to date.


Subject(s)
Genome, Human , Minisatellite Repeats/genetics , Phenotype , Polymorphism, Genetic , Aggrecans/genetics , Antigens/genetics , Black People , Body Height/genetics , Genetic Association Studies , Hair , Haplotypes , Humans , Intermediate Filament Proteins/genetics , Kidney/physiology , Lipoprotein(a)/blood , Lipoprotein(a)/genetics , Mucin-1/genetics , Polymorphism, Single Nucleotide , Polynucleotide Adenylyltransferase/genetics , White People/genetics , Exome Sequencing
19.
Nat Commun ; 12(1): 4951, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400637

ABSTRACT

The polyadenosine tail (poly[A]-tail) is a universal modification of eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). In budding yeast, Pap1-synthesized mRNA poly(A) tails enhance export and translation, whereas Trf4/5-mediated polyadenylation of ncRNAs facilitates degradation by the exosome. Using direct RNA sequencing, we decipher the extent of poly(A) tail dynamics in yeast defective in all relevant exonucleases, deadenylases, and poly(A) polymerases. Predominantly ncRNA poly(A) tails are 20-60 adenosines long. Poly(A) tails of newly transcribed mRNAs are 50 adenosine long on average, with an upper limit of 200. Exonucleolysis by Trf5-assisted nuclear exosome and cytoplasmic deadenylases trim the tails to 40 adenosines on average. Surprisingly, PAN2/3 and CCR4-NOT deadenylase complexes have a large pool of non-overlapping substrates mainly defined by expression level. Finally, we demonstrate that mRNA poly(A) tail length strongly responds to growth conditions, such as heat and nutrient deprivation.


Subject(s)
Poly A/metabolism , Polynucleotide Adenylyltransferase/metabolism , RNA/metabolism , Saccharomyces cerevisiae/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Exosomes/metabolism , Polyadenylation , Polynucleotide Adenylyltransferase/genetics , RNA, Messenger/metabolism , RNA, Untranslated/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
20.
Hereditas ; 158(1): 29, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34404481

ABSTRACT

BACKGROUND: The formation of the Bicoid (Bcd) gradient in the early Drosophila is one of the most fascinating observations in biology and serves as a paradigm for gradient formation, yet its mechanism is still not fully understood. Two distinct models were proposed in the past, the SDD and the ARTS model. RESULTS: We define novel cis- and trans-acting factors that are indispensable for gradient formation. The first one is the poly A tail length of the bcd mRNA where we demonstrate that it changes not only in time, but also in space. We show that posterior bcd mRNAs possess a longer poly tail than anterior ones and this elongation is likely mediated by wispy (wisp), a poly A polymerase. Consequently, modulating the activity of Wisp results in changes of the Bcd gradient, in controlling downstream targets such as the gap and pair-rule genes, and also in influencing the cuticular pattern. Attempts to modulate the Bcd gradient by subjecting the egg to an extra nuclear cycle, i.e. a 15th nuclear cycle by means of the maternal haploid (mh) mutation showed no effect, neither on the appearance of the gradient nor on the control of downstream target. This suggests that the segmental anlagen are determined during the first 14 nuclear cycles. Finally, we identify the Cyclin B (CycB) gene as a trans-acting factor that modulates the movement of Bcd such that Bcd movement is allowed to move through the interior of the egg. CONCLUSIONS: Our analysis demonstrates that Bcd gradient formation is far more complex than previously thought requiring a revision of the models of how the gradient is formed.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , Homeodomain Proteins/genetics , Trans-Activators/genetics , Animals , Cyclin B/genetics , Drosophila/embryology , Gene Expression Regulation, Developmental , Poly A/genetics , Polynucleotide Adenylyltransferase/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...