Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
1.
Nat Commun ; 15(1): 3636, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710699

ABSTRACT

Polypharmacology drugs-compounds that inhibit multiple proteins-have many applications but are difficult to design. To address this challenge we have developed POLYGON, an approach to polypharmacology based on generative reinforcement learning. POLYGON embeds chemical space and iteratively samples it to generate new molecular structures; these are rewarded by the predicted ability to inhibit each of two protein targets and by drug-likeness and ease-of-synthesis. In binding data for >100,000 compounds, POLYGON correctly recognizes polypharmacology interactions with 82.5% accuracy. We subsequently generate de-novo compounds targeting ten pairs of proteins with documented co-dependency. Docking analysis indicates that top structures bind their two targets with low free energies and similar 3D orientations to canonical single-protein inhibitors. We synthesize 32 compounds targeting MEK1 and mTOR, with most yielding >50% reduction in each protein activity and in cell viability when dosed at 1-10 µM. These results support the potential of generative modeling for polypharmacology.


Subject(s)
Molecular Docking Simulation , Humans , TOR Serine-Threonine Kinases/metabolism , Polypharmacology , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Binding , Drug Discovery/methods , Drug Design , Cell Survival/drug effects
2.
Cell ; 187(9): 2194-2208.e22, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38552625

ABSTRACT

Effective treatments for complex central nervous system (CNS) disorders require drugs with polypharmacology and multifunctionality, yet designing such drugs remains a challenge. Here, we present a flexible scaffold-based cheminformatics approach (FSCA) for the rational design of polypharmacological drugs. FSCA involves fitting a flexible scaffold to different receptors using different binding poses, as exemplified by IHCH-7179, which adopted a "bending-down" binding pose at 5-HT2AR to act as an antagonist and a "stretching-up" binding pose at 5-HT1AR to function as an agonist. IHCH-7179 demonstrated promising results in alleviating cognitive deficits and psychoactive symptoms in mice by blocking 5-HT2AR for psychoactive symptoms and activating 5-HT1AR to alleviate cognitive deficits. By analyzing aminergic receptor structures, we identified two featured motifs, the "agonist filter" and "conformation shaper," which determine ligand binding pose and predict activity at aminergic receptors. With these motifs, FSCA can be applied to the design of polypharmacological ligands at other receptors.


Subject(s)
Cheminformatics , Drug Design , Polypharmacology , Animals , Mice , Humans , Cheminformatics/methods , Ligands , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/chemistry , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/chemistry , Male , Binding Sites
3.
Expert Opin Drug Discov ; 19(4): 451-470, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456452

ABSTRACT

INTRODUCTION: The current drug discovery paradigm of 'one drug, multiple targets' has gained attention from both the academic medicinal chemistry community and the pharmaceutical industry. This is in response to the urgent need for effective agents to treat multifactorial chronic diseases. The molecular hybridization strategy is a useful tool that has been widely explored, particularly in the last two decades, for the design of multi-target drugs. AREAS COVERED: This review examines the current state of molecular hybridization in guiding the discovery of multitarget small molecules. The article discusses the design strategies and target selection for a multitarget polypharmacology approach to treat various diseases, including cancer, Alzheimer's disease, cardiac arrhythmia, endometriosis, and inflammatory diseases. EXPERT OPINION: Although the examples discussed highlight the importance of molecular hybridization for the discovery of multitarget bioactive compounds, it is notorious that the literature has focused on specific classes of targets. This may be due to a deep understanding of the pharmacophore features required for target binding, making targets such as histone deacetylases and cholinesterases frequent starting points. However, it is important to encourage the scientific community to explore diverse combinations of targets using the molecular hybridization strategy.


Subject(s)
Alzheimer Disease , Drug Discovery , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Polypharmacology , Drug Design
4.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473785

ABSTRACT

Deep learning is a machine learning technique to model high-level abstractions in data by utilizing a graph composed of multiple processing layers that experience various linear and non-linear transformations. This technique has been shown to perform well for applications in drug discovery, utilizing structural features of small molecules to predict activity. Here, we report a large-scale study to predict the activity of small molecules across the human kinome-a major family of drug targets, particularly in anti-cancer agents. While small-molecule kinase inhibitors exhibit impressive clinical efficacy in several different diseases, resistance often arises through adaptive kinome reprogramming or subpopulation diversity. Polypharmacology and combination therapies offer potential therapeutic strategies for patients with resistant diseases. Their development would benefit from a more comprehensive and dense knowledge of small-molecule inhibition across the human kinome. Leveraging over 650,000 bioactivity annotations for more than 300,000 small molecules, we evaluated multiple machine learning methods to predict the small-molecule inhibition of 342 kinases across the human kinome. Our results demonstrated that multi-task deep neural networks outperformed classical single-task methods, offering the potential for conducting large-scale virtual screening, predicting activity profiles, and bridging the gaps in the available data.


Subject(s)
Deep Learning , Humans , Phosphotransferases , Drug Discovery/methods , Polypharmacology , Machine Learning
5.
Pharm Res ; 41(3): 411-417, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366233

ABSTRACT

Drugs with multiple targets, often annotated as 'unselective', 'promiscuous', 'multitarget', or 'polypharmacological', are widely considered in both academic and industrial research as a high risk due to the likelihood of adverse effects. However, retrospective analyses have shown that particularly approved drugs bear rich polypharmacological profiles. This raises the question whether our perception of the specificity paradigm ('one drug-one target concept') is correct - and if specifically multitarget drugs should be developed instead of being rejected. These questions provoke a paradigm shift - regarding the development of polypharmacological drugs not as a 'waste of investment', but acknowledging the existence of a 'lack of investment'. This perspective provides an insight into modern drug development highlighting latest drug candidates that have not been assessed in a broader polypharmacology-based context elsewhere embedded in a historic framework of classical and modern approved multitarget drugs. The article shall be an inspiration to the scientific community to re-consider current standards, and more, to evolve to a better understanding of polypharmacology from a challenge to an opportunity.


Subject(s)
Drug Delivery Systems , Polypharmacology , Retrospective Studies
6.
J Chem Inf Model ; 64(3): 621-626, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38276895

ABSTRACT

Using a combination of multisite λ-dynamics (MSλD) together with in vitro IC50 assays, we evaluated the polypharmacological potential of a scaffold currently in clinical trials for inhibition of human neutrophil elastase (HNE), targeting cardiopulmonary disease, for efficacious inhibition of Proteinase 3 (PR3), a related neutrophil serine proteinase. The affinities we observe suggest that the dihydropyrimidinone scaffold can serve as a suitable starting point for the establishment of polypharmacologically targeting both enzymes and enhancing the potential for treatments addressing diseases like chronic obstructive pulmonary disease.


Subject(s)
Polypharmacology , Humans , Myeloblastin , Proteinase Inhibitory Proteins, Secretory
7.
Curr Opin Struct Biol ; 84: 102771, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215530

ABSTRACT

In drug discovery, targeted polypharmacology, i.e., targeting multiple molecular targets with a single drug, is redefining therapeutic design to address complex diseases. Pre-selected pharmacological profiles, as exemplified in kinase drugs, promise enhanced efficacy and reduced toxicity. Historically, many of such drugs were discovered serendipitously, limiting predictability and efficacy, but currently artificial intelligence (AI) offers a transformative solution. Machine learning and deep learning techniques enable modeling protein structures, generating novel compounds, and decoding their polypharmacological effects, opening an avenue for more systematic and predictive multi-target drug design. This review explores the use of AI in identifying synergistic co-targets and delineating them from anti-targets that lead to adverse effects, and then discusses advances in AI-enabled docking, generative chemistry, and proteochemometric modeling of proteome-wide compound interactions, in the context of polypharmacology. We also provide insights into challenges ahead.


Subject(s)
Artificial Intelligence , Polypharmacology , Drug Discovery/methods , Drug Design , Machine Learning
8.
Drug Discov Today ; 29(3): 103904, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280625

ABSTRACT

To combat multifactorial refractory diseases, such as cancer, cardiovascular, and neurodegenerative diseases, multitarget drugs have become an emerging area of research aimed at 'synthetic lethality' (SL) relationships associated with drug-resistance mechanisms. In this review, we discuss the in silico design of dual and triple-targeted ligands, strategies by which specific 'warhead' groups are incorporated into a parent compound or scaffold with primary inhibitory activity against one target to develop one small molecule that inhibits two or three molecular targets in an effort to increase potency against multifactorial diseases. We also discuss the analytical exploration of structure-activity relationships (SARs), physicochemical properties, polypharmacology, scaffold feature extraction of US Food and Drug Administration (FDA)-approved multikinase inhibitors (MKIs), and updates regarding the clinical status of dual-targeted chemotypes.


Subject(s)
Drug Discovery , Polypharmacology , Structure-Activity Relationship , Pharmaceutical Preparations , Ligands , Drug Design
9.
Cell Chem Biol ; 31(2): 284-297.e10, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37848034

ABSTRACT

Multiple tyrosine kinase inhibitors (TKIs) are often developed for the same indication. However, their relative overall efficacy is frequently incompletely understood and they may harbor unrecognized targets that cooperate with the intended target. We compared several ROS1 TKIs for inhibition of ROS1-fusion-positive lung cancer cell viability, ROS1 autophosphorylation and kinase activity, which indicated disproportionately higher cellular potency of one TKI, lorlatinib. Quantitative chemical and phosphoproteomics across four ROS1 TKIs and differential network analysis revealed that lorlatinib uniquely impacted focal adhesion signaling. Functional validation using pharmacological probes, RNA interference, and CRISPR-Cas9 knockout uncovered a polypharmacology mechanism of lorlatinib by dual targeting ROS1 and PYK2, which form a multiprotein complex with SRC. Rational multi-targeting of this complex by combining lorlatinib with SRC inhibitors exhibited pronounced synergy. Taken together, we show that systems pharmacology-based differential network analysis can dissect mixed canonical/non-canonical polypharmacology mechanisms across multiple TKIs enabling the design of rational drug combinations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lactams , Lung Neoplasms , Protein-Tyrosine Kinases , Pyrazoles , Humans , Aminopyridines/pharmacology , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Focal Adhesion Kinase 2/antagonists & inhibitors , Lactams, Macrocyclic , Lung Neoplasms/drug therapy , Polypharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins
10.
Expert Opin Drug Discov ; 19(1): 21-32, 2024.
Article in English | MEDLINE | ID: mdl-37800853

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a progressive, irreversible, and multifactorial brain disorder that gradually and insidiously destroys individual's memory, thinking, and other cognitive abilities. AREAS COVERED: In this perspective, the authors examine the complex and multifactorial nature of Alzheimer's disease and believe that the best approach to develop new drugs is the MTDL strategy, which obviously faces several challenges. These challenges include identifying the key combination of targets and their suitability for coordinated actions, as well as developing an acceptable pharmacokinetic and toxicological profile to deliver a drug candidate. EXPERT OPINION: Since calcium plays a crucial role in the pathology of AD, a polypharmacological approach with calcium channel blockers reinforced by activities targeting other factors involved in AD is a serious option in our opinion. This is exemplified by a phase III clinical trial using a drug combination approach with Losartan, Amlodipine (a calcium channel blocker), and Atorvastatin, as well as several MTDL-based calcium channel blockade approaches with a promising in vitro and in vivo profile.


Subject(s)
Alzheimer Disease , Calcium Channel Blockers , Humans , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Alzheimer Disease/drug therapy , Drug Discovery , Losartan/therapeutic use , Polypharmacology
11.
Drug Dev Res ; 85(1): e22125, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37920929

ABSTRACT

At the core of complex and multifactorial human diseases, such as cancer, metabolic syndrome, or neurodegeneration, are multiple players that cross-talk in robust biological networks which are intrinsically resilient to alterations. These multifactorial diseases are characterized by sophisticated feedback mechanisms which manifest cellular imbalance and resistance to drug therapy. By adhering to the specificity paradigm ("one target-one drug concept"), research focused for many years on drugs with very narrow mechanisms of action. This narrow focus promoted therapy ineffectiveness and resistance. However, modern drug discovery has evolved over the last years, increasingly emphasizing integral strategies for the development of clinically effective drugs. These integral strategies include the controlled engagement of multiple targets to overcome therapy resistance. Apart from the additive or even synergistic effects in therapy, multitarget drugs harbor molecular-structural attributes to explore orphan targets of which intrinsic substrates/physiological role(s) and/or modulators are unknown for future therapy purposes. We designated this multidisciplinary and translational research field between medicinal chemistry, chemical biology, and molecular pharmacology as 'medicinal polypharmacology'. Medicinal polypharmacology emerged as alternative approach to common single-targeted pharmacology stretching from basic drug and target identification processes to clinical evaluation of multitarget drugs, and the exploration and exploitation of the 'polypharmacolome' is at the forefront of modern drug development research.


Subject(s)
Neoplasms , Polypharmacology , Humans , Drug Discovery , Neoplasms/drug therapy
12.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38113075

ABSTRACT

Kinase inhibitors are crucial in cancer treatment, but drug resistance and side effects hinder the development of effective drugs. To address these challenges, it is essential to analyze the polypharmacology of kinase inhibitor and identify compound with high selectivity profile. This study presents KinomeMETA, a framework for profiling the activity of small molecule kinase inhibitors across a panel of 661 kinases. By training a meta-learner based on a graph neural network and fine-tuning it to create kinase-specific learners, KinomeMETA outperforms benchmark multi-task models and other kinase profiling models. It provides higher accuracy for understudied kinases with limited known data and broader coverage of kinase types, including important mutant kinases. Case studies on the discovery of new scaffold inhibitors for membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase and selective inhibitors for fibroblast growth factor receptors demonstrate the role of KinomeMETA in virtual screening and kinome-wide activity profiling. Overall, KinomeMETA has the potential to accelerate kinase drug discovery by more effectively exploring the kinase polypharmacology landscape.


Subject(s)
Antineoplastic Agents , Polypharmacology , Protein Serine-Threonine Kinases , Drug Discovery
13.
Nature ; 624(7992): 672-681, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935376

ABSTRACT

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Subject(s)
GTP-Binding Proteins , Receptors, G-Protein-Coupled , Animals , Humans , Mice , Amines/metabolism , Amphetamine/metabolism , Antipsychotic Agents/chemistry , Antipsychotic Agents/metabolism , Binding Sites , Catecholamines/agonists , Catecholamines/chemistry , Catecholamines/metabolism , Cryoelectron Microscopy , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/ultrastructure , Ligands , Molecular Dynamics Simulation , Mutation , Polypharmacology , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Species Specificity , Substrate Specificity
14.
Nature ; 624(7992): 663-671, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935377

ABSTRACT

Trace amine-associated receptor 1 (TAAR1), the founding member of a nine-member family of trace amine receptors, is responsible for recognizing a range of biogenic amines in the brain, including the endogenous ß-phenylethylamine (ß-PEA)1 as well as methamphetamine2, an abused substance that has posed a severe threat to human health and society3. Given its unique physiological role in the brain, TAAR1 is also an emerging target for a range of neurological disorders including schizophrenia, depression and drug addiction2,4,5. Here we report structures of human TAAR1-G-protein complexes bound to methamphetamine and ß-PEA as well as complexes bound to RO5256390, a TAAR1-selective agonist, and SEP-363856, a clinical-stage dual agonist for TAAR1 and serotonin receptor 5-HT1AR (refs. 6,7). Together with systematic mutagenesis and functional studies, the structures reveal the molecular basis of methamphetamine recognition and underlying mechanisms of ligand selectivity and polypharmacology between TAAR1 and other monoamine receptors. We identify a lid-like extracellular loop 2 helix/loop structure and a hydrogen-bonding network in the ligand-binding pockets, which may contribute to the ligand recognition in TAAR1. These findings shed light on the ligand recognition mode and activation mechanism for TAAR1 and should guide the development of next-generation therapeutics for drug addiction and various neurological disorders.


Subject(s)
Methamphetamine , Phenethylamines , Receptors, G-Protein-Coupled , Humans , Ligands , Methamphetamine/metabolism , Nervous System Diseases/metabolism , Phenethylamines/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Substance-Related Disorders/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Polypharmacology , Hydrogen Bonding
15.
PLoS Pathog ; 19(9): e1011169, 2023 09.
Article in English | MEDLINE | ID: mdl-37669313

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis. Several cellular protein kinases have been reported to promote or restrict KSHV reactivation, but our knowledge of these signaling mediators and pathways is incomplete. We employed a polypharmacology-based kinome screen to identify specific kinases that regulate KSHV reactivation. Those identified by the screen and validated by knockdown experiments included several kinases that enhance lytic reactivation: ERBB2 (HER2 or neu), ERBB3 (HER3), ERBB4 (HER4), MKNK2 (MNK2), ITK, TEC, and DSTYK (RIPK5). Conversely, ERBB1 (EGFR1 or HER1), MKNK1 (MNK1) and FRK (PTK5) were found to promote the maintenance of latency. Mechanistic characterization of ERBB2 pro-lytic functions revealed a signaling connection between ERBB2 and the activation of CREB1, a transcription factor that drives KSHV lytic gene expression. These studies provided a proof-of-principle application of a polypharmacology-based kinome screen for the study of KSHV reactivation and enabled the discovery of both kinase inhibitors and specific kinases that regulate the KSHV latent-to-lytic replication switch.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/genetics , Polypharmacology , Africa , Cognition , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins , Receptor-Interacting Protein Serine-Threonine Kinases
16.
STAR Protoc ; 4(3): 102440, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37561634

ABSTRACT

Polypharmacology aids in the identification of multiple protein targets involved in disease pathology and selecting appropriate therapeutic compounds interacting with protein targets. Here, we present a protocol to identify the targets involved in obesity-linked diabetes and suitable phytocompounds to bind with the identified target. We describe steps to install and use softwares for identifying several protein targets by linking multiple diseases. This protocol allows the use of therapeutic compounds of both phytochemical and synthetic origins. For complete details on the use and execution of this protocol, please refer to Martiz et al.,1 and Maradesha et al.2.


Subject(s)
Hydrolases , Polypharmacology , Software
17.
PLoS One ; 18(8): e0289890, 2023.
Article in English | MEDLINE | ID: mdl-37556478

ABSTRACT

Drug repurposing has emerged as an important strategy and it has a great potential in identifying therapeutic applications for COVID-19. An extensive virtual screening of 4193 FDA approved drugs has been carried out against 24 proteins of SARS-CoV2 (NSP1-10 and NSP12-16, envelope, membrane, nucleoprotein, spike, ORF3a, ORF6, ORF7a, ORF8, and ORF9b). The drugs were classified into top 10 and bottom 10 drugs based on the docking scores followed by the distribution of their therapeutic indications. As a result, the top 10 drugs were found to have therapeutic indications for cancer, pain, neurological disorders, and viral and bacterial diseases. As drug resistance is one of the major challenges in antiviral drug discovery, polypharmacology and network pharmacology approaches were employed in the study to identify drugs interacting with multiple targets and drugs such as dihydroergotamine, ergotamine, bisdequalinium chloride, midostaurin, temoporfin, tirilazad, and venetoclax were identified among the multi-targeting drugs. Further, a pathway analysis of the genes related to the multi-targeting drugs was carried which provides insight into the mechanism of drugs and identifying targetable genes and biological pathways involved in SARS-CoV2.


Subject(s)
COVID-19 , Humans , Drug Repositioning , RNA, Viral , Protease Inhibitors/pharmacology , SARS-CoV-2 , Polypharmacology , Molecular Docking Simulation , Antiviral Agents/pharmacology
18.
Pharmacol Rep ; 75(4): 755-770, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37278927

ABSTRACT

Polypharmacology is an emerging strategy of design, synthesis, and clinical implementation of pharmaceutical agents that act on multiple targets simultaneously. It should not be mixed up with polytherapy, which is based on the use of multiple selective drugs and is considered a cornerstone of current clinical practice. However, this 'classic' approach, when facing urgent medical challenges, such as multifactorial diseases, increasing resistance to pharmacotherapy, and multimorbidity, seems to be insufficient. The 'novel' polypharmacology concept leads to a more predictable pharmacokinetic profile of multi-target-directed ligands (MTDLs), giving a chance to avoid drug-drug interactions and improve patient compliance due to the simplification of dosing regimens. Plenty of recently marketed drugs interact with multiple biological targets or disease pathways. Many offer a significant additional benefit compared to the standard treatment regimens. In this paper, we will briefly outline the genesis of polypharmacology and its differences to polytherapy. We will also present leading concepts for obtaining MTDLs. Subsequently, we will describe some successfully marketed drugs, the mechanisms of action of which are based on the interaction with multiple targets. To get an idea, of whether MTDLs are indeed important in contemporary pharmacology, we also carefully analyzed drugs approved in 2022 in Germany: 10 out of them were found multi-targeting, including 7 antitumor agents, 1 antidepressant, 1 hypnotic, and 1 drug indicated for eye disease.


Subject(s)
Polypharmacology , Humans
19.
J Chem Inf Model ; 63(11): 3248-3262, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37257045

ABSTRACT

G protein-coupled receptors (GPCRs) are targets of many drugs, of which ∼25% are indicated for central nervous system (CNS) disorders. Drug promiscuity affects their efficacy and safety profiles. Predicting the polypharmacology profile of compounds against GPCRs can thus provide a basis for producing more precise therapeutics by considering the targets and the anti-targets in that family of closely related proteins. We provide a tool for predicting the polypharmacology of compounds within prominent GPCR families in the CNS: serotonin, dopamine, histamine, muscarinic, opioid, and cannabinoid receptors. Our in-house algorithm, "iterative stochastic elimination" (ISE), produces high-quality ligand-based models for agonism and antagonism at 31 GPCRs. The ISE models correctly predict 68% of CNS drug-GPCR interactions, while the "similarity ensemble approach" predicts only 33%. The activity models correctly predict 56% of reported activities of DrugBank molecules for these CNS receptors. We conclude that the combination of interactions and activity profiles generated by screening through our models form the basis for subsequent designing and discovering novel therapeutics, either single, multitargeting, or repurposed.


Subject(s)
Polypharmacology , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Algorithms , Central Nervous System/metabolism , Ligands
20.
J Chem Inf Model ; 63(9): 2689-2698, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37074232

ABSTRACT

According to the Illuminating the Druggable Genome (IDG) initiative, 90% of the proteins encoded by the human genome still lack an identified active ligand, that is, a small molecule with biologically relevant binding potency or functional activity in an in vitro assay. Under this scenario, there is an urgent need for new approaches to chemically address these yet untargeted proteins. It is widely recognized that the best starting point for generating novel small molecules for proteins is to exploit the expected polypharmacology of known active ligands across phylogenetically related proteins following the paradigm that similar proteins are likely to interact with similar ligands. Here, we introduce a computational strategy to identify privileged structures that, when chemically expanded, are highly probable to contain active small molecules for untargeted proteins. The protocol was first tested on a set of 576 currently targeted proteins having at least one protein family sibling the year before their first active ligand was reported. A privileged structure contained in active ligands that were identified in the following years was correctly anticipated for 214 (37%) of those targeted proteins, a lower-bound recall estimate when considering data completeness issues. When applied to a set of 1184 untargeted potential druggable genes in cancer, the identification of privileged structures from known bioactive ligands of protein family siblings allowed for extracting a priority list of diverse commercially available small molecules for 960 of them. Assuming a minimum success rate of 37%, the chemical library selections should be able to deliver active ligands for at least 355 currently untargeted proteins associated with cancer.


Subject(s)
Polypharmacology , Proteins , Humans , Ligands , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...