Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 276
Filter
1.
Nature ; 630(8016): 401-411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811727

ABSTRACT

Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.


Subject(s)
Hominidae , X Chromosome , Y Chromosome , Animals , Female , Male , Gorilla gorilla/genetics , Hominidae/genetics , Hominidae/classification , Hylobatidae/genetics , Pan paniscus/genetics , Pan troglodytes/genetics , Phylogeny , Pongo abelii/genetics , Pongo pygmaeus/genetics , Telomere/genetics , X Chromosome/genetics , Y Chromosome/genetics , Evolution, Molecular , DNA Copy Number Variations/genetics , Humans , Endangered Species , Reference Standards
2.
Sci Rep ; 12(1): 11017, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773288

ABSTRACT

In mammalian neonates, milk consumption provides nutrients, growth factors, immune molecules, and microbes. Milk microbiomes are increasingly recognized for their roles in seeding infant gut microbiomes and priming immune development. However, milk microbiome variation within and among individuals remains under investigation. We used 16S rRNA gene sequencing to investigate factors shaping milk microbiomes in three captive great ape species: Gorilla gorilla gorilla (individuals, N = 4; samples, n = 29), Pongo abelii (N = 2; n = 16), and Pongo pygmaeus (N = 1; n = 9). We demonstrate variation among host species, over lactation, and between housing facilities. In phylogenetic community composition, milk microbiomes were distinct among the three ape species. We found only a few shared, abundant bacterial taxa and suggest that they likely serve functional roles. The diversity and community composition of milk microbiomes showed gradual changes over time in gorillas and the Bornean orangutan, which was detectable with our comprehensive sampling over lactation stages (> 300-day span). In gorillas, milk microbiomes differed between housing facilities, but were similar between dams within a facility. These results support the strong influence of evolutionary history in shaping milk microbiomes, but also indicate that more proximate cues from mother, offspring, and the environment affect the distribution of rarer microbial taxa.


Subject(s)
Hominidae , Microbiota , Animals , Female , Gorilla gorilla/genetics , Hominidae/genetics , Humans , Infant, Newborn , Mammals/genetics , Milk , Phylogeny , Pongo pygmaeus/genetics , RNA, Ribosomal, 16S/genetics
3.
Am J Primatol ; 84(4-5): e23298, 2022 05.
Article in English | MEDLINE | ID: mdl-34227139

ABSTRACT

During the past 15 years, researchers have shown a renewed interest in the study of the Plasmodium parasites that infect orangutans. Most recently, studies examined the phylogenetic relationships and divergence dates of these parasites in orangutans using complete mitochondrial DNA genomes. Questions regarding the dating of these parasites, however, remain. In the present study, we provide a new calibration model for dating the origins of Plasmodium parasites in orangutans using a modified date range for the origin of macaques in Asia. Our Bayesian phylogenetic analyses of complete Plasmodium sp. mitochondrial DNA genomes inferred two clades of plasmodia in orangutans (Pongo 1 and Pongo 2), and that these clades likely represent the previously identified species Plasmodium pitheci and Plasmodium silvaticum. However, we cannot identify which Pongo clade is representative of the morphologically described species. The most recent common ancestor of both Pongo sp. plasmodia, Plasmodium. hylobati, and Plasmodium. inui dates to 3-3.16 million years ago (mya) (95% highest posterior density [HPD]: 2.09-4.08 mya). The Pongo 1 parasite diversified 0.33-0.36 mya (95% HPD: 0.12-0.63), while the Pongo 2 parasite diversified 1.15-1.22 mya (95% HPD: 0.63-1.82 mya). It now seems likely that the monkey Plasmodium (P. inui) is the result of a host switch event from the Pongo 2 parasite to sympatric monkeys, or P. hylobati. Our new estimates for the divergence of orangutan malaria parasites, and subsequent diversification, are all several hundred thousand years later than previous Bayesian estimates.


Subject(s)
Parasites , Plasmodium , Animals , Bayes Theorem , Calibration , DNA, Mitochondrial/genetics , Phylogeny , Plasmodium/genetics , Pongo , Pongo pygmaeus/genetics
4.
Bioessays ; 42(3): e1900102, 2020 03.
Article in English | MEDLINE | ID: mdl-31994246

ABSTRACT

Language does not fossilize but this does not mean that the language's evolutionary timeline is lost forever. Great apes provide a window back in time on our last prelinguistic ancestor's communication and cognition. Phylogeny and cladistics implicitly conjure Pan (chimpanzees, bonobos) as a superior (often the only) model for language evolution compared with earlier diverging lineages, Gorilla and Pongo (orangutans). Here, in reviewing the literature, it is shown that Pan do not surpass other great apes along genetic, cognitive, ecologic, or vocal traits that are putatively paramount for language onset and evolution. Instead, revived herein is the idea that only by abandoning single-species models and learning about the variation among great apes, there might be a chance to retrieve lost fragments of the evolutionary timeline of language.


Subject(s)
Gorilla gorilla/psychology , Language , Pan paniscus/psychology , Pan troglodytes/psychology , Pongo pygmaeus/psychology , Animals , Biological Evolution , Cognition , Gorilla gorilla/genetics , Humans , Pan paniscus/genetics , Pan troglodytes/genetics , Phylogeny , Pongo pygmaeus/genetics , Vocalization, Animal
5.
Immunogenetics ; 70(9): 571-583, 2018 09.
Article in English | MEDLINE | ID: mdl-29869002

ABSTRACT

The increasing number of Killer Immunoglobulin-like Receptor (KIR) sequences available for non-human primate species and cattle has prompted development of a centralized database, guidelines for a standardized nomenclature, and minimum requirements for database submission. The guidelines and nomenclature are based on those used for human KIR and incorporate modifications made for inclusion of non-human species in the companion IPD-NHKIR database. Included in this first release are the rhesus macaque (Macaca mulatta), chimpanzee (Pan troglodytes), orangutan (Pongo abelii and Pongo pygmaeus), and cattle (Bos taurus).


Subject(s)
Receptors, KIR , Terminology as Topic , Animals , Cattle , Humans , Macaca mulatta/genetics , Pan troglodytes/genetics , Pongo pygmaeus/genetics
6.
Primates ; 59(2): 127-133, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29387973

ABSTRACT

The reproductive success of male primates is not always associated with dominance status. For example, even though male orangutans exhibit intra-sexual dimorphism and clear dominance relationships exist among males, previous studies have reported that both morphs are able to sire offspring. The present study aimed to compare the reproductive success of two male morphs, and to determine whether unflanged males sired offspring in a free-ranging population of Bornean orangutans, using 12 microsatellite loci to determine the paternity of eight infants. A single flanged male sired most of the offspring from parous females, and an unflanged male sired a firstborn. This is consistent with our observation that the dominant flanged male showed little interest in nulliparous females, whereas the unflanged males frequently mated with them. This suggests that the dominant flanged male monopolizes the fertilization of parous females and that unflanged males take advantage of any mating opportunities that arise in the absence of the flanged male, even though the conception probability of nulliparous females is relatively low.


Subject(s)
Pongo pygmaeus/physiology , Reproduction , Sexual Behavior, Animal , Agonistic Behavior , Animals , DNA/genetics , DNA/isolation & purification , Female , Genotype , Male , Microsatellite Repeats/genetics , Paternity , Pongo pygmaeus/classification , Pongo pygmaeus/genetics , Sex Characteristics , Social Dominance
7.
Sci Rep ; 7(1): 16866, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203828

ABSTRACT

The gene coding for the forkhead box protein P2 (FOXP2) is associated with human language disorders. Evolutionary changes in this gene are hypothesized to have contributed to the emergence of speech and language in the human lineage. Although FOXP2 is highly conserved across most mammals, humans differ at two functional amino acid substitutions from chimpanzees, bonobos and gorillas, with an additional fixed substitution found in orangutans. However, FOXP2 has been characterized in only a small number of apes and no publication to date has examined the degree of natural variation in large samples of unrelated great apes. Here, we analyzed the genetic variation in the FOXP2 coding sequence in 63 chimpanzees, 11 bonobos, 48 gorillas, 37 orangutans and 2 gibbons and observed undescribed variation in great apes. We identified two variable polyglutamine microsatellites in chimpanzees and orangutans and found three nonsynonymous single nucleotide polymorphisms, one in chimpanzees, one in gorillas and one in orangutans with derived allele frequencies of 0.01, 0.26 and 0.29, respectively. Structural and functional protein modeling indicate a biochemical effect of the substitution in orangutans, and because of its presence solely in the Sumatran orangutan species, the mutation may be associated with reported population differences in vocalizations.


Subject(s)
Forkhead Transcription Factors/genetics , Genetic Variation , Vocalization, Animal/physiology , Amino Acid Sequence , Animals , Biological Evolution , Forkhead Transcription Factors/chemistry , Forkhead Transcription Factors/metabolism , Gene Frequency , Gorilla gorilla/genetics , Hominidae , Microsatellite Repeats/genetics , Pan paniscus/genetics , Pan troglodytes/genetics , Polymorphism, Single Nucleotide , Pongo abelii/genetics , Pongo pygmaeus/genetics , Protein Structure, Secondary , Sequence Alignment
8.
Curr Biol ; 27(22): 3487-3498.e10, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29103940

ABSTRACT

Six extant species of non-human great apes are currently recognized: Sumatran and Bornean orangutans, eastern and western gorillas, and chimpanzees and bonobos [1]. However, large gaps remain in our knowledge of fine-scale variation in hominoid morphology, behavior, and genetics, and aspects of great ape taxonomy remain in flux. This is particularly true for orangutans (genus: Pongo), the only Asian great apes and phylogenetically our most distant relatives among extant hominids [1]. Designation of Bornean and Sumatran orangutans, P. pygmaeus (Linnaeus 1760) and P. abelii (Lesson 1827), as distinct species occurred in 2001 [1, 2]. Here, we show that an isolated population from Batang Toru, at the southernmost range limit of extant Sumatran orangutans south of Lake Toba, is distinct from other northern Sumatran and Bornean populations. By comparing cranio-mandibular and dental characters of an orangutan killed in a human-animal conflict to those of 33 adult male orangutans of a similar developmental stage, we found consistent differences between the Batang Toru individual and other extant Ponginae. Our analyses of 37 orangutan genomes provided a second line of evidence. Model-based approaches revealed that the deepest split in the evolutionary history of extant orangutans occurred ∼3.38 mya between the Batang Toru population and those to the north of Lake Toba, whereas both currently recognized species separated much later, about 674 kya. Our combined analyses support a new classification of orangutans into three extant species. The new species, Pongo tapanuliensis, encompasses the Batang Toru population, of which fewer than 800 individuals survive. VIDEO ABSTRACT.


Subject(s)
Genetic Speciation , Pongo/genetics , Animals , Behavior, Animal/physiology , Biological Evolution , Endangered Species , Gene Flow/genetics , Genetic Variation , Genome , Genomics , Hominidae/genetics , Metagenomics/methods , Phylogeny , Pongo/classification , Pongo/physiology , Pongo abelii/genetics , Pongo pygmaeus/genetics
9.
Genome Biol Evol ; 9(8): 2037-2048, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28633494

ABSTRACT

Superfamily Hominoidea, which consists of Hominidae (humans and great apes) and Hylobatidae (gibbons), is well-known for sharing human-like characteristics, however, the genomic origins of these shared unique phenotypes have mainly remained elusive. To decipher the underlying genomic basis of Hominoidea-restricted phenotypes, we identified and characterized Hominoidea-restricted highly conserved noncoding sequences (HCNSs) that are a class of potential regulatory elements which may be involved in evolution of lineage-specific phenotypes. We discovered 679 such HCNSs from human, chimpanzee, gorilla, orangutan and gibbon genomes. These HCNSs were demonstrated to be under purifying selection but with lineage-restricted characteristics different from old CNSs. A significant proportion of their ancestral sequences had accelerated rates of nucleotide substitutions, insertions and deletions during the evolution of common ancestor of Hominoidea, suggesting the intervention of positive Darwinian selection for creating those HCNSs. In contrary to enhancer elements and similar to silencer sequences, these Hominoidea-restricted HCNSs are located in close proximity of transcription start sites. Their target genes are enriched in the nervous system, development and transcription, and they tend to be remotely located from the nearest coding gene. Chip-seq signals and gene expression patterns suggest that Hominoidea-restricted HCNSs are likely to be functional regulatory elements by imposing silencing effects on their target genes in a tissue-restricted manner during fetal brain development. These HCNSs, emerged through adaptive evolution and conserved through purifying selection, represent a set of promising targets for future functional studies of the evolution of Hominoidea-restricted phenotypes.


Subject(s)
Brain/embryology , Gene Expression Regulation, Developmental , Hominidae/embryology , Hominidae/genetics , Animals , Base Sequence , Conserved Sequence , Epigenomics/methods , Evolution, Molecular , Gene Silencing , Gorilla gorilla/genetics , Humans , Hylobates/genetics , Pan troglodytes/genetics , Pongo pygmaeus/genetics , Regulatory Sequences, Nucleic Acid
10.
PLoS One ; 11(12): e0168715, 2016.
Article in English | MEDLINE | ID: mdl-28033350

ABSTRACT

The hypervariable region I (HVRI) is persistently used to discern haplotypes, to distinguish geographic subpopulations, and to infer taxonomy in a range of organisms. Numerous studies have highlighted greater heterogeneity elsewhere in the mitochondrial DNA control region, however-particularly, in some species, in other understudied hypervariable regions. To assess the abundance and utility of such potential variations in orang-utans, we characterised 36 complete control-region haplotypes, of which 13 were of Sumatran and 23 of Bornean maternal ancestry, and compared polymorphisms within these and within shorter HVRI segments predominantly analysed in prior phylogenetic studies of Sumatran (~385 bp) and Bornean (~323 bp) orang-utans. We amplified the complete control region in a single PCR that proved successful even with highly degraded, non-invasive samples. By using species-specific primers to produce a single large amplicon (~1600 bp) comprising flanking coding regions, our method also serves to better avoid amplification of nuclear mitochondrial insertions (numts). We found the number, length and position of hypervariable regions is inconsistent between orang-utan species, and that prior definitions of the HVRI were haphazard. Polymorphisms occurring outside the predominantly analysed segments were phylogeographically informative in isolation, and could be used to assign haplotypes to comparable clades concordant with geographic subpopulations. The predominantly analysed segments could discern only up to 76% of all haplotypes, highlighting the forensic utility of complete control-region sequences. In the face of declining sequencing costs and our proven application to poor-quality DNA extracts, we see no reason to ever amplify only specific 'hypervariable regions' in any taxa, particularly as their lengths and positions are inconsistent and cannot be reliably defined-yet this strategy predominates widely. Given their greater utility and consistency, we instead advocate analysis of complete control-region sequences in future studies, where any shorter segment might otherwise have proven the region of choice.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation , Pongo pygmaeus/genetics , Animals , Feces , Phylogeny , Sequence Analysis, DNA
11.
J Immunol ; 196(2): 750-8, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26685209

ABSTRACT

MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented in this article. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by killer cell Ig-like receptor. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I Abs, the level of cell-surface expression of proteins correlates with the level of transcription of the allele.


Subject(s)
Genes, MHC Class I , Pongo abelii/genetics , Pongo pygmaeus/genetics , Transcriptome , Amino Acid Sequence , Animals , Evolution, Molecular , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction
12.
Sci Rep ; 5: 14189, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26387916

ABSTRACT

The centromere/kinetochore interaction is responsible for the pairing and segregation of replicated chromosomes in eukaryotes. Centromere DNA is portrayed as scarcely conserved, repetitive in nature, quickly evolving and protein-binding competent. Among primates, the major class of centromeric DNA is the pancentromeric α-satellite, made of arrays of 171 bp monomers, repeated in a head-to-tail pattern. α-satellite sequences can either form tandem heterogeneous monomeric arrays or assemble in higher-order repeats (HORs). Gorilla centromere DNA has barely been characterized, and data are mainly based on hybridizations of human alphoid sequences. We isolated and finely characterized gorilla α-satellite sequences and revealed relevant structure and chromosomal distribution similarities with other great apes as well as gorilla-specific features, such as the uniquely octameric structure of the suprachromosomal family-2 (SF2). We demonstrated for the first time the orthologous localization of alphoid suprachromosomal families-1 and -2 (SF1 and SF2) between human and gorilla in contrast to chimpanzee centromeres. Finally, the discovery of a new 189 bp monomer type in gorilla centromeres unravels clues to the role of the centromere protein B, paving the way to solve the significance of the centromere DNA's essential repetitive nature in association with its function and the peculiar evolution of the α-satellite sequence.


Subject(s)
Autoantigens/genetics , Centromere Protein B/genetics , Centromere/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA, Satellite/genetics , Gorilla gorilla/genetics , Animals , Base Sequence , Cell Line , Centromere Protein A , Chromosome Mapping , DNA, Satellite/isolation & purification , Humans , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Pan troglodytes/genetics , Polymerase Chain Reaction , Pongo pygmaeus/genetics , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
13.
Mol Ecol ; 24(2): 310-27, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25439562

ABSTRACT

Investigating how different evolutionary forces have shaped patterns of DNA variation within and among species requires detailed knowledge of their demographic history. Orang-utans, whose distribution is currently restricted to the South-East Asian islands of Borneo (Pongo pygmaeus) and Sumatra (Pongo abelii), have likely experienced a complex demographic history, influenced by recurrent changes in climate and sea levels, volcanic activities and anthropogenic pressures. Using the most extensive sample set of wild orang-utans to date, we employed an Approximate Bayesian Computation (ABC) approach to test the fit of 12 different demographic scenarios to the observed patterns of variation in autosomal, X-chromosomal, mitochondrial and Y-chromosomal markers. In the best-fitting model, Sumatran orang-utans exhibit a deep split of populations north and south of Lake Toba, probably caused by multiple eruptions of the Toba volcano. In addition, we found signals for a strong decline in all Sumatran populations ~24 ka, probably associated with hunting by human colonizers. In contrast, Bornean orang-utans experienced a severe bottleneck ~135 ka, followed by a population expansion and substructuring starting ~82 ka, which we link to an expansion from a glacial refugium. We showed that orang-utans went through drastic changes in population size and connectedness, caused by recurrent contraction and expansion of rainforest habitat during Pleistocene glaciations and probably hunting by early humans. Our findings emphasize the fact that important aspects of the evolutionary past of species with complex demographic histories might remain obscured when applying overly simplified models.


Subject(s)
Bayes Theorem , Biological Evolution , Genetics, Population , Models, Genetic , Pongo abelii/genetics , Pongo pygmaeus/genetics , Animals , Borneo , Female , Indonesia , Male , Molecular Sequence Data , Sequence Analysis, DNA
14.
Genome Biol Evol ; 6(3): 655-65, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24572016

ABSTRACT

Previous studies have found that DNA-flanking low-complexity regions (LCRs) have an increased substitution rate. Here, the substitution rate was confirmed to increase in the vicinity of LCRs in several primate species, including humans. This effect was also found among human sequences from the 1000 Genomes Project. A strong correlation was found between average substitution rate per site and distance from the LCR, as well as the proportion of genes with gaps in the alignment at each site and distance from the LCR. Along with substitution rates, dN/dS ratios were also determined for each site, and the proportion of sites undergoing negative selection was found to have a negative relationship with distance from the LCR.


Subject(s)
Genome , Gorilla gorilla/genetics , Macaca mulatta/genetics , Pan troglodytes/genetics , Pongo pygmaeus/genetics , Animals , Conserved Sequence , DNA/genetics , Evolution, Molecular , Humans , Models, Genetic , Polymorphism, Single Nucleotide , Selection, Genetic , Sequence Analysis, DNA
15.
Genet Mol Res ; 12(2): 1731-9, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23765979

ABSTRACT

DNA was recovered from teeth of 2 great ape skeletons, Pan troglodytes (Ptr) and Pongo pygmaeus (Ppy), belonging to a 19th-century zoological collection. The skeletons presented morphological alterations possibly associated with ß-thalassemia: Ptr had deformation of the calvaria and oro-maxillo-facial bones with porotic hyperostosis and extended osteoporotic lesions of the skeleton, while Ppy showed a general marked widening of the calvarial diploe but moderate osteoporotic signs on the post-cranial skeleton. We screened Ptr and Ppy for mutations in the ß-globin gene (exons 1, 2, and 3) because we suspected thalassemia. Ptr ß-globin sequences showed the highest degree of similarity with the human ones (99.8%), while those of Ppy were slightly different (98.2%). The results were consistent with the phylogenetic relationships between their β-globin gene sequences. We did not find any mutation in the ß-globin gene of Ptr and Ppy; therefore, we conclude that, in spite of skeletal alterations, the 2 subjects analyzed were not affected by ß-thalassemia.


Subject(s)
DNA/genetics , Pan troglodytes/genetics , Pongo pygmaeus/genetics , beta-Globins/genetics , beta-Thalassemia/genetics , Amino Acid Sequence , Animals , Base Sequence , Bone and Bones/pathology , Electrophoresis, Agar Gel , Exons/genetics , Humans , Likelihood Functions , Molecular Sequence Data , Phylogeny , Sequence Alignment , Skull/pathology , beta-Globins/chemistry
16.
Genomics ; 102(4): 288-95, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23648727

ABSTRACT

An Evolutionary Neo-Centromere (ENC) is a centromere that emerged in an ectopic region of a chromosome during evolution. It is thought that the old centromere must be inactivated because dicentric chromosomes are not viable. The aim of the present study was to investigate whether 3D arrangement in the interphase nucleus of the novel and old centromeric domains was affected by the repositioning event. The data we present here strongly indicate that the ENC phenomenon does not affect the 3D location of either novel or old centromeres. Very likely, other features, such as gene density, rather than the newly acquired or lost functions, define positioning in the nucleus.


Subject(s)
Centromere/genetics , Centromere/ultrastructure , Evolution, Molecular , Phylogeny , Primates/genetics , Animals , Atelinae/genetics , Biological Evolution , Cell Line , Cell Nucleus/genetics , Cell Nucleus/physiology , Chromosomes , Genome , Gorilla gorilla/genetics , Humans , In Situ Hybridization, Fluorescence , Interphase/genetics , Macaca nemestrina/genetics , Pongo pygmaeus/genetics
17.
PLoS One ; 7(11): e49429, 2012.
Article in English | MEDLINE | ID: mdl-23166666

ABSTRACT

Bornean orang-utans experienced a major demographic decline and local extirpations during the Pleistocene and Holocene due to climate change, the arrival of modern humans, of farmers and recent commercially-driven habitat loss and fragmentation. The recent loss of habitat and its dramatic fragmentation has affected the patterns of genetic variability and differentiation among the remaining populations and increased the extinction risk of the most isolated ones. However, the contribution of recent demographic events to such genetic patterns is still not fully clear. Indeed, it can be difficult to separate the effects of recent anthropogenic fragmentation from the genetic signature of prehistoric demographic events. Here, we investigated the genetic structure and population size dynamics of orang-utans from different sites. Altogether 126 individuals were analyzed and a full-likelihood Bayesian approach was applied. All sites exhibited clear signals of population decline. Population structure is known to generate spurious bottleneck signals and we found that it does indeed contribute to the signals observed. However, population structure alone does not easily explain the observed patterns. The dating of the population decline varied across sites but was always within the 200-2000 years period. This suggests that in some sites at least, orang-utan populations were affected by demographic events that started before the recent anthropogenic effects that occurred in Borneo. These results do not mean that the recent forest exploitation did not leave its genetic mark on orang-utans but suggests that the genetic pool of orang-utans is also impacted by more ancient events. While we cannot identify the main cause for this decline, our results suggests that the decline may be related to the arrival of the first farmers or climatic events, and that more theoretical work is needed to understand how multiple demographic events impact the genome of species and how we can assess their relative contributions.


Subject(s)
Ecosystem , Genetic Variation , Genetics, Population , Pongo pygmaeus/genetics , Pongo pygmaeus/physiology , Animals , Bayes Theorem , Borneo , Demography , Likelihood Functions , Microsatellite Repeats/genetics , Models, Genetic , Population Dynamics
18.
Genome Biol Evol ; 4(11): 1133-45, 2012.
Article in English | MEDLINE | ID: mdl-22975719

ABSTRACT

The demographic history of human would provide helpful information for identifying the evolutionary events that shaped the humanity but remains controversial even in the genomic era. To settle the controversies, we inferred the speciation times (T) and ancestral population sizes (N) in the lineage leading to human and great apes based on whole-genome alignment. A coalescence simulation determined the sizes of alignment blocks and intervals between them required to obtain recombination-free blocks with a high frequency. This simulation revealed that the size of the block strongly affects the parameter inference, indicating that recombination is an important factor for achieving optimum parameter inference. From the whole genome alignments (1.9 giga-bases) of human (H), chimpanzee (C), gorilla (G), and orangutan, 100-bp alignment blocks separated by ≥5-kb intervals were sampled and subjected to estimate τ = µT and θ = 4µgN using the Markov chain Monte Carlo method, where µ is the mutation rate and g is the generation time. Although the estimated τ(HC) differed across chromosomes, τ(HC) and τ(HCG) were strongly correlated across chromosomes, indicating that variation in τ is subject to variation in µ, rather than T, and thus, all chromosomes share a single speciation time. Subsequently, we estimated Ts of the human lineage from chimpanzee, gorilla, and orangutan to be 6.0-7.6, 7.6-9.7, and 15-19 Ma, respectively, assuming variable µ across lineages and chromosomes. These speciation times were consistent with the fossil records. We conclude that the speciation times in our recombination-free analysis would be conclusive and the speciation between human and chimpanzee was a single event.


Subject(s)
Genetic Speciation , Genome/genetics , Hominidae/genetics , Animals , Computer Simulation , Demography/methods , Genetics, Population , Genome, Human/genetics , Gorilla gorilla/genetics , Humans , Pan troglodytes/genetics , Phylogeny , Pongo pygmaeus/genetics , Sequence Analysis, DNA/methods
19.
Mol Ecol ; 21(13): 3352-62, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22647036

ABSTRACT

Philopatry and sex-biased dispersal have a strong influence on population genetic structure, so the study of species dispersal patterns and evolutionary mechanisms shaping them are of great interest. Particularly nongregarious mammalian species present an underexplored field of study: despite their lower levels of sociality compared to group-living species, interactions among individuals do occur, providing opportunities for cryptic kin selection. Among the least gregarious primates are orang-utans (genus: Pongo), in which preferential associations among females have nevertheless been observed, but for which the presence of kin structures was so far unresolved because of the equivocal results of previous genetic studies. To clarify relatedness and dispersal patterns in orang-utans, we examined the largest longitudinal set of individuals with combined genetic, spatial and behavioural data. We found that males had significantly higher mitochondrial DNA (mtDNA) variation and more unique haplotypes, thus underscoring their different maternal ancestries compared to females. Moreover, pedigree reconstruction based on 24 highly polymorphic microsatellite markers and mtDNA haplotypes demonstrated the presence of three matrilineal clusters of generally highly related females with substantially overlapping ranges. In orang-utans and possibly other nongregarious species, comparing average biparental relatedness (r) of males and females to infer sex-biased dispersal is extremely problematic. This is because the opportunistic sampling regime frequently employed in nongregarious species, combined with overlapping space use of distinct matrilineal clusters, leads to a strong downward bias when mtDNA lineage membership is ignored. Thus, in nongregarious species, correct inferences of dispersal can only be achieved by combining several genetic approaches with detailed spatial information.


Subject(s)
Genetic Variation , Genetics, Population , Pongo pygmaeus/genetics , Animals , DNA, Mitochondrial/genetics , Female , Haplotypes , Male , Molecular Sequence Data , Pedigree , Sequence Analysis, DNA
20.
PLoS Genet ; 7(3): e1001319, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21408205

ABSTRACT

Due to genetic variation in the ancestor of two populations or two species, the divergence time for DNA sequences from two populations is variable along the genome. Within genomic segments all bases will share the same divergence-because they share a most recent common ancestor-when no recombination event has occurred to split them apart. The size of these segments of constant divergence depends on the recombination rate, but also on the speciation time, the effective population size of the ancestral population, as well as demographic effects and selection. Thus, inference of these parameters may be possible if we can decode the divergence times along a genomic alignment. Here, we present a new hidden Markov model that infers the changing divergence (coalescence) times along the genome alignment using a coalescent framework, in order to estimate the speciation time, the recombination rate, and the ancestral effective population size. The model is efficient enough to allow inference on whole-genome data sets. We first investigate the power and consistency of the model with coalescent simulations and then apply it to the whole-genome sequences of the two orangutan sub-species, Bornean (P. p. pygmaeus) and Sumatran (P. p. abelii) orangutans from the Orangutan Genome Project. We estimate the speciation time between the two sub-species to be thousand years ago and the effective population size of the ancestral orangutan species to be , consistent with recent results based on smaller data sets. We also report a negative correlation between chromosome size and ancestral effective population size, which we interpret as a signature of recombination increasing the efficacy of selection.


Subject(s)
Evolution, Molecular , Genetic Speciation , Genome , Pongo abelii/genetics , Pongo pygmaeus/genetics , Algorithms , Animals , Chromosomes/metabolism , Genetic Variation , Genetics, Population , Markov Chains , Models, Genetic , Models, Statistical , Population Density , Recombination, Genetic , Sequence Alignment , Sequence Homology, Nucleic Acid , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...