Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.110
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731952

ABSTRACT

Porphyromonas gingivalis (Pg), a Gram-negative oral pathogen, promotes and accelerates periodontitis-associated gut disorders. Intestinal epithelial barrier dysfunction is crucial in the pathogenesis of intestinal and systemic diseases. In this study, we sought to elucidate the protective role of cinnamaldehyde (CNM, an activator of Nrf2) against P. gingivalis (W83) and Pg-derived lipopolysaccharide (Pg-LPS) induced intestinal epithelial barrier dysfunction via antioxidative mechanisms in IEC-6 cells. IEC-6 (ATCC, CRL-1592) cells were pretreated with or without CNM (100 µM), in the presence or absence of P. gingivalis (strain W83, 109 MOI) or Pg-LPS (1, 10, and 100 µg/mL), respectively, between 0-72 h time points by adopting a co-culture method. Intestinal barrier function, cytokine secretion, and intestinal oxidative stress protein markers were analyzed. P. gingivalis or Pg-LPS significantly (p < 0.05) increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels expressing oxidative stress damage. Pg-LPS, as well as Pg alone, induces inflammatory cytokines via TLR-4 signaling. Furthermore, infection reduced Nrf2 and NAD(P)H quinone dehydrogenase 1 (NQO1). Interestingly, inducible nitric oxide synthase (iNOS) protein expression significantly (p < 0.05) increased with Pg-LPS or Pg infection, with elevated levels of nitric oxide (NO). CNM treatment suppressed both Pg- and Pg-LPS-induced intestinal oxidative stress damage by reducing ROS, MDA, and NO production. Furthermore, CNM treatment significantly upregulated the expression of tight junction proteins via increasing the phosphorylation levels of PI3K/Akt/Nrf2 suppressing inflammatory cytokines. CNM protected against Pg infection-induced intestinal epithelial barrier dysfunction by activating the PI3K/Akt-mediated Nrf2 signaling pathway in IEC-6 cells.


Subject(s)
Acrolein , Intestinal Mucosa , NF-E2-Related Factor 2 , Nitric Oxide , Phosphatidylinositol 3-Kinases , Porphyromonas gingivalis , Proto-Oncogene Proteins c-akt , Signal Transduction , NF-E2-Related Factor 2/metabolism , Acrolein/analogs & derivatives , Acrolein/pharmacology , Animals , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Porphyromonas gingivalis/pathogenicity , Phosphatidylinositol 3-Kinases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Nitric Oxide/metabolism , Cell Line , Lipopolysaccharides , Oxidative Stress/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Toll-Like Receptor 4/metabolism , Reactive Oxygen Species/metabolism , Cytokines/metabolism
2.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674094

ABSTRACT

Porphyromonas gingivalis (Pg) and its gingipain proteases contribute to Alzheimer's disease (AD) pathogenesis through yet unclear mechanisms. Cellular secretion of small extracellular vesicles or exosomes (EXO) increases with aging as part of the senescence-associated secretory phenotype (SASP). We have shown that EXO isolated from Pg-infected dendritic cells contain gingipains and other Pg antigens and transmit senescence to bystander gingival cells, inducing alveolar bone loss in mice in vivo. Here, EXO were isolated from the gingiva of mice and humans with/without periodontitis (PD) to determine their ability to penetrate the blood-brain barrier (BBB) in vitro and in vivo. PD was induced by Pg oral gavage for 6 weeks in C57B6 mice. EXO isolated from the gingiva or brain of donor Pg-infected (PD EXO) or control animals (Con EXO) were characterized by NTA, Western blot, and TEM. Gingival PD EXO or Con EXO were labeled and injected into the gingiva of uninfected WT mouse model. EXO biodistribution in brains was tracked by an in vivo imaging system (IVIS) and confocal microscopy. The effect of human PD EXO on BBB integrity and permeability was examined using TEER and FITC dextran assays in a human in vitro 3D model of the BBB. Pg antigens (RGP and Mfa-1) were detected in EXO derived from gingival and brain tissues of donor Pg-infected mice. Orally injected PD EXO from donor mice penetrated the brains of recipient uninfected mice and colocalized with hippocampal microglial cells. IL-1ß and IL-6 were expressed in human PD EXO and not in Con EXO. Human PD EXO promoted BBB permeability and penetrated the BBB in vitro. This is the first demonstration that microbial-induced EXO in the oral cavity can disseminate, cross the BBB, and may contribute to AD pathogenesis.


Subject(s)
Blood-Brain Barrier , Extracellular Vesicles , Gingiva , Periodontitis , Porphyromonas gingivalis , Blood-Brain Barrier/metabolism , Animals , Humans , Mice , Extracellular Vesicles/metabolism , Porphyromonas gingivalis/metabolism , Porphyromonas gingivalis/pathogenicity , Periodontitis/microbiology , Periodontitis/metabolism , Periodontitis/pathology , Gingiva/metabolism , Gingiva/microbiology , Mice, Inbred C57BL , Male , Exosomes/metabolism , Female , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/metabolism
3.
Arch Oral Biol ; 163: 105965, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593562

ABSTRACT

OBJECTIVE: Porphyromonas gingivalis (P. gingivalis) is a key etiological agent in periodontitis and functions as a facultative intracellular microorganism and involves many virulence factors. These virulence factors participate in multiple intracellular processes, like ferroptosis, the mechanistic underpinnings remain to be elucidated. Aim of this study was to investigate the effects of virulence factors on the host cells. DESIGN: Human umbilical vein endothelial cells (HUVECs) were treated with 4% paraformaldehyde-fixed P. gingivalis, and subsequent alterations in gene expression were profiled via RNA-seq. Further, the molecules associated with ferroptosis were quantitatively analyzed using qRT-PCR and Western blot. RESULTS: A total of 1125 differentially expressed genes (DEGs) were identified, encompassing 225 upregulated and 900 downregulated. Ferroptosis was conspicuously represented in the kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, with notable upregulation of Heme oxygenase 1 (HMOX1), Ferritin light chain (FTL), and Solute carrier family 3 member 2 (SLC3A2) and downregulation of Scavenger receptor class A member 5 (SCARA5) and glutaminase (GLS). Random selection of DEGs for validation through qRT-PCR corroborated the RNA-Seq data (R2 = 0.93). Kelch like ECH associated protein 1 (Keap1) protein expression decreased after 4 and 8 h, while NFE2 like bZIP transcription factor 2 (Nrf2) and HMOX1 were elevated, with significant nuclear translocation of Nrf2. CONCLUSIONS: The virulence factors of P. gingivalis may potentially instigating ferroptosis through activation of the Keap1-Nrf2-HMOX1 signaling cascade, in conjunction with modulating the expression of other ferroptosis-associated elements. Further research is necessary to achieve a thorough comprehension of these complex molecular interactions.


Subject(s)
Ferroptosis , Human Umbilical Vein Endothelial Cells , Porphyromonas gingivalis , Virulence Factors , Porphyromonas gingivalis/pathogenicity , Porphyromonas gingivalis/genetics , Ferroptosis/genetics , Humans , Virulence Factors/genetics , Up-Regulation , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Blotting, Western , Down-Regulation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
4.
Int J Oral Sci ; 15(1): 3, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36631446

ABSTRACT

Bacteremia induced by periodontal infection is an important factor for periodontitis to threaten general health. P. gingivalis DNA/virulence factors have been found in the brain tissues from patients with Alzheimer's disease (AD). The blood-brain barrier (BBB) is essential for keeping toxic substances from entering brain tissues. However, the effect of P. gingivalis bacteremia on BBB permeability and its underlying mechanism remains unclear. In the present study, rats were injected by tail vein with P. gingivalis three times a week for eight weeks to induce bacteremia. An in vitro BBB model infected with P. gingivalis was also established. We found that the infiltration of Evans blue dye and Albumin protein deposition in the rat brain tissues were increased in the rat brain tissues with P. gingivalis bacteremia and P. gingivalis could pass through the in vitro BBB model. Caveolae were detected after P. gingivalis infection in BMECs both in vivo and in vitro. Caveolin-1 (Cav-1) expression was enhanced after P. gingivalis infection. Downregulation of Cav-1 rescued P. gingivalis-enhanced BMECs permeability. We further found P. gingivalis-gingipain could be colocalized with Cav-1 and the strong hydrogen bonding between Cav-1 and arg-specific-gingipain (RgpA) were detected. Moreover, P. gingivalis significantly inhibited the major facilitator superfamily domain containing 2a (Mfsd2a) expression. Mfsd2a overexpression reversed P. gingivalis-increased BMECs permeability and Cav-1 expression. These results revealed that Mfsd2a/Cav-1 mediated transcytosis is a key pathway governing BBB BMECs permeability induced by P. gingivalis, which may contribute to P. gingivalis/virulence factors entrance and the subsequent neurological impairments.


Subject(s)
Bacteremia , Blood-Brain Barrier , Caveolin 1 , Porphyromonas gingivalis , Animals , Rats , Bacteremia/complications , Bacteremia/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/microbiology , Caveolin 1/metabolism , Gingipain Cysteine Endopeptidases/metabolism , Permeability , Porphyromonas gingivalis/pathogenicity , Transcytosis , Virulence Factors/metabolism
5.
Article in English | WPRIM (Western Pacific) | ID: wpr-971594

ABSTRACT

Bacteremia induced by periodontal infection is an important factor for periodontitis to threaten general health. P. gingivalis DNA/virulence factors have been found in the brain tissues from patients with Alzheimer's disease (AD). The blood-brain barrier (BBB) is essential for keeping toxic substances from entering brain tissues. However, the effect of P. gingivalis bacteremia on BBB permeability and its underlying mechanism remains unclear. In the present study, rats were injected by tail vein with P. gingivalis three times a week for eight weeks to induce bacteremia. An in vitro BBB model infected with P. gingivalis was also established. We found that the infiltration of Evans blue dye and Albumin protein deposition in the rat brain tissues were increased in the rat brain tissues with P. gingivalis bacteremia and P. gingivalis could pass through the in vitro BBB model. Caveolae were detected after P. gingivalis infection in BMECs both in vivo and in vitro. Caveolin-1 (Cav-1) expression was enhanced after P. gingivalis infection. Downregulation of Cav-1 rescued P. gingivalis-enhanced BMECs permeability. We further found P. gingivalis-gingipain could be colocalized with Cav-1 and the strong hydrogen bonding between Cav-1 and arg-specific-gingipain (RgpA) were detected. Moreover, P. gingivalis significantly inhibited the major facilitator superfamily domain containing 2a (Mfsd2a) expression. Mfsd2a overexpression reversed P. gingivalis-increased BMECs permeability and Cav-1 expression. These results revealed that Mfsd2a/Cav-1 mediated transcytosis is a key pathway governing BBB BMECs permeability induced by P. gingivalis, which may contribute to P. gingivalis/virulence factors entrance and the subsequent neurological impairments.


Subject(s)
Animals , Rats , Bacteremia/metabolism , Blood-Brain Barrier/microbiology , Caveolin 1/metabolism , Gingipain Cysteine Endopeptidases/metabolism , Permeability , Porphyromonas gingivalis/pathogenicity , Transcytosis , Virulence Factors/metabolism
6.
Rev. cuba. reumatol ; 24(4)dic. 2022.
Article in Spanish | LILACS, CUMED | ID: biblio-1530168

ABSTRACT

Introducción: Porphyromonas gingivalis es un microorganismo presente en las periodontitis, productor de la enzima peptidil arginina desminasa, inductora de la citrulinación de proteínas que convierte en antígenos, y que son reconocidos por los anticuerpos antipéptido cíclico citrulinados, marcadores específicos de la artritis reumatoide. Estudios clínicos y epidemiológicos relacionan el hábito de fumar con la periodontitis y la artritis reumatoide. Objetivo: Evaluar la asociación entre el hábito de fumar, la periodontitis crónica y la artritis reumatoide. Métodos: Se realizó un estudio observacional, analítico, de corte transversal, de casos y controles de pacientes con diagnóstico de artritis reumatoide tratados en el Centro de Reumatología y pacientes atendidos por medicina interna en el Hospital Clínico Quirúrgico 10 de octubre de La Habana, en el periodo entre septiembre del 2017 y mayo del 2019. Se estudiaron las variables edad, sexo, hábito de fumar y estado periodontal evaluado a través del índice de enfermedad periodontal de Russell y el nivel de inserción clínica. Para identificar la asociación entre variables se empleó la prueba de ji al cuadrado y el odds ratio. Se respetaron las legislaciones éticas. Resultados: En el estudio prevaleció el grupo de 35 a 44 años y el sexo femenino. El hábito de fumar predominó en los pacientes artríticos, con manifiesto incremento de la prevalencia y gravedad de la enfermedad periodontal. Conclusiones: El hábito de fumar incrementó el riesgo de periodontitis crónica en ambos grupos, y con menos intensidad de riesgo en la artritis reumatoide.


Introduction: Porphyromonas gingivalis is a microorganism present in periodontitis, producer of the enzyme peptidyl arginine deminase that induces citrullination of proteins, turning them into antigens, which are recognized by anti-citrullinated cyclic peptide antibodies, specific markers of rheumatoid arthritis. Clinical and epidemiological studies link smoking with periodontitis and rheumatoid arthritis. Objective: To evaluate the association between smoking, the presence of chronic periodontitis and rheumatoid arthritis. Methods: An observational, analytical, cross-sectional study of cases and controls of patients with a diagnosis of rheumatoid arthritis treated at the Rheumatology Center and patients treated by Internal Medicine in 10 de Octubre Surgical- Clinic Hospital in Havana, between September 2017 and May 2019. The variables were: age, sex, smoking habit and periodontal status evaluated through the Russell Periodontal Disease Index and Level of Clinical Insertion. For the association and relationship between variables, the chi square and the odds ratio were used. Ethical legislation was respected. Results: In the study the group of 35 to 44 years old and the female sex prevailed. Smoking prevailed in arthritic patients with a remarkable increase in the prevalence and severity of periodontal disease. Conclusions: Smoking increased the risk of chronic periodontitis in both groups with less intensity of risk in rheumatoid arthritis.


Subject(s)
Female , Adult , Arthritis, Rheumatoid/complications , Smoking/adverse effects , Porphyromonas gingivalis/pathogenicity , Chronic Periodontitis/complications
7.
J Mol Biol ; 434(23): 167871, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36404438

ABSTRACT

Porphyromonas gingivalis is a gram-negative oral anaerobic pathogen and is one of the key causative agents of periodontitis. P. gingivalis utilises a range of virulence factors, including the cysteine protease RgpB, to drive pathogenesis and these are exported and attached to the cell surface via the type IX secretion system (T9SS). All cargo proteins possess a conserved C-terminal signal domain (CTD) which is recognised by the T9SS, and the outer membrane ß-barrel protein PorV (PG0027/LptO) can interact with cargo proteins as they are exported to the bacterial surface. Using a combination of solution nuclear magnetic resonance (NMR) spectroscopy, biochemical analyses, machine-learning-based modelling and molecular dynamics (MD) simulations, we present a structural model of a PorV:RgpB-CTD complex from P. gingivalis. This is the first structural insight into CTD recognition by the T9SS and shows how the conserved motifs in the CTD are the primary sites that mediate binding. In PorV, interactions with extracellular surface loops are important for binding the CTD, and together these appear to cradle and lock RgpB-CTD in place. This work provides insight into cargo recognition by PorV but may also have important implications for understanding other aspects of type-IX dependent secretion.


Subject(s)
Bacterial Proteins , Bacterial Secretion Systems , Membrane Proteins , Molecular Dynamics Simulation , Porphyromonas gingivalis , Bacterial Proteins/chemistry , Membrane Proteins/chemistry , Porphyromonas gingivalis/metabolism , Porphyromonas gingivalis/pathogenicity , Virulence Factors/chemistry , Bacterial Secretion Systems/chemistry , Protein Domains
8.
Cell Physiol Biochem ; 56(3): 270-281, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35712829

ABSTRACT

BACKGROUND/AIMS: Interleukin 33 (IL-33) plays a significant role in immunity but its role in bone physiology and periodontitis needs to be further investigated. The aim of this study was to decipher the contribution of IL-33 to bone homeostasis under physiological conditions, and to alveolar bone loss associated with experimental periodontitis (EP) in IL-33 knockout (KO) mice and their wildtype (WT) littermates. METHODS: The bone phenotype of IL-33 KO mice was studied in the maxilla, femur, and fifth lumbar vertebra by micro-computed tomography (micro-CT). EP was induced by a ligature soaked with the periopathogen Porphyromonas gingivalis (Pg) around a maxillary molar. Alveolar bone loss was quantified by micro-CT. The resorption parameters were assessed via toluidine blue staining on maxillary sections. In vitro osteoclastic differentiation assays using bone marrow cells were performed with or without lipopolysaccharide from Pg (LPS-Pg). RESULTS: First, we showed that under physiological conditions, IL-33 deficiency increased the trabecular bone volume/total volume ratio (BV/TV) of the maxillary bone in male and female mice, but not in the femur and fifth lumbar vertebra, suggesting an osteoprotective role for IL-33 in a site-dependent manner. The severity of EP induced by Pg-soaked ligature was increased in IL-33 KO mice but in female mice only, through an increase in the number of osteoclasts. Moreover, osteoclastic differentiation from bone marrow osteoclast progenitors in IL-33-deficient female mice is enhanced in the presence of LPS-Pg. CONCLUSION: Taken together, our data demonstrate that IL-33 plays a sex-dependent osteoprotective role both under physiological conditions and in EP with Pg.


Subject(s)
Alveolar Bone Loss , Interleukin-33 , Periodontitis , Alveolar Bone Loss/microbiology , Animals , Female , Interleukin-33/deficiency , Interleukin-33/genetics , Lipopolysaccharides , Male , Mice , Mice, Knockout , Osteoclasts , Periodontitis/microbiology , Porphyromonas gingivalis/pathogenicity , X-Ray Microtomography
9.
J Biol Chem ; 298(6): 102036, 2022 06.
Article in English | MEDLINE | ID: mdl-35588785

ABSTRACT

Serum- and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase that plays important roles in the cellular stress response. While SGK1 has been reported to restrain inflammatory immune responses, the molecular mechanisms involved remain elusive, especially in oral bacteria-induced inflammatory milieu. Here, we found that SGK1 curtails Porphyromonas gingivalis-induced inflammatory responses through maintaining levels of tumor necrosis factor receptor-associated factor (TRAF) 3, thereby suppressing NF-κB signaling. Specifically, SGK1 inhibition significantly enhances production of proinflammatory cytokines, including tumor necrosis factor α, interleukin (IL)-6, IL-1ß, and IL-8 in P. gingivalis-stimulated innate immune cells. The results were confirmed with siRNA and LysM-Cre-mediated SGK1 KO mice. Moreover, SGK1 deletion robustly increased NF-κB activity and c-Jun expression but failed to alter the activation of mitogen-activated protein kinase signaling pathways. Further mechanistic data revealed that SGK1 deletion elevates TRAF2 phosphorylation, leading to TRAF3 degradation in a proteasome-dependent manner. Importantly, siRNA-mediated traf3 silencing or c-Jun overexpression mimics the effect of SGK1 inhibition on P. gingivalis-induced inflammatory cytokines and NF-κB activation. In addition, using a P. gingivalis infection-induced periodontal bone loss model, we found that SGK1 inhibition modulates TRAF3 and c-Jun expression, aggravates inflammatory responses in gingival tissues, and exacerbates alveolar bone loss. Altogether, we demonstrated for the first time that SGK1 acts as a rheostat to limit P. gingivalis-induced inflammatory immune responses and mapped out a novel SGK1-TRAF2/3-c-Jun-NF-κB signaling axis. These findings provide novel insights into the anti-inflammatory molecular mechanisms of SGK1 and suggest novel interventional targets to inflammatory diseases relevant beyond the oral cavity.


Subject(s)
Alveolar Bone Loss , Immediate-Early Proteins , Protein Serine-Threonine Kinases , TNF Receptor-Associated Factor 3 , Alveolar Bone Loss/genetics , Animals , Cytokines/metabolism , Genes, jun , Immediate-Early Proteins/metabolism , Immunity , Inflammation , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Porphyromonas gingivalis/pathogenicity , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering , Signal Transduction , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 3/metabolism
10.
J Clin Periodontol ; 49(7): 717-729, 2022 07.
Article in English | MEDLINE | ID: mdl-35415929

ABSTRACT

AIM: The aim of this study was to evaluate the effect of the administration of pasteurized Akkermansia muciniphila and Amuc_1100 on periodontal destruction in lean and obese mice and to determine the impact of the mode of administration. MATERIALS AND METHODS: Porphyromonas gingivalis-associated experimental periodontitis was induced in lean and obese mice. After 3 weeks, live, pasteurized A. muciniphila or Amuc_1100 was administered by oral or gastric gavage for three additional weeks. Moreover, an evaluation of the interaction between A. muciniphila and P. gingivalis was performed by RNA-sequencing, and cytokines secretion was measured in exposed macrophages. RESULTS: Oral administration of live, pasteurized A. muciniphila or Amuc_1100 significantly decreased P. gingivalis-induced periodontal destruction and inflammatory infiltrate in lean and obese mice and contributed to the reduction of the plasma level of TNF-α and to the increase of IL-10. The co-culture of A. muciniphila and P. gingivalis induced an increased expression of genes linked to the synthesis of monobactam-related antibiotics in A. muciniphila, while a decrease of the gingipains and type IX secretion system was observed in P. gingivalis. In P. gingivalis-infected macrophages, pasteurized A. muciniphila decreased TNF-α and increased IL-10 levels. CONCLUSIONS: Pasteurized A. muciniphila can counteract P. gingivalis-associated periodontal destruction.


Subject(s)
Akkermansia , Periodontitis , Porphyromonas gingivalis , Animals , Inflammation , Interleukin-10 , Mice , Mice, Obese , Pasteurization , Periodontitis/microbiology , Periodontitis/therapy , Porphyromonas gingivalis/pathogenicity , Tumor Necrosis Factor-alpha
11.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-34992142

ABSTRACT

Bacterial behavior and virulence during human infection is difficult to study and largely unknown, as our vast knowledge of infection microbiology is primarily derived from studies using in vitro and animal models. Here, we characterize the physiology of Porphyromonas gingivalis, a periodontal pathogen, in its native environment using 93 published metatranscriptomic datasets from periodontally healthy and diseased individuals. P. gingivalis transcripts were more abundant in samples from periodontally diseased patients but only above 0.1% relative abundance in one-third of diseased samples. During human infection, P. gingivalis highly expressed genes encoding virulence factors such as fimbriae and gingipains (proteases) and genes involved in growth and metabolism, indicating that P. gingivalis is actively growing during disease. A quantitative framework for assessing the accuracy of model systems showed that 96% of P. gingivalis genes were expressed similarly in periodontitis and in vitro midlogarithmic growth, while significantly fewer genes were expressed similarly in periodontitis and in vitro stationary phase cultures (72%) or in a murine abscess infection model (85%). This high conservation in gene expression between periodontitis and logarithmic laboratory growth is driven by overall low variance in P. gingivalis gene expression, relative to other pathogens including Pseudomonas aeruginosa and Staphylococcus aureus Together, this study presents strong evidence for the use of simple test tube growth as the gold standard model for studying P. gingivalis biology, providing biological relevance for the thousands of laboratory experiments performed with logarithmic phase P. gingivalis Furthermore, this work highlights the need to quantitatively assess the accuracy of model systems.


Subject(s)
Bacteroidaceae Infections/microbiology , Periodontitis/microbiology , Porphyromonas gingivalis/growth & development , Porphyromonas gingivalis/metabolism , Animals , Fimbriae, Bacterial/metabolism , Gingipain Cysteine Endopeptidases , Humans , Laboratories , Mice , Porphyromonas gingivalis/pathogenicity , Transcriptome , Virulence/genetics , Virulence Factors
12.
Int J Mol Sci ; 23(2)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35055157

ABSTRACT

Periodontitis is prevalent in half of the adult population and raises critical health concerns as it has been recently associated with an increased risk of cancer. While information about the topic remains somewhat scarce, a deeper understanding of the underlying mechanistic pathways promoting neoplasia in periodontitis patients is of fundamental importance. This manuscript presents the literature as well as a panel of tables and figures on the molecular mechanisms of Porphyromonas gingivalis and Fusobacterium nucleatum, two main oral pathogens in periodontitis pathology, involved in instigating tumorigenesis. We also present evidence for potential links between the RANKL-RANK signaling axis as well as circulating cytokines/leukocytes and carcinogenesis. Due to the nonconclusive data associating periodontitis and cancer reported in the case and cohort studies, we examine clinical trials relevant to the topic and summarize their outcome.


Subject(s)
Mouth Neoplasms/microbiology , Periodontal Diseases/microbiology , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Cytokines/metabolism , Disease Progression , Fusobacterium nucleatum/pathogenicity , Gene Expression Regulation , Humans , Mouth Neoplasms/metabolism , Periodontal Diseases/metabolism , Porphyromonas gingivalis/pathogenicity , Signal Transduction
13.
Oral Dis ; 28(1): 216-224, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33368813

ABSTRACT

OBJECTIVE: Uncontrolled production of Interleukin-1ß (IL-1ß), a major proinflammatory cytokine, is associated with tissue destruction in periodontal disease. IL-1ß production is controlled by inflammasomes which are multiprotein regulatory complexes. The current study aimed to elucidate potential regulatory pathways by monitoring the effects of periodontal pathogens Fusobacterium nucleatum (Fn) and Porphyromonas gingivalis (Pg) on inflammasomes and their regulators in human gingival fibroblasts (HGFs) in vitro. METHODS: HGFs were exposed to Fn and Pg alone or in combination for 24 hr at a multiplicity of infection of 100, ±30 min exposure with 5 mM adenosine triphosphate (ATP) incubation. Gene expression of NLRP3 and AIM2, inflammasome regulatory proteins POP1, CARD16 and TRIM16, and inflammasome components ASC and CASPASE 1, and IL-1ß, were evaluated by RT-PCR. Pro- and mature IL-1ß levels were monitored intracellularly by immunocytochemistry and extracellularly by ELISA. RESULTS: Fn + ATP significantly upregulated NLRP3, AIM2, IL-1ß, ASC, and CASPASE 1; however, it downregulated POP1 and TRIM16. Pg + ATP downregulated NLRP3, ASC, POP1, but upregulated IL-1ß and CARD16. Pg + Fn+ATP significantly upregulated AIM2, IL-1ß and CARD16, and downregulated POP1, TRIM16, and CASPASE 1. Pg + ATP exposure significantly increased pro- and mature IL-1ß production. CONCLUSION: Bacterial exposure with ATP may deregulate IL-1ß by dysregulating inflammasomes and their regulators in HGFs.


Subject(s)
Fibroblasts/immunology , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Cells, Cultured , Fibroblasts/microbiology , Fusobacterium nucleatum/pathogenicity , Gingiva/cytology , Humans , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Porphyromonas gingivalis/pathogenicity
14.
Int J Mol Sci ; 22(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34884826

ABSTRACT

IgA nephropathy (IgAN) has been considered to have a relationship with infection in the tonsil, because IgAN patients often manifest macro hematuria just after tonsillitis. In terms of oral-area infection, the red complex of periodontal bacteria (Porphyromonas gingivalis (P. gingivalis), Treponema denticol (T. denticola) and Tannerella forsythia (T. forsythia)) is important, but the relationship between these bacteria and IgAN remains unknown. In this study, the prevalence of the red complex of periodontal bacteria in tonsil was compared between IgAN and tonsillitis patients. The pathogenicity of IgAN induced by P. gingivalis was confirmed by the mice model treated with this bacterium. The prevalence of P. gingivalis and T. forsythia in IgAN patients was significantly higher than that in tonsillitis patients (p < 0.001 and p < 0.05, respectively). A total of 92% of tonsillitis patients were free from red complex bacteria, while only 48% of IgAN patients had any of these bacteria. Nasal administration of P. gingivalis in mice caused mesangial proliferation (p < 0.05 at days 28a nd 42; p < 0.01 at days 14 and 56) and IgA deposition (p < 0.001 at day 42 and 56 after administration). Scanning-electron-microscopic observation revealed that a high-density Electron-Dense Deposit was widely distributed in the mesangial region in the mice kidneys treated with P. gingivalis. These findings suggest that P. gingivalis is involved in the pathogenesis of IgAN.


Subject(s)
Glomerulonephritis, IGA/pathology , Immunoglobulin A/metabolism , Porphyromonas gingivalis/pathogenicity , Adult , Animals , DNA, Bacterial/analysis , DNA, Bacterial/metabolism , Disease Models, Animal , Female , Glomerulonephritis, IGA/microbiology , Humans , Kidney/pathology , Male , Mice , Middle Aged , Porphyromonas gingivalis/genetics , Porphyromonas gingivalis/isolation & purification , Tannerella forsythia/genetics , Tannerella forsythia/isolation & purification , Tannerella forsythia/pathogenicity , Tonsillitis/microbiology , Tonsillitis/pathology , Young Adult
15.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34769513

ABSTRACT

The non-enzymatic addition of glucose (glycation) to circulatory and tissue proteins is a ubiquitous pathophysiological consequence of hyperglycemia in diabetes. Given the high incidence of periodontitis and diabetes and the emerging link between these conditions, it is of crucial importance to define the basic virulence mechanisms employed by periodontopathogens such as Porphyromonas gingivalis in mediating the disease process. The aim of this study was to determine whether glycated proteins are more easily utilized by P. gingivalis to stimulate growth and promote the pathogenic potential of this bacterium. We analyzed the properties of three commonly encountered proteins in the periodontal environment that are known to become glycated and that may serve as either protein substrates or easily accessible heme sources. In vitro glycated proteins were characterized using colorimetric assays, mass spectrometry, far- and near-UV circular dichroism and UV-visible spectroscopic analyses and SDS-PAGE. The interaction of glycated hemoglobin, serum albumin and type one collagen with P. gingivalis cells or HmuY protein was examined using spectroscopic methods, SDS-PAGE and co-culturing P. gingivalis with human keratinocytes. We found that glycation increases the ability of P. gingivalis to acquire heme from hemoglobin, mostly due to heme sequestration by the HmuY hemophore-like protein. We also found an increase in biofilm formation on glycated collagen-coated abiotic surfaces. We conclude that glycation might promote the virulence of P. gingivalis by making heme more available from hemoglobin and facilitating bacterial biofilm formation, thus increasing P. gingivalis pathogenic potential in vivo.


Subject(s)
Bacteroidaceae Infections/metabolism , Diabetes Complications/physiopathology , Erythrocytes/metabolism , Heme/metabolism , Hemoglobins/metabolism , Periodontitis/microbiology , Porphyromonas gingivalis/pathogenicity , Animals , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/pathology , Glycosylation , Hemeproteins/chemistry , Hemoglobins/chemistry , Horses , Periodontitis/pathology , Porphyromonas gingivalis/isolation & purification , Porphyromonas gingivalis/metabolism
16.
Int J Oral Sci ; 13(1): 31, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593756

ABSTRACT

Ulcerative Colitis (UC) has been reported to be related to Porphyromonas gingivalis (P. gingivalis). Porphyromonas gingivalis peptidylarginine deiminase (PPAD), a virulence factor released by P. gingivalis, is known to induce inflammatory responses. To explore the pathological relationships between PPAD and UC, we used homologous recombination technology to construct a P. gingivalis strain in which the PPAD gene was deleted (Δppad) and a Δppad strain in which the PPAD gene was restored (comΔppad). C57BL/6 mice were orally gavaged with saline, P. gingivalis, Δppad, or comΔppad twice a week for the entire 40 days (days 0-40), and then, UC was induced by dextran sodium sulfate (DSS) solution for 10 days (days 31-40). P. gingivalis and comΔppad exacerbated DDS-induced colitis, which was determined by assessing the parameters of colon length, disease activity index, and histological activity index, but Δppad failed to exacerbate DDS-induced colitis. Flow cytometry and ELISA revealed that compared with Δppad, P. gingivalis, and comΔppad increased T helper 17 (Th17) cell numbers and interleukin (IL)-17 production but decreased regulatory T cells (Tregs) numbers and IL-10 production in the spleens of mice with UC. We also cocultured P. gingivalis, Δppad, or comΔppad with T lymphocytes in vitro and found that P. gingivalis and comΔppad significantly increased Th17 cell numbers and decreased Treg cell numbers. Immunofluorescence staining of colon tissue paraffin sections also confirmed these results. The results suggested that P. gingivalis exacerbated the severity of UC in part via PPAD.


Subject(s)
Colitis, Ulcerative , Porphyromonas gingivalis , Protein-Arginine Deiminases , Animals , Colitis, Ulcerative/microbiology , Mice , Mice, Inbred C57BL , Porphyromonas gingivalis/enzymology , Porphyromonas gingivalis/pathogenicity , Virulence Factors
17.
J Alzheimers Dis ; 84(1): 51-59, 2021.
Article in English | MEDLINE | ID: mdl-34487050

ABSTRACT

Chronic periodontitis caused by Porphyromonas gingivalis (P. gingivalis) infection generally lasts for a lifetime. The long-term existence and development of P. gingivalis infection gradually aggravate the accumulation of inflammatory signals and toxic substances in the body. Recent evidence has revealed that P. gingivalis infection may be relevant to some central nervous system (CNS) diseases. The current work collects information and tries to explore the possible relationship between P. gingivalis infection and CNS diseases, including the interaction or pathways between peripheral infection and CNS injury, and the underlying neurotoxic mechanisms.


Subject(s)
Central Nervous System Diseases/physiopathology , Inflammation/complications , Periodontitis/complications , Porphyromonas gingivalis/pathogenicity , Epigenomics , Humans
18.
Front Immunol ; 12: 695227, 2021.
Article in English | MEDLINE | ID: mdl-34484192

ABSTRACT

Aims: Periodontitis is an independent risk factor for cardiovascular disease, but the mechanistic link is not fully understood. In atherosclerotic cardiovascular disease, monocytes can adopt a persistent hyperresponsive phenotype, termed trained immunity. We hypothesized that periodontitis-associated bacteria can induce trained immunity in monocytes, which subsequently accelerate atherosclerosis development. Materials and Methods: We combined in vitro experiments on human primary monocytes and in vivo techniques in patients with periodontitis to test this hypothesis. Adherent peripheral blood mononuclear cells (PBMCs) were transiently exposed in vitro to Porphyromonas gingivalis for 24 hours, and restimulated with lipopolysaccharide (LPS) or Pam3CysK4 (P3C) six days later, to measure interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) production. In an exploratory observational study, patients with severe periodontitis (63 ± 6 years, n=14) and control subjects with no-to-mild periodontitis (54 ± 10 years, n=14) underwent venipuncture and 2'-deoxy-2'-[18F]fluoro-D-glucose positron-emission-tomography ([18F]FDG PET/CT) scanning. Results: When adherent peripheral blood mononuclear cells (PBMCs) were transiently exposed in vitro to Porphyromonas gingivalis for 24 hours, and restimulated with LPS or P3C six days later, IL-6 and TNFα production was significantly increased (TNFα/P3C, p<0.01). Circulating leukocytes, IL-6 and interleukin-1 receptor antagonist (IL-1Ra) concentrations were generally higher in patients compared to controls (leukocytes: p<0.01; IL-6: p=0.08; IL-1Ra: p=0.10). Cytokine production capacity in PBMCs after 24h stimulation revealed no differences between groups. [18F]FDG PET/CT imaging showed a trend for increased [18F]FDG-uptake in the periodontium [mean standard uptake value (SUVmean), p=0.11] and in femur bone marrow (SUVmean, p=0.06), but no differences were observed for vascular inflammation. Positive correlations between severity of periodontitis, measured by The Dutch Periodontal Screening Index and pocket depth, with circulating inflammatory markers and tissue inflammation were found. Conclusions: P. gingivalis induces long-term activation of human monocytes in vitro (trained immunity). Patients with severe periodontitis did have signs of increased systemic inflammation and hematopoietic tissue activation. However, their circulating monocytes did not show a hyperresponsive phenotype. Together we suggest that trained immunity might contribute to local periodontal inflammation which warrants further investigation.


Subject(s)
Atherosclerosis/immunology , Cytokines/metabolism , Inflammation Mediators/metabolism , Monocytes/immunology , Periodontitis/immunology , Porphyromonas gingivalis/immunology , Adult , Aged , Aged, 80 and over , Atherosclerosis/diagnostic imaging , Atherosclerosis/metabolism , Atherosclerosis/microbiology , Case-Control Studies , Cells, Cultured , Female , Host-Pathogen Interactions , Humans , Lipopeptides/pharmacology , Lipopolysaccharides/pharmacology , Male , Middle Aged , Monocytes/drug effects , Monocytes/metabolism , Monocytes/microbiology , Periodontitis/diagnostic imaging , Periodontitis/metabolism , Periodontitis/microbiology , Phenotype , Porphyromonas gingivalis/pathogenicity , Positron Emission Tomography Computed Tomography , Risk Assessment , Risk Factors , Severity of Illness Index
19.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166236, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34389473

ABSTRACT

Periodontal diseases are common inflammatory diseases that are induced by infection with periodontal bacteria such as Porphyromonas gingivalis (Pg). The association between periodontal diseases and many types of systemic diseases has been demonstrated; the term "periodontal medicine" is used to describe how periodontal infection/inflammation may impact extraoral health. However, the molecular mechanisms by which the factors produced in the oral cavity reach multiple distant organs and impact general health have not been elucidated. Extracellular vesicles (EVs) are nano-sized spherical structures secreted by various types of cells into the tissue microenvironment, and influence pathophysiological conditions by delivering their cargo. However, a detailed understanding of the effect of EVs on periodontal medicine is lacking. In this study, we investigated whether EVs derived from Pg-infected macrophages reach distant organs in mice and influence the pathophysiological status. EVs were isolated from human macrophages, THP-1 cells, infected with Pg. We observed that EVs from Pg-infected THP-1 cells (Pg-inf EVs) contained abundant core histone proteins such as histone H3 and translocated to the lungs, liver, and kidneys of mice. Pg-inf EVs also induced pulmonary injury, including edema, vascular congestion, inflammation, and collagen deposition causing alveoli destruction. The Pg-inf EVs or the recombinant histone H3 activated the NF-κB pathway, leading to increase in the levels of pro-inflammatory cytokines in human lung epithelial A549 cells. Our results suggest a possible mechanism by which EVs produced in periodontal diseases contribute to the progression of periodontal medicine.


Subject(s)
Extracellular Vesicles/immunology , Lung Injury/immunology , Macrophages/immunology , Periodontitis/complications , Porphyromonas gingivalis/immunology , A549 Cells , Animals , Bacteroidaceae Infections , Disease Models, Animal , Extracellular Vesicles/metabolism , Female , Humans , Lung Injury/pathology , Macrophages/cytology , Macrophages/metabolism , Mice , Periodontitis/immunology , Periodontitis/microbiology , Porphyromonas gingivalis/pathogenicity , THP-1 Cells
20.
Front Immunol ; 12: 646259, 2021.
Article in English | MEDLINE | ID: mdl-34194426

ABSTRACT

Porphyromonas gingivalis, a bacterium associated with periodontal disease, is a suspected cause of Alzheimer's disease. This bacterium is reliant on gingipain proteases, which cleave host proteins after arginine and lysine residues. To characterize gingipain susceptibility, we performed enrichment analyses of arginine and lysine proportion proteome-wide. Genes differentially expressed in brain samples with detected P. gingivalis reads were also examined. Genes from these analyses were tested for functional enrichment and specific neuroanatomical expression patterns. Proteins in the SRP-dependent cotranslational protein targeting to membrane pathway were enriched for these residues and previously associated with periodontal and Alzheimer's disease. These ribosomal genes are up-regulated in prefrontal cortex samples with detected P. gingivalis sequences. Other differentially expressed genes have been previously associated with dementia (ITM2B, MAPT, ZNF267, and DHX37). For an anatomical perspective, we characterized the expression of the P. gingivalis associated genes in the mouse and human brain. This analysis highlighted the hypothalamus, cholinergic neurons, and the basal forebrain. Our results suggest markers of neural P. gingivalis infection and link the cholinergic and gingipain hypotheses of Alzheimer's disease.


Subject(s)
Cholinergic Neurons/metabolism , Hypothalamus/metabolism , Porphyromonas gingivalis/pathogenicity , Ribosomes/metabolism , Alzheimer Disease/etiology , Endoplasmic Reticulum/metabolism , Female , Gene Expression Regulation , Gingipain Cysteine Endopeptidases/physiology , Humans , Male , Periodontal Diseases/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...