Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Med Sci Monit ; 30: e946512, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39289865

ABSTRACT

Long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), also known as post-COVID-19 condition or post-COVID syndrome, can affect anyone infected with SARS-CoV-2, regardless of age or the severity of the initial symptoms of COVID-19. Long COVID/PASC is the continuation or development of new symptoms after three months from the initial SARS-CoV-2 infection, which lasts for at least two months and has no other identifiable cause. Long COVID/PASC occurs in 10-20% of patients infected with SARS-CoV-2. The most common symptoms include fatigue, cognitive impairment (brain fog), and shortness of breath. However, more than 200 symptoms have been reported. No phenotypic or diagnostic biomarkers have been identified for developing long COVID/PASC, which is a multisystem disorder that can present with isolated or combined respiratory, hematological, immunological, cardiovascular, and neuropsychiatric symptoms. There is no cure. Therefore, individualized patient management requires a multidisciplinary clinical approach. Because millions of people have had and continue to have COVID-19, even in the era of vaccination and antiviral therapies, long COVID/PASC is now and will increasingly become a health and economic burden that the world must prepare for. Almost five years from the beginning of the COVID-19 pandemic, this article aims to review what is currently known about long COVID/PASC, the anticipated increasing global health burden, and why there is still an urgent need to identify diagnostic biomarkers and risk factors to improve prevention and treatment.


Subject(s)
Biomarkers , COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Biomarkers/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/immunology , Cognitive Dysfunction/virology , COVID-19/complications , COVID-19/immunology , COVID-19/virology , Dyspnea/blood , Dyspnea/diagnosis , Dyspnea/immunology , Dyspnea/virology , Fatigue/blood , Fatigue/diagnosis , Fatigue/immunology , Fatigue/virology , Post-Acute COVID-19 Syndrome/blood , Post-Acute COVID-19 Syndrome/diagnosis , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/virology , Risk Factors , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
2.
J Med Virol ; 96(8): e29887, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39189651

ABSTRACT

Understanding the pathophysiology of long COVID is one of the most intriguing challenges confronting contemporary medicine. Despite observations recently made in the relevant molecular, cellular, and physiological domains, it is still difficult to say whether the post-acute sequelae of COVID-19 directly correspond to the consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This work hypothesizes that neutrophils and neutrophil extracellular traps (NETs) production are at the interconnection of three positive feedback loops which are initiated in the acute phase of SARS-CoV-2 infection, and which involve inflammation, immunothrombosis, and autoimmunity. This phenomenon could be favored by the fact that SARS-CoV-2 may directly bind and penetrate neutrophils. The ensuing strong neutrophil stimulation leads to a progressive amplification of an exacerbated and uncontrolled NETs production, potentially persisting for months beyond the acute phase of infection. This continuous self-stimulation of neutrophils leads, in turn, to systemic inflammation, micro-thromboses, and the production of autoantibodies, whose significant consequences include the persistence of endothelial and multiorgan damage, and vascular complications.


Subject(s)
Autoimmunity , Feedback, Physiological , Inflammation , Neutrophils , Post-Acute COVID-19 Syndrome , Thromboinflammation , Inflammation/immunology , Thromboinflammation/immunology , Neutrophils/immunology , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/physiopathology , Extracellular Traps/immunology , Communicable Diseases/pathology
3.
Brain Behav Immun ; 122: 75-94, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39127088

ABSTRACT

BACKGROUND: Multiple studies have shown that Long COVID (LC) disease is associated with heightened immune activation, as evidenced by elevated levels of inflammatory mediators. However, there is no comprehensive meta-analysis focusing on activation of the immune inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS) along with other immune phenotypes in LC patients. OBJECTIVES: This meta-analysis is designed to explore the IRS and CIRS profiles in LC patients, the individual cytokines, chemokines, growth factors, along with C-reactive protein (CRP) and immune-associated neurotoxicity. METHODS: To gather relevant studies for our research, we conducted a thorough search using databases such as PubMed, Google Scholar, and SciFinder, covering all available literature up to July 5th, 2024. RESULTS: The current meta-analysis encompassed 103 studies that examined multiple immune profiles, C-reactive protein, and 58 cytokines/chemokines/growth factors in 5502 LC patients versus 5962 normal controls (NC). LC patients showed significant increases in IRS/CIRS ratio (standardized mean difference (SMD: 0.156, confidence interval (CI): 0.062;0.250), IRS (SMD: 0.338, CI: 0.236;0.440), M1 macrophage (SMD: 0.371, CI: 0.263;0.480), T helper (Th)1 (SMD: 0.316, CI: 0.185;0.446), Th17 (SMD: 0.439, CI: 0.302;0.577) and immune-associated neurotoxicity (SMD: 0.384, CI: 0.271;0.497). In addition, CRP and 21 different cytokines displayed significantly elevated levels in LC patients compared to NC. CONCLUSION: LC disease is characterized by IRS activation and increased immune-associated neurotoxicity.


Subject(s)
COVID-19 , Chemokines , Cytokines , Intercellular Signaling Peptides and Proteins , Post-Acute COVID-19 Syndrome , Humans , C-Reactive Protein/metabolism , Chemokines/immunology , COVID-19/immunology , Cytokines/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Neurotoxicity Syndromes/immunology , Post-Acute COVID-19 Syndrome/immunology
4.
Nature ; 633(8031): 905-913, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39198643

ABSTRACT

Life-threatening thrombotic events and neurological symptoms are prevalent in COVID-19 and are persistent in patients with long COVID experiencing post-acute sequelae of SARS-CoV-2 infection1-4. Despite the clinical evidence1,5-7, the underlying mechanisms of coagulopathy in COVID-19 and its consequences in inflammation and neuropathology remain poorly understood and treatment options are insufficient. Fibrinogen, the central structural component of blood clots, is abundantly deposited in the lungs and brains of patients with COVID-19, correlates with disease severity and is a predictive biomarker for post-COVID-19 cognitive deficits1,5,8-10. Here we show that fibrin binds to the SARS-CoV-2 spike protein, forming proinflammatory blood clots that drive systemic thromboinflammation and neuropathology in COVID-19. Fibrin, acting through its inflammatory domain, is required for oxidative stress and macrophage activation in the lungs, whereas it suppresses natural killer cells, after SARS-CoV-2 infection. Fibrin promotes neuroinflammation and neuronal loss after infection, as well as innate immune activation in the brain and lungs independently of active infection. A monoclonal antibody targeting the inflammatory fibrin domain provides protection from microglial activation and neuronal injury, as well as from thromboinflammation in the lung after infection. Thus, fibrin drives inflammation and neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a therapeutic intervention for patients with acute COVID-19 and long COVID.


Subject(s)
Brain , COVID-19 , Fibrin , Inflammation , Thrombosis , Animals , Female , Humans , Male , Mice , Brain/drug effects , Brain/immunology , Brain/pathology , Brain/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19/complications , Fibrin/antagonists & inhibitors , Fibrin/metabolism , Fibrinogen/metabolism , Immunity, Innate , Inflammation/complications , Inflammation/immunology , Inflammation/pathology , Inflammation/virology , Killer Cells, Natural/immunology , Lung/drug effects , Lung/immunology , Lung/pathology , Lung/virology , Macrophage Activation/drug effects , Microglia/immunology , Microglia/pathology , Neuroinflammatory Diseases/complications , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/virology , Neurons/pathology , Neurons/virology , Oxidative Stress , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Thrombosis/complications , Thrombosis/immunology , Thrombosis/pathology , Thrombosis/virology , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/virology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology
9.
Science ; 383(6680): 262-263, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38236985
10.
Science ; 383(6680): eadg7942, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38236961

ABSTRACT

Long Covid is a debilitating condition of unknown etiology. We performed multimodal proteomics analyses of blood serum from COVID-19 patients followed up to 12 months after confirmed severe acute respiratory syndrome coronavirus 2 infection. Analysis of >6500 proteins in 268 longitudinal samples revealed dysregulated activation of the complement system, an innate immune protection and homeostasis mechanism, in individuals experiencing Long Covid. Thus, active Long Covid was characterized by terminal complement system dysregulation and ongoing activation of the alternative and classical complement pathways, the latter associated with increased antibody titers against several herpesviruses possibly stimulating this pathway. Moreover, markers of hemolysis, tissue injury, platelet activation, and monocyte-platelet aggregates were increased in Long Covid. Machine learning confirmed complement and thromboinflammatory proteins as top biomarkers, warranting diagnostic and therapeutic interrogation of these systems.


Subject(s)
Complement Activation , Complement System Proteins , Post-Acute COVID-19 Syndrome , Proteome , Thromboinflammation , Humans , Complement System Proteins/analysis , Complement System Proteins/metabolism , Post-Acute COVID-19 Syndrome/blood , Post-Acute COVID-19 Syndrome/complications , Post-Acute COVID-19 Syndrome/immunology , Thromboinflammation/blood , Thromboinflammation/immunology , Biomarkers/blood , Proteomics , Male , Female , Young Adult , Adult , Middle Aged , Aged
11.
Sci Transl Med ; 15(712): eadf6598, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37672567

ABSTRACT

Beyond the acute illness caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) infection, about one-fifth of infections result in long-term persistence of symptoms despite the apparent clearance of infection. Insights into the mechanisms that underlie postacute sequelae of COVID-19 (PASC) will be critical for the prevention and clinical management of long-term complications of COVID-19. Several hypotheses have been proposed that may account for the development of PASC, including persistence of virus and dysregulation of immune responses. Among the immunological changes noted in PASC, alterations in humoral immunity have been observed in some patient subsets. To begin to determine whether SARS-CoV-2- or other pathogen-specific humoral immune responses evolve uniquely in PASC, we performed comprehensive antibody profiling against SARS-CoV-2, a panel of endemic pathogens, and a panel of routine vaccine antigens using systems serology in two cohorts of patients with preexisting systemic autoimmune rheumatic disease (SARD) who either developed or did not develop PASC. A distinct qualitative shift observed in Fcγ receptor (FcγR) binding was observed in individuals with PASC. Specifically, individuals with PASC harbored weaker FcγR-binding anti-SARS-CoV-2 antibodies and stronger FcγR-binding antibody responses against the endemic coronavirus OC43. Individuals with PASC developed an OC43 S2-specific antibody response with stronger FcγR binding, linked to cross-reactivity across SARS-CoV-2 and common coronaviruses. These findings identify previous coronavirus imprinting as a potential marker for the development of PASC in individuals with SARDs.


Subject(s)
Immunity, Humoral , Post-Acute COVID-19 Syndrome , Rheumatic Diseases , SARS-CoV-2 , Rheumatic Diseases/complications , Rheumatic Diseases/immunology , SARS-CoV-2/immunology , Humans , Male , Female , Middle Aged , Aged , Post-Acute COVID-19 Syndrome/complications , Post-Acute COVID-19 Syndrome/immunology , Endemic Diseases , Receptors, Fc/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology
12.
Cell ; 186(18): 3753-3755, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37657416

ABSTRACT

In addition to acute hyperinflammatory responses, SARS-CoV-2 infections can have long-term effects on our immune system leading to, for example, post-acute sequelae of COVID-19 (PASC). In this issue of Cell, Cheong et al. show that severe infections via IL-6 induce persistent epigenetic signatures in hemopoietic stem cells and their myeloid progenitors associated with increased inflammatory potential.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Epigenomics , Hematopoietic Stem Cells , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/pathology , SARS-CoV-2 , Trained Immunity , Inflammation/pathology
13.
Nature ; 623(7985): 139-148, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37748514

ABSTRACT

Post-acute infection syndromes may develop after acute viral disease1. Infection with SARS-CoV-2 can result in the development of a post-acute infection syndrome known as long COVID. Individuals with long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions2-4. However, the biological processes that are associated with the development and persistence of these symptoms are unclear. Here 275 individuals with or without long COVID were enrolled in a cross-sectional study that included multidimensional immune phenotyping and unbiased machine learning methods to identify biological features associated with long COVID. Marked differences were noted in circulating myeloid and lymphocyte populations relative to the matched controls, as well as evidence of exaggerated humoral responses directed against SARS-CoV-2 among participants with long COVID. Furthermore, higher antibody responses directed against non-SARS-CoV-2 viral pathogens were observed among individuals with long COVID, particularly Epstein-Barr virus. Levels of soluble immune mediators and hormones varied among groups, with cortisol levels being lower among participants with long COVID. Integration of immune phenotyping data into unbiased machine learning models identified the key features that are most strongly associated with long COVID status. Collectively, these findings may help to guide future studies into the pathobiology of long COVID and help with developing relevant biomarkers.


Subject(s)
Antibodies, Viral , Herpesvirus 4, Human , Hydrocortisone , Lymphocytes , Myeloid Cells , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , Biomarkers/blood , Cross-Sectional Studies , Herpesvirus 4, Human/immunology , Hydrocortisone/blood , Immunophenotyping , Lymphocytes/immunology , Machine Learning , Myeloid Cells/immunology , Post-Acute COVID-19 Syndrome/diagnosis , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/physiopathology , Post-Acute COVID-19 Syndrome/virology , SARS-CoV-2/immunology
14.
Cell ; 186(18): 3882-3902.e24, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37597510

ABSTRACT

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.


Subject(s)
COVID-19 , Epigenetic Memory , Post-Acute COVID-19 Syndrome , Animals , Humans , Mice , Cell Differentiation , COVID-19/immunology , Disease Models, Animal , Hematopoietic Stem Cells , Inflammation/genetics , Trained Immunity , Monocytes/immunology , Post-Acute COVID-19 Syndrome/genetics , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/pathology
15.
Front Immunol ; 14: 1155770, 2023.
Article in English | MEDLINE | ID: mdl-37313412

ABSTRACT

Introduction: Many people with long COVID symptoms suffer from debilitating neurologic post-acute sequelae of SARS-CoV-2 infection (Neuro-PASC). Although symptoms of Neuro-PASC are widely documented, it is still unclear whether PASC symptoms impact virus-specific immune responses. Therefore, we examined T cell and antibody responses to SARS-CoV-2 Nucleocapsid protein to identify activation signatures distinguishing Neuro-PASC patients from healthy COVID convalescents. Results: We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated CD4+ T cell responses and diminished CD8+ memory T cell activation toward the C-terminal region of SARS-CoV-2 Nucleocapsid protein when examined both functionally and using TCR sequencing. CD8+ T cell production of IL-6 correlated with increased plasma IL-6 levels as well as heightened severity of neurologic symptoms, including pain. Elevated plasma immunoregulatory and reduced pro-inflammatory and antiviral response signatures were evident in Neuro-PASC patients compared with COVID convalescent controls without lasting symptoms, correlating with worse neurocognitive dysfunction. Discussion: We conclude that these data provide new insight into the impact of virus-specific cellular immunity on the pathogenesis of long COVID and pave the way for the rational design of predictive biomarkers and therapeutic interventions.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/immunology , Interleukin-6 , Post-Acute COVID-19 Syndrome/immunology , SARS-CoV-2
16.
BMC Infect Dis ; 23(1): 97, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36797666

ABSTRACT

BACKGROUND: Individuals with post-acute sequelae of COVID (PASC) may have a persistence in immune activation that differentiates them from individuals who have recovered from COVID without clinical sequelae. To investigate how humoral immune activation may vary in this regard, we compared patterns of vaccine-provoked serological response in patients with PASC compared to individuals recovered from prior COVID without PASC. METHODS: We prospectively studied 245 adults clinically diagnosed with PASC and 86 adults successfully recovered from prior COVID. All participants had measures of humoral immunity to SARS-CoV-2 assayed before or after receiving their first-ever administration of COVID vaccination (either single-dose or two-dose regimen), including anti-spike (IgG-S and IgM-S) and anti-nucleocapsid (IgG-N) antibodies as well as IgG-S angiotensin-converting enzyme 2 (ACE2) binding levels. We used unadjusted and multivariable-adjusted regression analyses to examine the association of PASC compared to COVID-recovered status with post-vaccination measures of humoral immunity. RESULTS: Individuals with PASC mounted consistently higher post-vaccination IgG-S antibody levels when compared to COVID-recovered (median log IgG-S 3.98 versus 3.74, P < 0.001), with similar results seen for ACE2 binding levels (median 99.1 versus 98.2, P = 0.044). The post-vaccination IgM-S response in PASC was attenuated but persistently unchanged over time (P = 0.33), compared to in COVID recovery wherein the IgM-S response expectedly decreased over time (P = 0.002). Findings remained consistent when accounting for demographic and clinical variables including indices of index infection severity and comorbidity burden. CONCLUSION: We found evidence of aberrant immune response distinguishing PASC from recovered COVID. This aberrancy is marked by excess IgG-S activation and ACE2 binding along with findings consistent with a delayed or dysfunctional immunoglobulin class switching, all of which is unmasked by vaccine provocation. These results suggest that measures of aberrant immune response may offer promise as tools for diagnosing and distinguishing PASC from non-PASC phenotypes, in addition to serving as potential targets for intervention.


Subject(s)
COVID-19 Vaccines , COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , COVID-19/prevention & control , Disease Progression , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Vaccination , Post-Acute COVID-19 Syndrome/immunology , COVID-19 Vaccines/immunology
17.
Clin Infect Dis ; 76(3): e487-e490, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36052466

ABSTRACT

The diagnosis of postacute sequelae of coronavirus disease 2019 (PASC) poses an ongoing medical challenge. To identify biomarkers associated with PASC we analyzed plasma samples collected from PASC and coronavirus disease 2019 patients to quantify viral antigens and inflammatory markers. We detect severe acute respiratory syndrome coronavirus 2 spike predominantly in PASC patients up to 12 months after diagnosis.


Subject(s)
Antigens, Viral , COVID-19 , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antigens, Viral/blood , Antigens, Viral/immunology , COVID-19/blood , COVID-19/complications , COVID-19/immunology , Disease Progression , Post-Acute COVID-19 Syndrome/blood , Post-Acute COVID-19 Syndrome/diagnosis , Post-Acute COVID-19 Syndrome/immunology , Biomarkers/blood , Spike Glycoprotein, Coronavirus/blood
18.
Front Immunol ; 13: 1039427, 2022.
Article in English | MEDLINE | ID: mdl-36591299

ABSTRACT

In the past two years, the world has faced the pandemic caused by the severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2), which by August of 2022 has infected around 619 million people and caused the death of 6.55 million individuals globally. Although SARS-CoV-2 mainly affects the respiratory tract level, there are several reports, indicating that other organs such as the heart, kidney, pancreas, and brain can also be damaged. A characteristic observed in blood serum samples of patients suffering COVID-19 disease in moderate and severe stages, is a significant increase in proinflammatory cytokines such as interferon-α (IFN-α), interleukin-1ß (IL-1ß), interleukin-2 (IL-2), interleukin-6 (IL-6) and interleukin-18 (IL-18), as well as the presence of autoantibodies against interferon-α (IFN-α), interferon-λ (IFN-λ), C-C motif chemokine ligand 26 (CCL26), CXC motif chemokine ligand 12 (CXCL12), family with sequence similarity 19 (chemokine (C-C motif)-like) member A4 (FAM19A4), and C-C motif chemokine ligand 1 (CCL1). Interestingly, it has been described that the chronic cytokinemia is related to alterations of blood-brain barrier (BBB) permeability and induction of neurotoxicity. Furthermore, the generation of autoantibodies affects processes such as neurogenesis, neuronal repair, chemotaxis and the optimal microglia function. These observations support the notion that COVID-19 patients who survived the disease present neurological sequelae and neuropsychiatric disorders. The goal of this review is to explore the relationship between inflammatory and humoral immune markers and the major neurological damage manifested in post-COVID-19 patients.


Subject(s)
Neurodegenerative Diseases , Post-Acute COVID-19 Syndrome , Humans , Chemokines , COVID-19 , Immunity , Interferon-alpha , Interleukin-6 , Ligands , Post-Acute COVID-19 Syndrome/complications , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/physiopathology , SARS-CoV-2 , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL