Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.296
Filter
1.
BMC Neurol ; 24(1): 167, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773417

ABSTRACT

BACKGROUND: Postural abnormalities (PA) are common in the advanced stages of Parkinson's disease (PD), but effective therapies are lacking. A few studies suggested that spinal cord stimulation (SCS) could be a potential therapy whereas its effect is still uncertain. We aimed to investigate whether SCS had potential for benefiting PD patients with PA. METHODS: T8-12 SCS was operated on six PD patients with PA and all patients were followed for one year. Evaluations were made before and after SCS. Moreover, three patients were tested separately with SCS on-state and off-state to confirm the efficacy of SCS. RESULTS: Improvements in lateral trunk flexion degree, anterior thoracolumbar flexion degree and motor function were found after SCS. The improvements diminished while SCS was turned off. CONCLUSIONS: Lower thoracic SCS may be effective for improving PA in PD patients, but further studies are needed to confirm this conclusion. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR1900024326, Registered on 6th July 2019; https://www.chictr.org.cn/showproj.aspx?proj=40835 .


Subject(s)
Parkinson Disease , Postural Balance , Spinal Cord Stimulation , Humans , Spinal Cord Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/complications , Parkinson Disease/physiopathology , Pilot Projects , Male , Female , Middle Aged , Aged , Prospective Studies , Postural Balance/physiology , Treatment Outcome
2.
J Bodyw Mov Ther ; 38: 549-553, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763607

ABSTRACT

BACKGROUND: Increased body mass index (BMI) adversely affects the mechanics of the musculoskeletal system. It is known that obese people have poorer postural stability and mobility-related outcomes compared to normal weight people, but there is limited research comparing overweight and class 1 obese people, two consecutive and prevalent BMI categories. AIMS: To compare postural stability, functional mobility, and risk of falling and developing disability between overweight and obese women, and to investigate the relationship of BMI and body weight with the outcomes. METHODS: Thirty women with class 1 obesity and 30 overweight women were included. Standing postural stability with eyes-open and eyes-closed and stability limits were assessed using the Prokin system. The Timed Up and Go Test (TUG) was used to assess functional mobility and risk of falling (≥11 s) and developing disability (≥9 s). RESULTS: The average center of pressure displacements on the y-axis (COPY) obtained during quiet standing with both eyes-open and eyes-closed were higher in obese women than overweight women (p < 0.05) and the effect sizes were moderate for the results. The COPY values in the eyes-open and eyes-closed conditions were correlated with BMI (r = 0.295 and r = 0.285, p < 0.05). Furthermore, the COPX value in the eyes-open condition and the TUG score were correlated with body weight (r = 0.274 and r = 0.257, p < 0.05). CONCLUSIONS: Obese women had poorer static standing stability in the anteroposterior direction than overweight women, while functional mobility and risk of falling and developing disability did not differ. Furthermore, BMI and body weight were related to poorer static standing stability.


Subject(s)
Accidental Falls , Body Mass Index , Obesity , Overweight , Postural Balance , Humans , Female , Postural Balance/physiology , Accidental Falls/statistics & numerical data , Obesity/physiopathology , Obesity/epidemiology , Middle Aged , Overweight/physiopathology , Overweight/epidemiology , Adult , Aged
3.
J Bodyw Mov Ther ; 38: 567-573, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763610

ABSTRACT

OBJECTIVES: The aim of the study was to assess whether strength and range of motion (ROM) of the hip and ankle are the factors determining performance in the Lower Quarter Y-Balance test (YBT-LQ). DESIGN: Cross-sectional study. PARTICIPANTS: 66 healthy males (age: 25.2±6.8 years) participated in this study. MAIN OUTCOME MEASURES: Participants underwent assessments of ankle dorsiflexion (DF) ROM, hip internal rotation (IR) ROM, external rotation (ER) ROM and isometric strength of hip abductor (ABD), extensor (EXT) and external rotators (ERS) muscles together with YBT-LQ for both legs. A forward 2-steps multiple linear regression analysis was conducted to examine the relationship between the predictor variables and the criterion variable. RESULTS: Ankle DF ROM predicted anterior (ANT) reach (R2 = 0.49; R2 = 0.33; p < 0.001). The model with hip ABD strength and ankle DF ROM explained posteromedial (PM) reach variance for stance leg (R2 = 0.35; p < 0.001), while only hip ABD strength was included for kicking leg (R2 = 0.19; p = 0.007). The model with ankle DF ROM and hip ABD strength explained posterolateral (PL) reach for stance leg (R2 = 0.41; p < 0.001). Hip ABD was the only predictor for kicking leg PL reach (R2 = 0.15; p < 0.001). YBT-LQ composite score was explained by ankle DF ROM and hip ABD strength for both legs (R2 = 0.44; p < 0.001) and (R2 = 0.25; p = 0.002). CONCLUSION: Hip ABD strength and ankle DF ROM can determine performance in the YBT-LQ. Strength of hip EXT, ERS as well as ROM of hip IR and ER did not predict YBT-LQ performance.


Subject(s)
Ankle Joint , Muscle Strength , Postural Balance , Range of Motion, Articular , Humans , Male , Range of Motion, Articular/physiology , Cross-Sectional Studies , Muscle Strength/physiology , Adult , Ankle Joint/physiology , Young Adult , Postural Balance/physiology , Muscle, Skeletal/physiology , Hip Joint/physiology , Hip/physiology
4.
J Bodyw Mov Ther ; 38: 81-85, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763620

ABSTRACT

BACKGROUND: The interest in virtual reality (VR) applications has been on the rise in recent years. However, the impact of VR on postural stability remains unclear. RESEARCH QUESTION: The study has two primary objectives: first, to compare postural stability in a 3D-immersed virtual reality environment (VE) and a real environment (RE), and second, to investigate the effect of positive and negative visual feedback, which are subconditions of VE on postural stability. METHODS: The observational study recruited 20 healthy adults (10 male, 10 female, 22.8 ± 1.8 years) who underwent postural stability assessments in both RE and VE. In VE, participants received visual stimuli in three different ways: without visual feedback, with positive and negative visual feedback that they would consider themselves to be directed towards postural stability outcomes. The RE included two conditions: eyes open (EO) and eyes closed (EC). Postural stability was evaluated with sway velocity, sway area, and perimeter variables obtained from a force platform. RESULTS: All postural stability variables were significantly lower in the RE than in the VE (p < 0.05). There was no significant difference between the VE and EC in terms of sway velocity and sway area (p > 0.05). The visual feedback in the VE did not affect participants' postural stability (p > 0.05). VE may cause an increase in postural sway variables compared to RE and postural requirements may be higher in VE compared to RE. SIGNIFICANCE: This is the first and only study examining the effect of different visual feedback on postural stability in VE.


Subject(s)
Feedback, Sensory , Postural Balance , Virtual Reality , Humans , Postural Balance/physiology , Female , Male , Young Adult , Feedback, Sensory/physiology , Adult , Visual Perception/physiology
5.
Nutrients ; 16(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732500

ABSTRACT

Caffeine (CAF) has been shown to be an effective ergogenic aid in enhancing sports performance, including vertical jump (VJ), sprint, balance, agility, and freestyle swimming performance (FSP). However, whether acute CAF supplementation improves FSP in moderately trained female swimmers has not been well documented. Therefore, this study aimed to investigate the effects of CAF intake on vertical jump, balance, auditory reaction time (ART), and swimming performance in female swimmers. In a double-blind, cross-over design, eight moderately trained female swimmers (age: 21.3 ± 1.4 years, height: 161.2 ± 7.1 cm, body mass: 56.3 ± 6.7 kg, body mass index (BMI): 21.9 ± 1.3 kg/m2, and habitual CAF intake: 246.4 ± 111.4 mg/day) ingested caffeine (CAF) (6 mg/kg) or a placebo (PLA) 60 min before completing VJ, balance, ART, and 25/50 m FSP. CAF supplementation resulted in a significantly lower time both in 25m (p = 0.032) and 50m (p = 0.033) FSP. However, CAF resulted in no significant difference in VJ, ART, and RPE (p > 0.05). Balance test results showed a non-significant moderate main effect (d = 0.58). In conclusion, CAF seems to reduce time in short-distance swimming performances, which could be the determinant of success considering the total time of the race. Thus, we recommend coaches and practitioners incorporate CAF into swimmers' nutrition plans before competitions, which may meet the high performance demands.


Subject(s)
Athletic Performance , Caffeine , Cross-Over Studies , Swimming , Humans , Caffeine/administration & dosage , Female , Swimming/physiology , Young Adult , Double-Blind Method , Athletic Performance/physiology , Reaction Time/drug effects , Adult , Dietary Supplements , Athletes , Performance-Enhancing Substances/administration & dosage , Postural Balance/drug effects , Postural Balance/physiology
6.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732796

ABSTRACT

Gait speed and timed-up-and-go (TUG) predict cognitive decline, falls, and mortality. Dual-tasks may be useful in cognitive screening among people living with dementia (PWD), but more evidence is needed. This cross-sectional study aimed to compare single- and dual-task performance and determine the influence of dementia severity on dual-task performance and interference. Thirty PWD in two residential care facilities (Age: 81.3 ± 7.1 years; Montreal Cognitive Assessment: 10.4 ± 6.0 points) completed two trials of single- (feet apart) and dual-task posture (feet apart while counting backward), single- (walk 4 m) and dual-task gait (walk 4m while naming words), and single- (timed-up-and-go (TUG)), and dual-task functional mobility (TUG while completing a category task) with APDM inertial sensors. Dual-tasks resulted in greater sway frequency, jerk, and sway area; slower gait speed; greater double limb support; shorter stride length; reduced mid-swing elevation; longer TUG duration; reduced turn angle; and slower turn velocity than single-tasks (ps < 0.05). Dual-task performance was impacted (reduced double limb support, greater mid-swing elevation), and dual-task interference (greater jerk, faster gait speed) was related to moderate-to-severe compared to mild PWD. Moderate-to-severe PWD had poorer dynamic stability and a reduced ability to appropriately select a cautious gait during dual-tasks than those with mild PWD, indicating the usefulness of dual-tasks for cognitive screening.


Subject(s)
Dementia , Gait , Posture , Humans , Male , Dementia/physiopathology , Pilot Projects , Gait/physiology , Female , Aged , Aged, 80 and over , Cross-Sectional Studies , Posture/physiology , Task Performance and Analysis , Residential Facilities , Postural Balance/physiology , Severity of Illness Index , Accidental Falls/prevention & control
7.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732825

ABSTRACT

This study aimed to investigate the effects of wearing virtual reality (VR) with a head-mounted display (HMD) on body sway in younger and older adults. A standing posture with eyes open without an HMD constituted the control condition. Wearing an HMD and viewing a 30°-tilt image and a 60°-tilt image in a resting standing position were the experimental conditions. Measurements were made using a force plate. All conditions were performed three times each and included the X-axis trajectory length (mm), Y-axis trajectory length (mm), total trajectory length (mm), trajectory length per unit time (mm/s), outer peripheral area (mm2), and rectangular area (mm2). The results showed a significant interaction between generation and condition in Y-axis trajectory length (mm) and total trajectory length (mm), with an increased body center-of-gravity sway during the viewing of tilted VR images in older adults than in younger adults in both sexes. The results of this study show that body sway can be induced by visual stimulation alone with VR without movement, suggesting the possibility of providing safe and simple balance training to older adults.


Subject(s)
Postural Balance , Standing Position , Virtual Reality , Humans , Male , Female , Postural Balance/physiology , Aged , Adult , Young Adult , Middle Aged , Adaptation, Physiological/physiology , Posture/physiology
8.
Scand J Med Sci Sports ; 34(5): e14645, 2024 May.
Article in English | MEDLINE | ID: mdl-38736180

ABSTRACT

INTRODUCTION: Age-related decline in physical functioning has significant implications for health in later life but declines begin earlier in midlife. Physical activity (PA) volume is associated with physical function, but the importance of the pattern in which PA is accumulated is unclear. This study investigates associations between patterns of PA accumulation, including the composition, variation, and temporal distribution of upright and stepping events, with physical function in midlife. METHODS: Participants (n = 4378) from the 1970 British Cohort Study wore an activPAL3 accelerometer on the thigh for 7 consecutive days. Exposure measures included a suite of metrics describing the frequency, duration, and composition of upright events, as well as the duration and volume (total steps) of stepping events. In addition, patterns of accumulation of upright and sedentary events were examined including how fragmented/transient they were (upright-to-sedentary transition probability [USTP]) and their burstiness (the tendency for events to be clustered together followed by longer interevent times). Physical function outcomes included grip strength (GS), balance, and SF-36 physical functioning subscale (SF-36pf). Cross-sectional analyses included multivariable linear regression models to assess associations, adjusting for covariates including overall PA volume (mean daily step count). RESULTS: Higher upright event burstiness was associated with higher GS, and higher USTP was associated with lower GS. Duration and step volume of stepping events were positively associated with SF-36pf in females. Step-weighted cadence was positively associated with SF-36pf and balance. Contradictory findings were also present (e.g., more transient stepping events were associated with better GS) particularly for GS in males. Inconsistencies between sexes were observed across some associations. CONCLUSION: Our study reveals that diverse patterns of PA accumulation exhibit distinct associations with various measures of physical function in midlife, irrespective of the overall volume. Contradictory findings and inconsistency between sexes warrant further investigation. Patterns of PA accumulation, in addition to volume, should be considered in future PA research. Longitudinal studies are required to determine whether a given volume of activity accumulated in different patterns, impacts associations between PA and health outcomes.


Subject(s)
Accelerometry , Exercise , Hand Strength , Humans , Female , Male , Middle Aged , Cross-Sectional Studies , United Kingdom , Hand Strength/physiology , Exercise/physiology , Sedentary Behavior , Postural Balance/physiology , Cohort Studies , Walking/physiology
9.
PeerJ ; 12: e17313, 2024.
Article in English | MEDLINE | ID: mdl-38708344

ABSTRACT

Background: Humans continuously maintain and adjust posture during gait, standing, and sitting. The difficulty of postural control is reportedly increased during unstable stances, such as unipedal standing and with closed eyes. Although balance is slightly impaired in healthy young adults in such unstable stances, they rarely fall. The brain recognizes the change in sensory inputs and outputs motor commands to the musculoskeletal system. However, such changes in cortical activity associated with the maintenance of balance following periods of instability require further clarified. Methods: In this study, a total of 15 male participants performed two postural control tasks and the center of pressure displacement and electroencephalogram were simultaneously measured. In addition, the correlation between amplitude of center of pressure displacement and power spectral density of electroencephalogram was analyzed. Results: The movement of the center of pressure was larger in unipedal standing than in bipedal standing under both eye open and eye closed conditions. It was also larger under the eye closed condition compared with when the eyes were open in unipedal standing. The amplitude of high-frequency bandwidth (1-3 Hz) of the center of pressure displacement was larger during more difficult postural tasks than during easier ones, suggesting that the continuous maintenance of posture was required. The power spectral densities of the theta activity in the frontal area and the gamma activity in the parietal area were higher during more difficult postural tasks than during easier ones across two postural control tasks, and these correlate with the increase in amplitude of high-frequency bandwidth of the center of pressure displacement. Conclusions: Taken together, specific activation patterns of the neocortex are suggested to be important for the postural maintenance during unstable stances.


Subject(s)
Electroencephalography , Postural Balance , Humans , Postural Balance/physiology , Male , Young Adult , Adult , Posture/physiology , Cerebral Cortex/physiology , Standing Position
10.
J Neuroeng Rehabil ; 21(1): 73, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705999

ABSTRACT

BACKGROUND: Exoskeletons are increasingly applied during overground gait and balance rehabilitation following neurological impairment, although optimal parameters for specific indications are yet to be established. OBJECTIVE: This systematic review aimed to identify dose and dosage of exoskeleton-based therapy protocols for overground locomotor training in spinal cord injury/disease. METHODS: A systematic review was conducted in accordance with the Preferred Reporting Items Systematic Reviews and Meta-Analyses guidelines. A literature search was performed using the CINAHL Complete, Embase, Emcare Nursing, Medline ALL, and Web of Science databases. Studies in adults with subacute and/or chronic spinal cord injury/disease were included if they reported (1) dose (e.g., single session duration and total number of sessions) and dosage (e.g., frequency of sessions/week and total duration of intervention) parameters, and (2) at least one gait and/or balance outcome measure. RESULTS: Of 2,108 studies identified, after removing duplicates and filtering for inclusion, 19 were selected and dose, dosage and efficacy were abstracted. Data revealed a great heterogeneity in dose, dosage, and indications, with overall recommendation of 60-min sessions delivered 3 times a week, for 9 weeks in 27 sessions. Specific protocols were also identified for functional restoration (60-min, 3 times a week, for 8 weeks/24 sessions) and cardiorespiratory rehabilitation (60-min, 3 times a week, for 12 weeks/36 sessions). CONCLUSION: This review provides evidence-based best practice recommendations for overground exoskeleton training among individuals with spinal cord injury/disease based on individual therapeutic goals - functional restoration or cardiorespiratory rehabilitation. There is a need for structured exoskeleton clinical translation studies based on standardized methods and common therapeutic outcomes.


Subject(s)
Exercise Therapy , Exoskeleton Device , Postural Balance , Spinal Cord Injuries , Spinal Cord Injuries/rehabilitation , Humans , Postural Balance/physiology , Exercise Therapy/methods , Exercise Therapy/instrumentation , Gait/physiology , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology
11.
PeerJ ; 12: e17256, 2024.
Article in English | MEDLINE | ID: mdl-38699182

ABSTRACT

Background: Humans have a remarkable capability to maintain balance while walking. There is, however, a lack of publicly available research data on reactive responses to destabilizing perturbations during gait. Methods: Here, we share a comprehensive dataset collected from 10 participants who experienced random perturbations while walking on an instrumented treadmill. Each participant performed six 5-min walking trials at a rate of 1.2 m/s, during which rapid belt speed perturbations could occur during the participant's stance phase. Each gait cycle had a 17% probability of being perturbed. The perturbations consisted of an increase of belt speed by 0.75 m/s, delivered with equal probability at 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 80% of the stance phase. Data were recorded using motion capture with 25 markers, eight inertial measurement units (IMUs), and electromyography (EMG) from the tibialis anterior (TA), soleus (SOL), lateral gastrocnemius (LG), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), and gluteus maximus (GM). The full protocol is described in detail. Results: We provide marker trajectories, force plate data, EMG data, and belt speed information for all trials and participants. IMU data is provided for most participants. This data can be useful for identifying neural feedback control in human gait, biologically inspired control systems for robots, and the development of clinical applications.


Subject(s)
Electromyography , Gait , Walking , Humans , Biomechanical Phenomena/physiology , Walking/physiology , Male , Adult , Female , Gait/physiology , Postural Balance/physiology , Muscle, Skeletal/physiology , Young Adult , Exercise Test/methods
12.
BMC Geriatr ; 24(1): 403, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714957

ABSTRACT

BACKGROUND: Evidence on the effects of plantar intrinsic foot muscle exercise in older adults remains limited. This study aimed to evaluate the effect of an integrated intrinsic foot muscle exercise program with a novel three-dimensional printing foot core training device on balance and body composition in community-dwelling adults aged 60 and above. METHODS: A total of 40 participants aged ≥ 60 years were enrolled in this quasi-experimental, single-group, pretest-posttest design; participants were categorized into two groups, those with balance impairment and those without balance impairment. The participants performed a 4-week integrated intrinsic foot muscle exercise program with a three-dimensional printing foot core training device. The short physical performance battery (SPPB) and timed up and go test were employed to evaluate mobility and balance. A foot pressure distribution analysis was conducted to assess static postural control. The appendicular skeletal muscle mass index and fat mass were measured by a segmental body composition monitor with bioelectrical impedance analysis. The Wilcoxon signed rank test was used to determine the difference before and after the exercise program. RESULTS: Among the 40 enrolled participants (median age, 78.0 years; female, 80.0%; balance-impaired group, 27.5%), the 95% confidence ellipse area of the center of pressure under the eyes-closed condition was significantly decreased (median pretest: 217.3, interquartile range: 238.4; median posttest: 131.7, interquartile range: 199.5; P = 0.001) after the exercise. Female participants without balance impairment demonstrated a significant increase in appendicular skeletal muscle mass index and a decrease in fat mass. Participants in the balance-impaired group exhibited a significant increase in SPPB. CONCLUSIONS: Integrated intrinsic foot muscle exercise with a three-dimensional printing foot core training device may improve balance and body composition in adults aged 60 and above. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT05750888 (retrospectively registered 02/03/2023).


Subject(s)
Body Composition , Foot , Independent Living , Muscle, Skeletal , Postural Balance , Humans , Female , Aged , Postural Balance/physiology , Male , Body Composition/physiology , Foot/physiology , Muscle, Skeletal/physiology , Middle Aged , Exercise Therapy/methods , Exercise Therapy/instrumentation , Aged, 80 and over
13.
J Biomech ; 168: 112123, 2024 May.
Article in English | MEDLINE | ID: mdl-38696984

ABSTRACT

Motorized treadmills have been extensively used in investigating reactive balance control and developing perturbation-based interventions for fall prevention. However, the relationship between perturbation intensity and its outcome has not been quantified. The primary purpose of this study was to quantitatively analyze how the treadmill belt's peak velocity affects the perturbation outcome and other metrics related to the reactive balance in young adults while the total belt displacement is controlled at 0.36 m. Thirty-one healthy young adults were randomly assigned into three groups with different peak belt speeds: low (0.9 m/s), medium (1.2 m/s), and high (1.8 m/s). Protected by a safety harness, participants were exposed to a forward support surface translation while standing at an unexpected timing on an ActiveStep treadmill. The primary (perturbation outcome: fall vs. recovery) and secondary (dynamic stability, hip descent, belt distance at liftoff, and recovery step latency) outcome measures were compared among groups. Results revealed that a higher perturbation intensity is correlated with a greater faller rate (p < 0.001). Compared to the low- and medium-intensity groups, the high-intensity group was less stable (p < 0.001) with a larger hip descent (p < 0.001) and a longer belt distance (p < 0.001) at the recovery step liftoff. The results suggest that the increased perturbation intensity raises the risk of falling with larger instability and poorer reactive performance after a support surface translation-induced perturbation in healthy young adults. The findings could furnish preliminary guidance for us to design and select the optimal perturbation intensity that can maximize the effects of perturbation-based training protocols.


Subject(s)
Accidental Falls , Postural Balance , Humans , Postural Balance/physiology , Accidental Falls/prevention & control , Male , Female , Adult , Young Adult , Standing Position , Biomechanical Phenomena , Exercise Test/methods
14.
J Biomech ; 168: 112122, 2024 May.
Article in English | MEDLINE | ID: mdl-38703516

ABSTRACT

As the recovery from gait perturbations is coordinatively complex and error-prone, people often adopt anticipatory strategies when the perturbation is expected. These anticipatory strategies act as a first line of defence against potential balance loss. Since age-related changes in the sensory and neuromotor systems could make the recovery from external perturbations more difficult, it is important to understand how older adults implement anticipatory strategies. Therefore, we exposed healthy young (N = 10, 22 ± 1.05 yrs.) and older adults (N = 10, 64.2 ± 6.07 yrs.) to simulated slips on a treadmill with consistent properties and assessed if the reliance on anticipatory control differed between groups. Results showed that for the unperturbed steps in between perturbations, step length decreased and the backward (BW) margin of stability (MOS) increased (i.e., enhanced dynamic stability against backward loss of balance) in the leg that triggered the slip, while step lengths increased and BW MOS decreased in the contralateral leg. This induced step length and BW MOS asymmetry was significantly larger for older adults. When exposed to a series of predictable slips, healthy older adults thus rely more heavily on anticipatory control to proactively accommodate the expected backward loss of balance.


Subject(s)
Gait , Postural Balance , Humans , Male , Female , Postural Balance/physiology , Middle Aged , Aged , Gait/physiology , Accidental Falls/prevention & control , Adult , Aging/physiology , Anticipation, Psychological/physiology , Biomechanical Phenomena , Young Adult , Walking/physiology
15.
BMJ Open ; 14(5): e080592, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38692713

ABSTRACT

BACKGROUND: Falls are common in older people and individuals with neurological conditions. Parkinson's disease (PD) is known for postural instability causing mobility disabilities, falls and reduced quality of life. The fear of falling (FOF), a natural response to unstable balance, can worsen postural control problems. Evaluating FOF relies largely on affected persons' subjective accounts due to limited objective assessment methods available. The aim of this mixed-methods feasibility study is to develop an assessment method for FOF while in motion and walking within virtual environments. This study will assess a range of FOF-related responses, including cognitive factors, neuromuscular response and postural stability. METHODS AND ANALYSIS: This feasibility study will consist of four phases: the first two phases will include people without PD, while the other two will include people diagnosed with PD. Participants will be assessed for direct and indirect responses to real life, as well as virtual environment walking scenarios that may induce FOF. Data from questionnaires, different neurophysiological assessments, movement and gait parameters, alongside evaluations of usability and acceptability, will be collected. Semistructured interviews involving both participants and research assistants shall take place to elicit their experiences throughout different phases of the assessments undertaken. Demographic data, the scores of assessment scales, as well as feasibility, usability and acceptability of the measurement methods, will be illustrated via descriptive statistics. Movement and gait outcomes, together with neurophysiological data, will be extracted and calculated. Exploring relationships between different factors in the study will be achieved using a regression model. Thematic analysis will be the approach used to manage qualitative data. ETHICS AND DISSEMINATION: This feasibility study was approved by the Ethics Committee of the Faculty of Physical Therapy, Kafr El Sheikh University, Egypt (number: P.T/NEUR/3/2023/46). The results of this study will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT05931692).


Subject(s)
Accidental Falls , Fear , Feasibility Studies , Parkinson Disease , Postural Balance , Virtual Reality , Humans , Parkinson Disease/psychology , Parkinson Disease/physiopathology , Postural Balance/physiology , Accidental Falls/prevention & control , Fear/psychology , Egypt , Male , Female , Quality of Life , Aged , Middle Aged , Adult , Walking
16.
BMC Pediatr ; 24(1): 295, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724964

ABSTRACT

BACKGROUND: Balance is crucial for physical development in preschool children. Exploring the relationship between different types of balance can help understand early physical development in children. Currently, research is mostly focused on the relationship between different types of balance in the adult population and lacks exploration of the preschool population. The aim of this study explored the relationship between static and dynamic balance in preschool children aged 4 to 5 years. METHODS: A total of 128 preschool children between the ages of 4 to 5 years were selected. The following tests were conducted as they wore inertial sensors detecting their centers of mass (COM): T1, standing with eyes open; T2, standing with eyes closed; T3, standing with eyes open on foam; T4, standing with eyes closed on foam; and T5, walking on the balance beam. Static balance was measured by the angular velocity modulus (ω-T1-ω-T4) of the shaking COM, as well as the pitch angle (θ-T1-θ-T4) and roll angle (φ-T1-φ-T4) indicators in T1-T4 testing. Dynamic balance was measured by the time (t) and angular velocity modulus (ω-T5), as well as the pitch angle (θ-T5) and roll angle (φ-T5) indicators in the T5 test. The Pearson product-moment correlation coefficient was used to test the correlation between static and dynamic balance indicators. RESULTS: There is no correlation between ω-T1-ω-T4 and t (P > 0.05), while ω-T1-ω-T4 and ω-T5 (r = 0.19-0.27, P < 0.05) and ω-T1-ω-T4 and θ-T5, φ-T5 (r = 0.18-0.33, P < 0.05) were weakly correlated. There is no correlation between θ-T1-θ-T4, φ-T1-φ-T4 and t (P > 0.05), while θ-T1-θ-T4, φ-T1-φ-T4, and θ-T5, φ-T5 were weakly correlated (r = 0.01-0.28, P < 0.05). CONCLUSIONS: The relationship between static and dynamic balance in preschool children aged 4-5 years is weak. Static and dynamic balance in children needs to be intervened separately for the development of children.


Subject(s)
Postural Balance , Humans , Postural Balance/physiology , Child, Preschool , Cross-Sectional Studies , Female , Male , Child Development/physiology
17.
J Neuroeng Rehabil ; 21(1): 74, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724981

ABSTRACT

BACKGROUND: Degenerative lumbar spine disease (DLD) is a prevalent condition in middle-aged and elderly individuals. DLD frequently results in pain, muscle weakness, and motor impairment, which affect postural stability and functional performance in daily activities. Simulated skateboarding training could enable patients with DLD to engage in exercise with less pain and focus on single-leg weight-bearing. The purpose of this study was to investigate the effects of virtual reality (VR) skateboarding training on balance and functional performance in patients with DLD. METHODS: Fourteen patients with DLD and 21 age-matched healthy individuals completed a 6-week program of VR skateboarding training. The motion capture and force platform systems were synchronized to collect data during a single-leg stance test (SLST). Musculoskeletal simulation was utilized to calculate muscle force based on the data. Four functional performance tests were conducted to evaluate the improvement after the training. A Visual Analogue Scale (VAS) was also employed for pain assessment. RESULTS: After the training, pain intensity significantly decreased in patients with DLD (p = 0.024). Before the training, patients with DLD took longer than healthy individuals on the five times sit-to-stand test (p = 0.024). After the training, no significant between-group differences were observed in any of the functional performance tests (p > 0.05). In balance, patients with DLD were similar to healthy individuals after the training, except that the mean frequency (p = 0.014) was higher. Patients with DLD initially had higher biceps femoris force demands (p = 0.028) but shifted to increased gluteus maximus demand after the training (p = 0.037). Gluteus medius strength significantly improved in patients with DLD (p = 0.039), while healthy individuals showed consistent muscle force (p > 0.05). CONCLUSION: This is the first study to apply the novel VR skateboarding training to patients with DLD. VR skateboarding training enabled patients with DLD to achieve the training effects in a posture that relieves lumbar spine pressure. The results also emphasized the significant benefits to patients with DLD, such as reduced pain, enhanced balance, and improved muscle performance.


Subject(s)
Lumbar Vertebrae , Postural Balance , Virtual Reality , Humans , Postural Balance/physiology , Male , Female , Middle Aged , Aged , Physical Functional Performance , Exercise Therapy/methods , Spinal Diseases/rehabilitation , Spinal Diseases/physiopathology
18.
Med Sci Monit ; 30: e943057, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745408

ABSTRACT

BACKGROUND This single-center study included 80 patients with multilevel cervical ossification of the posterior longitudinal ligament (OPLL) and aimed to compare postoperative sagittal balance following treatment with expansive open-door laminoplasty (LP) vs total laminectomy with fusion (LF). MATERIAL AND METHODS Data of 80 patients with multilevel OPLL treated with LP vs LF between January 2017 and January 2022 were retrospectively analyzed. The basic data, cervical sagittal parameters, and clinical outcomes of the patients were counted in the preoperative and postoperative periods, and complications were recorded. Forty patients underwent LP and 40 underwent LF. Cervical sagittal parameters were compared between and within the 2 groups. Clinical outcomes and complications were compared between the 2 groups. RESULTS At last follow-up, the postoperative C2-C7 Cobb angel, T1 slope (T1S), and C7 slope (C7S) were significantly higher in the LF group than in the LP group (P<0.001). C2-C7 SVA (cSVA) was slightly higher in the LF group (P>0.05) and significantly higher in the LP group (P<0.05). The incidence of postoperative complications in the LP group was significantly lower than in the LF group (P=0.02). The postoperative scores on the Visual Analog Scale (VAS), Neck Disability Index (NDI), and Japanese Orthopedic Association (JOA) were significantly improved in both groups (P<0.001). CONCLUSIONS Both procedures had good outcomes in neurological improvement. After posterior surgery, the cervical vertebrae all showed a tilting forward. Compared to LP, LF may change cervical balance in Cobb angel, T1S. LF has better efficacy in improving cervical lordosis compared with LP. Patients with high T1 slope after surgery may has more axial pain.


Subject(s)
Cervical Vertebrae , Laminectomy , Laminoplasty , Ossification of Posterior Longitudinal Ligament , Spinal Fusion , Humans , Ossification of Posterior Longitudinal Ligament/surgery , Laminoplasty/methods , Laminoplasty/adverse effects , Male , Female , Retrospective Studies , Laminectomy/methods , Laminectomy/adverse effects , Middle Aged , Spinal Fusion/methods , Spinal Fusion/adverse effects , Cervical Vertebrae/surgery , Aged , Treatment Outcome , Postoperative Complications/etiology , Postoperative Period , Postural Balance/physiology , Adult
19.
BMC Musculoskelet Disord ; 25(1): 387, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762722

ABSTRACT

PURPOSE: This study aimed to evaluate the cervical sagittal profile after the spontaneous compensation of global sagittal imbalance and analyze the associations between the changes in cervical sagittal alignment and spinopelvic parameters. METHODS: In this retrospective radiographic study, we analyzed 90 patients with degenerative lumbar stenosis (DLS) and sagittal imbalance who underwent short lumbar fusion (imbalance group). We used 60 patients with DLS and sagittal balance as the control group (balance group). Patients in the imbalance group were also divided into two groups according to the preoperative PI: low PI group (≤ 50°), high PI group (PI > 50°). We measured the spinal sagittal alignment parameters on the long-cassette standing lateral radiographs of the whole spine. We compared the changes of spinal sagittal parameters between pre-operation and post-operation. We observed the relationships between the changes in cervical profile and spinopelvic parameters. RESULTS: Sagittal vertical axis (SVA) occurred spontaneous compensation (p = 0.000) and significant changes were observed in cervical lordosis (CL) (p = 0.000) and cervical sagittal vertical axis (cSVA) (p = 0.023) after surgery in the imbalance group. However, there were no significant differences in the radiographic parameters from pre-operation to post-operation in the balance group. The variations in CL were correlated with the variations in SVA (R = 0.307, p = 0.041). The variations in cSVA were correlated with the variations in SVA (R=-0.470, p = 0.001). CONCLUSION: Cervical sagittal profile would have compensatory changes after short lumbar fusion. The spontaneous decrease in CL would occur in patients with DLS after the spontaneous compensation of global sagittal imbalance following one- or two-level lumbar fusion. The changes of cervical sagittal profile were related to the extent of the spontaneous compensation of SVA.


Subject(s)
Cervical Vertebrae , Lordosis , Lumbar Vertebrae , Spinal Fusion , Spinal Stenosis , Humans , Spinal Fusion/adverse effects , Spinal Fusion/methods , Male , Female , Retrospective Studies , Aged , Middle Aged , Lumbar Vertebrae/surgery , Lumbar Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery , Cervical Vertebrae/diagnostic imaging , Spinal Stenosis/surgery , Spinal Stenosis/diagnostic imaging , Lordosis/diagnostic imaging , Lordosis/surgery , Postural Balance/physiology , Radiography
20.
PeerJ ; 12: e17287, 2024.
Article in English | MEDLINE | ID: mdl-38766481

ABSTRACT

Background: The performance of balance is an important factor to perform activities. The complications of type 2 diabetes mellitus (T2DM), especially vestibular dysfunction (VD), could decrease balance performance and falls-efficacy (FE) which consequently impacts social participation and quality of life (QoL). Purpose: This study aimed to compare balance performance, FE, social participation and QoL between individuals with T2DM with and without VD. Methods: The participants comprised 161 T2DM with VD and 161 without VD. Three clinical tests used for confirming VD included the Head Impulse Test (HIT), the Dix Hallpike Test (DHT) and the Supine Roll Test (SRT). The scores of static and dynamic balances, FE, social participation and QoL were compared between groups. Results: The balance performance, FE, social participation and QoL were lower in the group with VD. The number of patients who had severe social restriction was higher in T2DM with VD than without VD (58.4% vs 48.4%). Moreover, all domains of QoL (physical, psychological, social relationships and environmental) were lower in T2DM with VD than without VD. Conclusion: The presence of VD in T2DM patients was associated with decreased physical balance performances and increased social and QoL disengagement. Comprehensive management related to balance and FE, as well as the monitoring to support social participation and QoL, should be emphasized in patients with T2DM with VD.


Subject(s)
Accidental Falls , Diabetes Mellitus, Type 2 , Postural Balance , Quality of Life , Social Participation , Vestibular Diseases , Humans , Diabetes Mellitus, Type 2/psychology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Postural Balance/physiology , Male , Female , Quality of Life/psychology , Accidental Falls/prevention & control , Middle Aged , Vestibular Diseases/physiopathology , Vestibular Diseases/psychology , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...